
Guiro et al. Advances in Difference Equations 2012, 2012:154
http://www.advancesindifferenceequations.com/content/2012/1/154

RESEARCH Open Access

Weak homoclinic solutions of anisotropic
difference equation with variable exponents
Aboudramane Guiro1, Blaise Kone2 and Stanislas Ouaro3*

*Correspondence: ouaro@yahoo.fr;
souaro@univ-ouaga.bf
3Laboratoire d’Analyse
Mathématique des Equations
(LAME), UFR, Sciences Exactes et
Appliquées, Université de
Ouagadougou, 03 BP 7021 Ouaga
03, Ouagadougou, Burkina Faso
Full list of author information is
available at the end of the article

Abstract
In this paper, we prove the existence of homoclinic solutions for a family of
anisotropic difference equations. The proof of the main result is based on a
minimization method and a discrete Hölder type inequality.
MSC: 47A75; 35B38; 35P30; 34L05; 34L30

Keywords: difference equations; homoclinic solutions; discrete Hölder type
inequality

1 Introduction
In this paper, we study the following nonlinear discrete anisotropic problem:

⎧⎨
⎩
–�(a(k – ,�u(k – ))) + |u(k)|p(k)–u(k) = f (k), k ∈ Z,

lim|k|→∞ u(k) = ,
(.)

where �u(k) = u(k + ) – u(k) is the forward difference operator.
The problem (.) is a class of partial difference equationswhich usually describe the evo-

lution of certain phenomena over the course of time. Elementary but relevant examples of
partial difference equations are concerned with heat diffusion, heat control, temperature
distribution, population growth, cellular neural networks, etc. (see [–]). Our interest for
problems of the type (.) is motivated by major applications of differential and difference
operators to various applied fields such as electrorheological (smart) fluids, space tech-
nology, robotics, image processing, etc.On the other hand, they are strongly motivated by
their applicability to mathematical physics and biology.
The goal of the present paper is to establish the existence of homoclinic solutions for the

problem (.). In the theory of differential equations, a trajectory x(t), which is asymptotic
to a constant as |t| → ∞, is called a doubly asymptotic or homoclinic orbit. The notion of
a homoclinic orbit was introduced by Poincaré [] for continuous Hamiltonian systems.
Since we are seeking for solutions u of the problem (.) satisfying lim|k|→∞ u(k) = , then
according to the notion of a homoclinic orbit by Poincaré [], we are interested in finding
homoclinic solutions for the problem (.). We remember that boundary value problems
involving difference operators with constant exponents have been intensively studied in
the last decade (see [–] for details). The existence of homoclinic solutions where stud-
ied in particular by the authors in []. The variable exponent cases were studied by some
authors in [–] and the references therein. Other very recent applications of variable
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exponent equations are presented in [–]. The study of such kind of problems can be
placed at the interface of certain mathematical fields such as nonlinear differential equa-
tions and numerical analysis.
The variational approach to the study of homoclinic solutions in the context of variable

exponent was firstly done by Mihailescu, Radulescu and Tersian in []. They studied the
following problem:

⎧⎨
⎩

�
p(k–)u(k – ) –V (k)|u(k)|q(k)–u(k) + f (k,u(k)) = , for k ∈ Z,

lim|k|→∞ u(k) = ,
(.)

where �
p(·) stands for the p(·)-Laplace difference operator, that is,

�
p(k–)u(k – ) =

∣∣�u(k)
∣∣p(k)–�u(k) –

∣∣�u(k – )
∣∣p(k–)–�u(k – ),

for each k ∈ Z.
In this paper, we use the minimization technique to get the existence of homoclinic

solutions of (.).
The paper is organized as follows. In Section , we define the functional spaces and

prove some of their useful properties, and finally, in Section , we prove the existence of
homoclinic solutions of (.).

2 Auxiliary results
We will use the following notations from now on:

p+ = sup
k∈Z

p(k) and p– = inf
k∈Z

p(k).

For the data f and a, we assume the following:

⎧⎪⎪⎨
⎪⎪⎩
a(k, ·) :R →R ∀k ∈ Z and there exists a mapping

A : Z×R→ R which satisfies:

a(k, ξ ) = ∂
∂ξ
A(k, ξ ), ∀k ∈ Z and A(k, ) = , ∀k ∈ Z.

(.)

|ξ |p(k) ≤ a(k, ξ )ξ ≤ p(k)A(k, ξ ) ∀k ∈ Z and ξ ∈R. (.)

There exists a positive constant C such that

∣∣a(k, ξ )∣∣ ≤ C
(
j(k) + |ξ |p(k)–), (.)

for all k ∈ Z and ξ ∈R, where j ∈ lp′(·) (a space to be defined later) with 
p(k) +


p′(k) = .

f ∈ lp
′(·), (.)

with 
p(k) +


p′(k) = , for all k ∈ Z.

p(·) : Z → (, +∞) such that  < p– ≤ p(·) < p+ < +∞. (.)
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We now introduce the spaces:

lp(·) =
{
u : Z →R;ρp(·)(u) :=

∑
k∈Z

∣∣u(k)∣∣p(k) < ∞
}

and

W,p(·) =
{
u : Z →R;ρ,p(·)(u) :=

∑
k∈Z

∣∣u(k)∣∣p(k) +∑
k∈Z

∣∣�u(k)
∣∣p(k) <∞

}

=
{
u : Z →R;u ∈ lp(·) and �u(k) ∈ lp(·)

}
.

On lp(·), we introduce the Luxemburg norm

‖u‖p(·) := inf

{
λ > ;

∑
k∈Z

∣∣∣∣u(k)λ

∣∣∣∣
p(k)

≤ 
}
.

Then

‖u‖,p(·) := inf

{
λ > ;

∑
k∈Z

∣∣∣∣u(k)λ

∣∣∣∣
p(k)

+
∑
k∈Z

∣∣∣∣�u(k)
λ

∣∣∣∣
p(k)

≤ 
}

= ‖u‖p(·) + ‖�u‖p(·)

is a norm on the spaceW,p(·).

Remark . If u ∈ lp(·), then lim|k|→+∞ u(k) = . Indeed, if u ∈ lp(·), then
∑

k∈Z |u(k)|p(k) <
∞. Let

∑
k∈Z

∣∣u(k)∣∣p(k) = ∑
k∈S

∣∣u(k)∣∣p(k) + ∑
k∈S

∣∣u(k)∣∣p(k),

where

S =
{
k ∈ Z;

∣∣u(k)∣∣ < 
}

and

S =
{
k ∈ Z;

∣∣u(k)∣∣ ≥ 
}
.

S is necessarily a finite set and |u(k)| < ∞ for any k ∈ S since u ∈ lp(·).
We also have that

∑
k∈S |u(k)|p+ ≤ ∑

k∈Z |u(k)|p(k), then ∑
k∈S |u(k)|p+ < ∞. As S is a

finite set, then
∑

k∈S |u(k)|p+ < ∞, which implies that

∑
k∈Z

∣∣u(k)∣∣p+ <∞.

Thus,

lim
|k|→+∞

u(k) = .
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Proposition . Under condition (.), ρp(·) satisfies:
(a) ρp(·)(u + v)≤ p+(ρp(·)(u) + ρp(·)(v)); ∀u, v ∈ lp(·).
(b) For u ∈ lp(·), if λ > , we have

ρp(·)(u) ≤ λρp(·)(u) ≤ λp–ρp(·)(u) ≤ ρp(·)(λu)≤ λp+ρp(·)(u),

and if  < λ < , we have

λp+ρp(·)(u) ≤ ρp(·)(λu) ≤ λp–ρp(·)(u) ≤ λρp(·)(u) ≤ ρp(·)(u).

(c) For every fixed u ∈ lp(·) \ {}, ρp(·)(λu) is a continuous convex even function in λ, and
it increases strictly when λ ∈ [,∞).

Proof
(a) Let u, v ∈ lp(·), we have

ρp(·)(u + v) =
∑
k∈Z

∣∣u(k) + v(k)
∣∣p(k)

=
∑
k∈Z

p(k)
∣∣∣∣ u(k) +



v(k)

∣∣∣∣
p(k)

≤
∑
k∈Z

p(k)
[


∣∣u(k)∣∣p(k) + 


∣∣v(k)∣∣p(k)

]

≤ p
+–(ρp(·)(u) + ρp(·)(v)

)
≤ p+

(
ρp(·)(u) + ρp(·)(v)

)
.

(b) For u ∈ lp(·), if λ > , we have

ρp(·)(λu) =
∑
k∈Z

∣∣λu(k)∣∣p(k)

=
∑
k∈Z

λp(k)∣∣u(k)∣∣p(k)

≥ λp–
∑
k∈Z

∣∣u(k)∣∣p(k) = λp–ρp(·)(u).

We also have ρp(·)(λu) =
∑

k∈Z λp(k)|u(k)|p(k) ≤ λp+ ∑
k∈Z |u(k)|p(k) = λp+ρp(·)(u).

If  < λ < , we have

ρp(·)(λu) =
∑
k∈Z

∣∣λu(k)∣∣p(k)

=
∑
k∈Z

λp(k)∣∣u(k)∣∣p(k)

≥ λp+
∑
k∈Z

∣∣u(k)∣∣p(k) = λp+ρp(·)(u).

We also have ρp(·)(λu) =
∑

k∈Z λp(k)|u(k)|p(k) ≤ λp– ∑
k∈Z |u(k)|p(k) = λp–ρp(·)(u).

http://www.advancesindifferenceequations.com/content/2012/1/154
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(c) For every fixed u ∈ lp(·) \ {} and α ∈ (, ), we have ∀v ∈ lp(·)

ρp(·)
(
αu + ( – α)v

) ≤
∑
k∈Z

[∣∣αu(k)∣∣p(k) + ∣∣( – α)v(k)
∣∣p(k)]

≤
∑
k∈Z

[
αp(k)∣∣u(k)∣∣p(k) + ( – α)p(k)

∣∣v(k)∣∣p(k)]

≤
∑
k∈Z

[
α
∣∣u(k)∣∣p(k) + ( – α)

∣∣v(k)∣∣p(k)]

≤ αρp(·)(u) + ( – α)ρp(·)(v).

This proves that ρp(·)(u) is convex.
Let λ,λ ≥  such that λ < λ. We have

ρp(·)(λu) =
∑
k∈Z

∣∣λu(k)
∣∣p(k)

=
∑
k∈Z

λ
p(k)


∣∣u(k)∣∣p(k)

<
∑
k∈Z

λ
p(k)


∣∣u(k)∣∣p(k) = ρp(·)(λu).

Thus, for every fixed u ∈ lp(·) \ {}, ρp(·)(λu) increases strictly when λ ∈ [, +∞).
For the continuity of ρp(·)(λu), let (λn)n∈N be a real sequence such that λn → λ as n →

+∞. We denote gn,k = |λnu(k)|p(k). We have

∑
k∈Z

|gn,k| ≤ |λn|β
∑
k∈Z

∣∣u(k)∣∣ < +∞,

where

β =

⎧⎨
⎩
p+ if |λn| ≥ ,

p– if |λn| < .

Then,

lim
n→+∞

(∑
k∈Z

|λnu|p(k)
)
=

∑
k∈Z

lim
n→+∞|λnu|p(k) =

∑
k∈Z

|λu|p(k).

Therefore, we have the continuity of ρp(·). �

Proposition . Let u ∈ lp(·) \ {}, then ‖u‖p(·) = a if and only if ρp(·)( ua ) = .

Proof Let us denote A = {λ > ;ρp(·)( uλ ) ≤ }.
Case : ‖u‖p(·) = a. Then, there exists a sequence (λn)n∈N ⊂ A such that λn ↓ a as n →

+∞.
Therefore, as ρp(·)( u

λn
) ≤  for all n ∈N and ρp(·)(λu) is continuous with respect to λ, then

we get ρp(·)( ua ) ≤ .
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Suppose now that ρp(·)( ua ) < . As a > , then there exists α >  such that  < α < a. Then

ρp(·)
(
u
α

)
= ρp(·)

(
u
a

× a
α

)
≤

(
a
α

)p+

ρp(·)
(
u
α

)
.

Solving the inequality ( a
α
)p+ρp(·)( uα ) ≤ , we get

α ≥ a

( 
ρp(·)( ua )

)

p+

.

Since

 <
a

( 
ρp(·)( ua )

)

p+

< a,

then there exists  < α < a such that ρp(·)( uα ) ≤ , which is a contradiction.
Thus,

ρp(·)
(
u
a

)
= .

Case : ρp(·)( ua ) = . Then, a ∈ A and ‖u‖p(·) ≤ a. Let (λn)n∈N ⊂ A be a sequence such that
λn ↓ ‖u‖p(·).
We suppose that ‖u‖p(·) < a, then

 = ρp(·)
(
u
a

)
= ρp(·)

(
u

‖u‖p(·) × ‖u‖p(·)
a

)
≤

(‖u‖p(·)
a

)p–

ρp(·)
(

u
‖u‖p(·)

)
.

So

ρp(·)
(

u
‖u‖p(·)

)
≥ 

( ‖u‖p(·)
a )p–

,

which implies that

ρp(·)
(

u
‖u‖p(·)

)
> .

Therefore,

 < ρp(·)
(

u
‖u‖p(·)

)
= lim

n→+∞ρp(·)
(

u
λn

)
≤ ,

which is a contradiction. Thus,

‖u‖p(·) = a. �

Proposition . If u ∈ lp(·) and p+ < +∞, then the following properties hold:
() ‖u‖p(·) <  (= ; > ) ⇔ ρp(·)(u) <  (= ; > );

http://www.advancesindifferenceequations.com/content/2012/1/154
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() ‖u‖p(·) >  ⇒ ‖u‖p–p(·) ≤ ρp(·)(u) ≤ ‖u‖p+p(·);
() ‖u‖p(·) <  ⇒ ‖u‖p+p(·) ≤ ρp(·)(u)≤ ‖u‖p–p(·);
() ‖un‖p(·) →  ⇔ ρp(·)(un) →  as n → +∞.

Proof
() ‖u‖p(·) <  (= ; > ) ⇔ ρp(·)(u) <  (= ; > ).
Case . ‖u‖p(·) =  ⇔ ρp(·)(u) =  is proven using Proposition ..
Case . ‖u‖p(·) < ⇔ ρp(·)(u) < . Suppose that ‖u‖p(·) < , then

ρp(·)(u) = ρp(·)
(

u
‖u‖p(·) × ‖u‖p(·)

)
≤ ‖u‖p–p(·)ρp(·)

(
u

‖u‖p(·)
)

≤ ‖u‖p–p(·) < .

Conversely, taking ρp(·)(u) <  and supposing that ‖u‖p(·) ≥ , then

 > ρp(·)(u) = ρp(·)
(

u
‖u‖p(·) × ‖u‖p(·)

)
≥ ‖u‖p–p(·)ρp(·)

(
u

‖u‖p(·)
)
= ‖u‖p–p(·),

which is a contradiction. Therefore, ‖u‖p(·) < .
Case . ‖u‖p(·) >  ⇔ ρp(·)(u) > . Suppose that ‖u‖p(·) > , then

ρp(·)(u) = ρp(·)
(

u
‖u‖p(·) × ‖u‖p(·)

)
≥ ‖u‖p–p(·)ρp(·)

(
u

‖u‖p(·)
)

≥ ‖u‖p–p(·) > .

Conversely, we take ρp(·)(u) >  and we suppose that ‖u‖p–p(·) ≤ . We have

ρp(·)(u) = ρp(·)
(

u
‖u‖p(·) × ‖u‖p(·)

)
≤ ‖u‖p–p(·)ρp(·)

(
u

‖u‖p(·)
)

≤ ‖u‖p–p(·) ≤ ,

which is a contradiction. Therefore ‖u‖p–p(·) > .
() ‖u‖p(·) >  ⇒ ‖u‖p–p(·) ≤ ρp(·)(u) ≤ ‖u‖p+p(·).
Let ‖u‖p(·) > , then


‖u‖p+p(·)

ρp(·)(u)≤ ρp(·)
(

u
‖u‖p(·)

)
≤ 

‖u‖p–p(·)
ρp(·)(u),

which is equivalent to


‖u‖p+p(·)

ρp(·)(u)≤  ≤ 
‖u‖p–p(·)

ρp(·)(u).

Thus,

‖u‖p–p(·) ≤ ρp(·)(u) ≤ ‖u‖p+p(·).

() ‖u‖p(·) <  ⇒ ‖u‖p+p(·) ≤ ρp(·)(u)≤ ‖u‖p–p(·). The proof is similar to that for the Case .
() ‖un‖p(·) → ⇔ ρp(·)(un) →  as n→ +∞.
Case . limn→+∞ ρp(·)(un) = , then

ρp(·)(un) = ρp(·)
(

un
‖un‖p(·) × ‖un‖p(·)

)
≥ ‖un‖β

p(·)ρp(·)
(

un
‖un‖p(·)

)
≥ ‖un‖β

p(·),

http://www.advancesindifferenceequations.com/content/2012/1/154
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where

β =

⎧⎨
⎩
p– if ‖un‖p(·) ≥ ,

p+ if ‖un‖p(·) < .

So ‖un‖p(·) →  as n→ +∞.
Case . ‖un‖p(·) →  as n→ +∞, then

ρp(·)(un) = ρp(·)
(

un
‖un‖p(·) × ‖un‖p(·)

)
≤ ‖un‖β

p(·)ρp(·)
(

un
‖un‖p(·)

)
≤ ‖un‖β

p(·),

where

β =

⎧⎨
⎩
p+ if ‖un‖p(·) ≥ ,

p– if ‖un‖p(·) < .

So ρp(·)(un)→  as n→ +∞. �

Proposition . Let u ∈W,p(·) \ {}, then ‖u‖,p(·) = a⇔ ρ,p(·)( ua ) = .

Proof
Case . ‖u‖,p(·) = a. Then

‖u‖,p(·) = a ⇔ ‖u‖p(·) + ‖�u‖p(·) = a

⇔ ‖u‖p(·) = a and ‖�u‖p(·) = a with a + a = a,

where a,a > .
Thus

ρ,p(·)
(
u
a

)
= ρp(·)

(
u
a

)
+ ρp(·)

(
�u
a

)

≤ a
a

ρp(·)
(
u
a

)
+
a
a

ρp(·)
(

�u
a

)

≤ a
a

+
a
a

= .

Therefore, by mimicking the proof of Proposition ., we deduce that ρ,p(·)( ua ) = .
Case . ρ,p(·)( ua ) = . As in the first case, we get ‖u‖,p(·) = a. �

Proposition . If u ∈W,p(·) and p+ < +∞, then the following properties hold:
() ‖u‖,p(·) <  (= ; > )⇔ ρ,p(·)(u) <  (= ; > );
() ‖u‖,p(·) >  ⇒ ‖u‖p–,p(·) ≤ ρ,p(·)(u) ≤ ‖u‖p+,p(·);
() ‖u‖,p(·) <  ⇒ ‖u‖p+,p(·) ≤ ρ,p(·)(u) ≤ ‖u‖p–,p(·);
() ‖un‖,p(·) →  ⇔ ρ,p(·)(un) →  as n→ +∞.

Proof The proof is similar to the proof of Proposition .. �

http://www.advancesindifferenceequations.com/content/2012/1/154
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Theorem . (Discrete Hölder type inequality) Let u ∈ lp(·) and v ∈ lq(·) be such that 
p(k) +


q(k) =  ∀k ∈ Z, then

∑
k∈Z

|uv| ≤
(


p–

+

q–

)
‖u‖p(·)‖v‖q(·).

Proof Let u ∈ lp(·) and v ∈ lq(·) be such that 
p(k) +


q(k) =  ∀k ∈ Z.

Case . ‖u‖p(·) =  or ‖v‖q(·) = , then the result is true.
Case . ‖u‖p(·) >  and ‖v‖q(·) > . Let us denote a = ‖u‖p(·) and b = ‖v‖q(·). Then, by

Young inequality, we deduce that

∑
k∈Z

∣∣∣∣ua
v
b

∣∣∣∣ =
∑
k∈Z

∣∣∣∣ua
∣∣∣∣
∣∣∣∣ vb

∣∣∣∣

≤
∑
k∈Z


p(k)

∣∣∣∣ua
∣∣∣∣
p(k)

+
∑
k∈Z


q(k)

∣∣∣∣ vb
∣∣∣∣
q(k)

≤ 
p–

∑
k∈Z

∣∣∣∣ua
∣∣∣∣
p(k)

+

q–

∑
k∈Z

∣∣∣∣ vb
∣∣∣∣
q(k)

≤ 
p–

ρp(·)
(
u
a

)
+


q–

ρq(·)
(
v
b

)
=


p–

+

q–

.

Therefore,
∑

k∈Z |uv| ≤ ( 
p– + 

q– )‖u‖p(·)‖v‖q(·). �

3 Existence of weak homoclinic solutions
In this section, we investigate the existence of weak homoclinic solutions of (.).

Definition . A weak homoclinic solution of (.) is a function u ∈W,p(·) such that

∑
k∈Z

a
(
k – ,�u(k – )

)
�v(k – ) +

∑
k∈Z

∣∣u(k)∣∣p(k)–u(k)v(k) = ∑
k∈Z

f (k)v(k), (.)

for any v ∈W,p(·).

Note that weak solutions are usual solutions of the problem (.). It can be seen by taking
the test elements vk = (. . . , , , , , , . . .) with  on (kth) place.
The main result of this work is the following.

Theorem . Assume that (.)-(.) hold. Then, there exists at least one weak homoclinic
solution of (.).

The energy functional corresponding to the problem (.) is defined by J :W,p(·) → R

such that

J(u) =
∑
k∈Z

A
(
k – ,�u(k – )

)
+

∑
k∈Z


p(k)

∣∣u(k)∣∣p(k) –∑
k∈Z

f (k)u(k). (.)

We first present some basic properties of J .
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Proposition . The functional J is well defined on W,p(·) and is of class C(W,p(·),R)
with the derivative given by

〈
J ′(u), v

〉
=

∑
k∈Z

a
(
k – ,�u(k – )

)
�v(k – )

+
∑
k∈Z

∣∣u(k)∣∣p(k)–u(k)v(k) –∑
k∈Z

f (k)v(k), (.)

for all u, v ∈W,p(·).

Proof We denote by

I(u) =
∑
k∈Z

A
(
k – ,�u(k – )

)
, L(u) =

∑
k∈Z


p(k)

∣∣u(k)∣∣p(k)

and

	(u) =
∑
k∈Z

f (k)u(k).

We have by using Young inequality and assumptions (.) and (.) that

∣∣I(u)∣∣ =
∣∣∣∣
∑
k∈Z

A
(
k – ,�u(k – )

)∣∣∣∣
≤

∑
k∈Z

∣∣A(
k – ,�u(k – )

)∣∣

≤
∑
k∈Z

C

(
j(k – ) +


p(k – )

∣∣�u(k – )
∣∣p(k–)–)∣∣�u(k – )

∣∣

≤
∑
k∈Z

Cj(k – )
∣∣�u(k – )

∣∣ +∑
k∈Z

C

p(k – )
∣∣�u(k – )

∣∣p(k–)

<∞,
∣∣L(u)∣∣ =

∣∣∣∣
∑
k∈Z


p(k)

∣∣u(k)∣∣p(k)
∣∣∣∣ ≤ 

p–
∑
k∈Z

∣∣u(k)∣∣p(k) < ∞

and

∣∣	(u)
∣∣ =

∣∣∣∣
∑
k∈Z

f (k)u(k)
∣∣∣∣ ≤

∑
k∈Z

∣∣f (k)∣∣∣∣u(k)∣∣ < ∞.

Therefore, J is well defined. Clearly, I , L and 	 are in C(W,p(·),R).
Let us choose u, v ∈W,p(·). We have

〈
I ′(u), v

〉
= lim

δ→+
I(u + δv) – I(u)

δ
,

〈
L′(u), v

〉
= lim

δ→+
L(u + δv) – L(u)

δ

and

〈
	′(u), v

〉
= lim

δ→+
	(u + δv) –	(u)

δ
.
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Let us denote gδ = A(k–,�u(k–)+δ�v(k–))–A(k–,�u(k–))
δ

.
We get, by using Young inequality,

∑
k∈Z

|gδ| ≤ 
δ

∑
k∈Z

∣∣A(
k – ,�u(k – ) + δ�v(k – )

)∣∣ + 
δ

∑
k∈Z

∣∣A(
k – ,�u(k – )

)∣∣ < +∞.

Thus

lim
δ→+

I(u + δv) – I(u)
δ

= lim
δ→+

∑
k∈Z

A(k – ,�u(k – ) + δ�v(k – )) –A(k – ,�u(k – ))
δ

=
∑
k∈Z

lim
δ→+

A(k – ,�u(k – ) + δ�v(k – )) –A(k – ,�u(k – ))
δ

=
∑
k∈Z

a
(
k – ,�u(k – )

)
�v(k – ).

By the same method, we deduce that

lim
δ→+

L(u + δv) – L(u)
δ

= lim
δ→+

∑
k∈Z

|u(k) + δv(k)|p(k) – |u(k)|p(k)
p(k)δ

=
∑
k∈Z

lim
δ→+

|u(k) + δv(k)|p(k) – |u(k)|p(k)
p(k)δ

=
∑
k∈Z

∣∣u(k)∣∣p(k)–u(k)v(k)

and

lim
δ→+

	(u + δv) –	(u)
δ

= lim
δ→+

∑
k∈Z

f (k)(u(k) + δv(k)) – f (k)u(k)
δ

=
∑
k∈Z

lim
δ→+

f (k)(u(k) + δv(k)) – f (k)u(k)
δ

=
∑
k∈Z

f (k)v(k). �

Lemma . The functional I is weakly lower semi-continuous.

Proof From (.), I is convex with respect to the second variable. Thus, by Corollary III.
in [], it is enough to show that I is lower semi-continuous. For this, we fix u ∈ W,p(·)

and ε > . Since I is convex, we deduce that, for any v ∈W,p(·),

I(v) ≥ I(u) +
〈
I ′(u), v – u

〉
≥ I(u) +

∑
k∈Z

a
(
k – ,�u(k – )

)(
�v(k – ) –�u(k – )

)

≥ I(u) –C
(


p–

+

p′–

)
‖g‖p′(·)

∥∥�(u – v)
∥∥
p(·), where g(k) = j(k) +

∣∣�u(k)
∣∣p(k)–

≥ I(u) –K
(‖u – v‖p(·) +

∥∥�(u – v)
∥∥
p(·)

)
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≥ I(u) –K‖u – v‖,p(·)
≥ I(u) – ε,

for all v ∈W,p(·) with ‖u – v‖,p(·) < δ = ε
K .

Hence, we conclude that I is weakly lower semi-continuous. �

Proposition . The functional J is bounded from below, coercive and weakly lower semi-
continuous.

Proof By Lemma ., J is weakly lower semi-continuous. We will only prove the coercive-
ness of the energy functional J and its boundedness from below.

J(u) =
∑
k∈Z

A
(
k – ,�u(k – )

)
+

∑
k∈Z


p(k)

∣∣u(k)∣∣p(k) –∑
k∈Z

f (k)u(k)

≥
∑
k∈Z


p(k – )

∣∣�u(k – )
∣∣p(k–) +∑

k∈Z


p(k)

∣∣u(k)∣∣p(k) –∑
k∈Z

∣∣f (k)u(k)∣∣

≥ 
p+

∑
k∈Z

∣∣�u(k – )
∣∣p(k–) +∑

k∈Z


p(k)

∣∣u(k)∣∣p(k) – c‖f ‖p′(·)‖u‖p(·)

≥ 
p+

ρ,p(·)(u) – c‖f ‖p′(·)‖u‖,p(·).

To prove the coerciveness of J , we may assume that ‖u‖,p(·) >  and we deduce from the
above inequality that

J(u) ≥ 
p+

‖u‖p–,p(·) – c‖f ‖p′(·)‖u‖,p(·).

Thus,

J(u) → +∞ as ‖u‖,p(·) → +∞.

As J(u) → +∞ when ‖u‖,p(·) → +∞, then for ‖u‖,p(·) > , there exists c ∈ R such that
J(u) ≥ c. For ‖u‖,p(·) ≤ , we have

J(u) ≥ 
p+

ρ,p(·)(u) – c‖f ‖p′(·)‖u‖,p(·)
≥ –c‖f ‖p′(·)‖u‖,p(·)
≥ –c‖f ‖p′(·) > –∞.

Thus J is bounded below. �

We can now give the proof of Theorem ..

Proof of Theorem . By Proposition ., J has a minimizer which is a weak homoclinic
solution of (.) �
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