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*Correspondence:
zehra.nurkanovic@untz.ba
Department of Mathematics,
University of Tuzla, Tuzla, Bosnia and
Herzegovina

Abstract
We investigate the global asymptotic behavior of solutions of the following
anti-competitive system of rational difference equations:

xn+1 =
γ1yn
A1 + xn

, yn+1 =
β2xn

A2 + B2xn + yn
, n = 0, 1, . . . ,

where the parameters γ1, β2, A1, A2 and B2 are positive numbers and the initial
conditions (x0, y0) are arbitrary nonnegative numbers. We find the basins of attraction
of all attractors of this system, which are the equilibrium points and period-two
solutions.
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1 Introduction
A first-order system of difference equations

{
xn+ = f (xn, yn),
yn+ = g(xn, yn),

n = , , . . . , (x, y) ∈R, ()

where R ⊂ R
, (f , g) : R → R, f , g are continuous functions is competitive if f (x, y) is

non-decreasing in x and non-increasing in y, and g(x, y) is non-increasing in x and non-
decreasing in y.
System () where the functions f and g have a monotonic character opposite of the

monotonic character in competitive system will be called anti-competitive.
We consider the following anti-competitive system of difference equations:

xn+ =
γyn

A + xn
, yn+ =

βxn
A + Bxn + yn

, n = , , . . . , ()

where the parameters A, γ, A, B and β are positive numbers and the initial conditions
(x, y) are arbitrary nonnegative numbers. In the classification of all linear fractional sys-
tems in [], System () was mentioned as System (, ).
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Competitive and cooperative systems of the form () were studied bymany authors such
as Clark and Kulenović [], Clark, Kulenović and Selgrade [], Hirsch and Smith [], Ku-
lenović and Ladas [], Kulenović andMerino [], Kulenović and Nurkanović [, ], Garić-
Demirović, Kulenović and Nurkanović [, ], Smith [, ] and others.
The study of anti-competitive systems started in [] and has advanced since then (see

[, ]). The principal tool of the study of anti-competitive systems is the fact that the
second iterate of themap associatedwith an anti-competitive system is a competitivemap,
and so the elaborate theory for such maps developed recently in [, , ] can be applied.
The main result on the global behavior of System () is the following theorem.

Theorem 
(a) If βγ ≤ AA, then E = (, ) is a unique equilibrium, and the basin of attraction of

this equilibrium is B(E) = {(x, y) : x≥ , y≥ } (see Figure (a)).
(b) If βγ – AA > –B[A

 + γ(A – AB)] and βγ – AA > , then there exist two
equilibrium points: E which is a repeller and E+ which is an interior saddle point, and
minimal period-two solutions A = (, βγ–AA

γB
) and B = ( βγ–AA

AB
, ) which are locally

asymptotically stable. There exists a set C ⊂ R =[,∞) × [,∞) such that E ∈ C , and
W s(E+) = C � E is an invariant subset of the basin of attraction of E+. The set C is a graph
of a strictly increasing continuous function of the first variable on an interval and separates
R into two connected and invariant components, namely

W– :=
{
x ∈R\C : ∃x′ ∈ C with x 
se x′}, W+ :=

{
x ∈R\C : ∃x′ ∈ C with x′ 
se x

}
,

which satisfy (see Figure (b)):
(i) If (x, y) ∈W+, then

lim
n→∞(xn, yn) =

(
βγ –AA

AB
, 
)
= B

and

lim
n→∞(xn+, yn+) =

(
,

βγ –AA

γB

)
= A.

(ii) If (x, y) ∈W–, then

lim
n→∞(xn, yn) =

(
,

βγ –AA

γB

)
= A

and

lim
n→∞(xn+, yn+) =

(
βγ –AA

AB
, 
)
= B.

(c) If  < βγ –AA = –B[A
 + γ(A –AB)], then (see Figure (c))

(i) There exist two equilibrium points: E which is a repeller and E+ ∈ int(R) which is a
non-hyperbolic, and an infinite number of minimal period-two solutions

Ax =
(
x,

βγ –AA – xAB

γB

)
,
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Bx =
(

βγ –AA – xAB

B(x +A)
,

–xβγ

(A – γB)(x +A)

)

for x ∈ [, βγ–AA
AB

], that belong to the segment of the line () in the first quadrant.
(ii) All minimal period-two solutions and the equilibrium E+ are stable but not asymp-

totically stable.
(iii) There exists a family of strictly increasing curves C+, CAx , CBx for x ∈ (, βγ–AA

AB
) and

CA =
{
(x, y) : x = , y > 

}
, CB =

{
(x, y) : x > , y = 

}

that emanate from E and Ax ∈ CAx , Bx ∈ CBx for all x ∈ [, βγ–AA
AB

), such that the curves
are pairwise disjoint, the union of all the curves equals R

+. Solutions with initial points
in C+ converge to E+ and solutions with an initial point in CAx have even-indexed terms
converging to Ax and odd-indexed terms converging to Bx; solutions with an initial point in
CBx have even-indexed terms converging to Bx and odd-indexed terms converging to Ax.
(d) If  < βγ – AA < –B[A

 + γ(A – AB)], then System () has two equilibrium
points: E which is a repeller and E+ which is locally asymptotically stable, and minimal
period-two solutions A and B which are saddle points. The basin of attraction of the
equilibrium point E+ is the set

B(E+) =
{
(x, y) : x > , y > 

}

and solutions with an initial point in {(x, y) : x = , y > } have even-indexed terms con-
verging to A and odd-indexed terms converging to B, solutions with an initial point in
{(x, y) : x > , y = } have even-indexed terms converging to B and odd-indexed terms con-
verging to A (see Figure (d)).

2 Preliminaries
We now give some basic notions about systems and maps in the plane of the form ().
Consider amapT = (f , g) on a setR⊂R

, and letE ∈R. The pointE ∈R is called afixed
point if T(E) = E. An isolated fixed point is a fixed point that has a neighborhood with no
other fixed points in it. A fixed point E ∈ R is an attractor if there exists a neighborhood
U of E such that Tn(x) → E as n → ∞ for x ∈ U ; the basin of attraction is the set of all
x ∈ R such that Tn(x) → E as n → ∞. A fixed point E is a global attractor on a set K if
E is an attractor and K is a subset of the basin of attraction of E. If T is differentiable at
a fixed point E, and if the Jacobian JT (E) has one eigenvalue with modulus less than one
and a second eigenvalue with modulus greater than one, E is said to be a saddle. See []
for additional definitions.
Here we give some basic facts about the monotone maps in the plane, see [, , , ].

Now, we write System () in the form

(
x
y

)
n+

= T

(
x
y

)
n

,
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Figure 1 Basins of attraction

where the map T is given as

T :

(
x
y

)
→
⎛
⎝ γy

A+x
βx

A+Bx+y

⎞
⎠ =

(
f (x, y)
g(x, y)

)
. ()

ThemapT may be viewed as amonotonemap if we define a partial order onR so that the
positive cone in this new partial order is the fourth quadrant. Specifically, for v = (v, v),
w = (w,w) ∈ R

 we say that v 
 w if v ≤ w and w ≤ v. Two points v,w ∈ R

+ are said

to be related if v 
 w or w 
 v. Also, a strict inequality between points may be defined
as v ≺ w if v 
 w and v �= w. A stronger inequality may be defined as v ≺≺ w if v < w

and w < v. A map f : intR
+ → IntR

+ is strongly monotone if v ≺ w implies that f (v) ≺≺
f (w) for all v,w ∈ IntR

+. Clearly, being related is an invariant under iteration of a strongly
monotone map. Differentiable strongly monotone maps have Jacobian with constant sign
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configuration

[
+ –
– +

]
.

Themean value theorem and the convexity ofR
+ may be used to show thatT ismonotone,

as in [].
For x = (x,x) ∈ R

, define Ql(x) for l = , . . . ,  to be the usual four quadrants based at
x and numbered in a counterclockwise direction, for example, Q(x) = {y =(y, y) ∈ R

 :
x ≤ y,x ≤ y}.
The following definition is from [].

Definition  Let S be a nonempty subset of R. A competitive map T : S → S is said to
satisfy condition (O+) if for every x, y in S , T(x) 
ne T(y) implies x 
ne y, and T is said to
satisfy condition (O–) if for every x, y in S , T(x)
ne T(y) implies y 
ne x.

The following theorem was proved by de Mottoni-Schiaffino for the Poincaré map of
a periodic competitive Lotka-Volterra system of differential equations. Smith generalized
the proof to competitive and cooperative maps [].

Theorem  Let S be a nonempty subset of R. If T is a competitive map for which (O+)
holds then for all x ∈ S , {Tn(x)} is eventually componentwise monotone. If the orbit of x has
compact closure, then it converges to a fixed point of T. If instead (O–) holds, then for all
x ∈ S , {Tn} is eventually componentwise monotone. If the orbit of x has compact closure
in S , then its omega limit set is either a period-two orbit or a fixed point.

The following result is from [], with the domain of themap specialized to be the Carte-
sian product of intervals of real numbers. It gives a sufficient condition for conditions (O+)
and (O–).

Theorem  LetR⊂R
 be the Cartesian product of two intervals in R. Let T :R→R be

a C competitive map. If T is injective and det JT (x) >  for all x ∈ R then T satisfies (O+).
If T is injective and det JT (x) <  for all x ∈R then T satisfies (O–).

Next two results are from [, ].

Theorem  Let T be a competitive map on a rectangular region R ⊂ R
. Let x ∈ R be a

fixed point of T such that � :=R∩ int(Q(x)∪Q(x)) is nonempty (i.e., x is not the NW or
SE vertex ofR), and T is strongly competitive on �. Suppose that the following statements
are true.
a. The map T has a C extension to a neighborhood of x.
b. The Jacobian matrix of T at x has real eigenvalues λ, μ such that  < |λ| < μ, where

|λ| < , and the eigenspace Eλ associated with λ is not a coordinate axis.
Then there exists a curve C ⊂ R through x that is invariant and a subset of the basin of

attraction of x, such that C is tangential to the eigenspace Eλ at x, and C is the graph of a
strictly increasing continuous function of the first coordinate on an interval. Any endpoints
of C in the interior of R are either fixed points or minimal period-two points. In the latter
case, the set of endpoints of C is a minimal period-two orbit of T.

http://www.advancesindifferenceequations.com/content/2012/1/153
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Theorem  (Kulenović & Merino) Let I, I be intervals in R with endpoints a, a and
b, b with endpoints respectively, with a < a and b < b, where –∞ ≤ a < a ≤ ∞ and
–∞ ≤ b < b ≤ ∞. Let T be a competitive map on a rectangleR = I ×I and x ∈ int(R).
Suppose that the following hypotheses are satisfied:
. T(int(R)) ⊂ int(R) and T is strongly competitive on int(R).
. The point x is the only fixed point of T in (Q(x)∪Q(x))∩ int(R).
. The map T is continuously differentiable in a neighborhood of x.
. At least one of the following statements is true:

a. T has no minimal period two orbits in (Q(x)∪Q(x))∩ int(R).
b. det JT (x) >  and T(x) = x only for x = x.

. x is a saddle point.
Then the following statements are true.
(i) The stable manifoldW s(x) is connected and it is the graph of a continuous

increasing curve with endpoints in ∂R. int(R) is divided by the closure ofW s(x) into
two invariant connected regionsW+ (“below the stable set”), andW– (“above the
stable set”), where

W– :=
{
x ∈R\W s(x) : ∃x′ ∈W s(x) with x 
se x′},

W+ :=
{
x ∈R\W s(x) : ∃x′ ∈W s(x) with x′ 
se x

}
.

(ii) The unstable manifoldWu(x) is connected, and it is the graph of a continuous
decreasing curve.

(iii) For every x ∈W+, Tn(x) eventually enters the interior of the invariant set Q(x)∩R,
and for every x ∈W–, Tn(x) eventually enters the interior of the invariant set
Q(x)∩R.

(iv) Letm ∈Q(x) andM ∈ Q(x) be the endpoints ofWu(x), wherem 
se x 
se M. For
every x ∈W– and every z ∈R such thatm 
se z, there exists m ∈N such that
Tm(x) 
se z, and for every x ∈W+ and every z ∈R such that z 
se M, there exists
m ∈N such thatM 
se Tm(x).

3 Linearized stability analysis
Lemma 

(i) If βγ –AA ≤ , then System () has a unique equilibrium point E = (, ).
(ii) If βγ –AA > , then System () has two equilibrium points E and E+ = (x, y),

x > , y > .

Proof The equilibrium point E(x, y) of System () satisfies the following system of equa-
tions:

x =
γy

A + x
, y =

βx
A + Bx + y

. ()

It is easy to see that E = (, ) is one equilibriumpoint for all values of the parameters, and
E+ = (x, y) is a positive equilibrium point if βγ –AA > . Indeed, substituting y from the
first equation in () in the second equation in (), we obtain that x satisfies the following
equation:

f (x) = x + (A + Bγ)x +
(
A
 +ABγ +Aγ

)
x + γ(AA – βγ) = . ()

http://www.advancesindifferenceequations.com/content/2012/1/153
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By using Descartes’ theorem, we have that equation () has one positive equilibrium if the
condition

βγ –AA >  ()

is satisfied, i.e., βγ > AA. �

Theorem 
(i) If βγ < AA, then E is locally asymptotically stable.
(ii) If βγ = AA, then E is non-hyperbolic.
(iii) If βγ > AA, then E is a repeller.

Proof The map T associated to System () is of the form (). The Jacobian matrix of T at
the equilibrium E = (x, y) is

JT (x, y) =

⎛
⎝ – γy

(A+x)
γ

A+x

β(A+y)
(A+Bx+y)

– βx
(A+Bx+y)

⎞
⎠ ()

and

JT (, ) =

(
 γ

A
β
A



)
.

The corresponding characteristic equation has the following form:

λ –
βγ

AA
= ,

from which λ, = ±
√

βγ
AA

.
(i) If βγ < AA, then |λ,| < , i.e., E is locally asymptotically stable.
(ii) If βγ = AA, then |λ,| = , which implies that E is non-hyperbolic.
(iii) If βγ > AA, then |λ,| > , which implies that E is a repeller.

�

Theorem 
() Assume that βγ > AA and

βγ –AA > –B
[
A
 + γ(A –AB)

]
. ()

Then the positive equilibrium E+ is a saddle point.
() Assume that

 < βγ –AA = –B
[
A
 + γ(A –AB)

]
. ()

Then the positive equilibrium E+ is a non-hyperbolic point and

x = –A +
√

γ(AB –A), y =
(–A +

√
γ(AB –A))

√
γ(AB –A)

γ
.

http://www.advancesindifferenceequations.com/content/2012/1/153
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() Assume that

 < βγ –AA < –B
[
A
 + γ(A –AB)

]
. ()

Then the positive equilibrium E+ is locally asymptotically stable.

Proof The Jacobian matrix of T at the equilibrium E+ = (x, y) is of the form () and the
corresponding characteristic equation has the following form:

λ – pλ + q = ,

where

p = Tr JT (E+) = –
x

A + x
–

y
A + Bx + y

= –
x

γy
–

y

βx
=
–Ax – Bx – xy –Ay
(A + x)(A + Bx + y)

< ,

q = det JT (E+) =
xy

(A + x)(A + Bx + y)
–

βγ(A + y)
(A + x)(A + Bx + y)

=
xy

(A + x)(A + Bx + y)
–

A + y
A + Bx + y

=
xy

βγ
–
y(A + y)

βx

=
y(x –Aγ – γy)

βγx
=
y(–Aγ –Ax)

βγx
< .

Hence, for E+ = (x, y), we have p < , q < , so p – q > . Since

p – q –  = –
x

γy
–

y

βx
–

xy
βγ

+
y(A + y)

βx
–  ()= –

x

γy
–

y

βx
–

xy
βγ

+
(
 –

By
β

)
– 

= –
x

γy
–

y

βx
–

xy
βγ

–
By
β

< ,

we obtain

|p|

⎧⎪⎪⎨
⎪⎪⎩
> | + q|,
= | + q|,
< | + q|

⇔  + p + q

⎧⎪⎪⎨
⎪⎪⎩
< ,

= ,

> .

Similarly,

 + p + q =  –
x

A + x
–

y
A + Bx + y

+
xy

(A + x)(A + Bx + y)
–

A + y
A + Bx + y

= –
Ax + y(A + x) –ABx
(x +A)(A + Bx + y)

()= –
x

γ(x +A)(A + Bx + y)
φ(x),

where

φ(x) = x + Ax +A
 + γ(A –AB), for x > .

http://www.advancesindifferenceequations.com/content/2012/1/153
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Now, for the positive equilibrium, it holds

 + p + q >  ⇔ φ(x) < ,

 + p + q =  ⇔ φ(x) = ,

 + p + q <  ⇔ φ(x) > .

If A
 +γ(A –AB)≥ , then φ(x) >  for all x > , which implies that E+ is a saddle point.

If A
 + γ(A –AB) < , then φ(x) =  for x± = –A ±√γ(AB –A) (x– < , x+ > ).

Now we have three cases: x+ < x, x+ = x or x < x+. Functions f (x) and φ(x) are increasing
for x > .
() If x+ < x, then  = φ(x+) < φ(x), i.e.,  + p + q <  and f (x+) < f (x) = . So,

f (x+) = f
(
–A +

√
γ(AB –A)

)
< 

⇔ (
–A +

√
γ(AB –A)

) + (A + Bγ)
(
–A +

√
γ(AB –A)

)
+
(
A
 +ABγ +Aγ

)(
–A +

√
γ(AB –A)

)
+ γ(AA – βγ) < ,

from which it follows

γB(AB –A) < (βγ –AA) +A
B,

i.e.,

βγ > (A – γB)(A –AB). ()

Now we have

βγ –AA > –B
[
A
 + γ(A –AB)

]
,

so we can see that the conditions () and () are sufficient for E+ = (x, y) to be a saddle
point.
() If x+ = x, then  = φ(x+) = φ(x), hence  + p + q = , i.e.,

f (x+) = f (x) = f
(
–A +

√
γ(AB –A)

)
= ,

from which

βγ = (A – γB)(A –AB). ()

If conditions () and () are satisfied, then

βγ –AA = –B
[
A
 + γ(A –AB)

]
> 

holds, i.e., E+ = (x, y) is a non-hyperbolic point of the form

x = x+ = –A +
√

γ(AB –A), y =
(–A +

√
γ(AB –A))

√
γ(AB –A)

γ
.

http://www.advancesindifferenceequations.com/content/2012/1/153
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() If x < x+, then φ(x) < φ(x+) =  and

 = f (x) < f (x+) = f
(
–A +

√
γ(AB –A)

)
,

from which

βγ < (A – γB)(A –AB). ()

Hence, if conditions () and () are satisfied, then

 < βγ –AA < –B
[
A
 + γ(A –AB)

]
holds, so E+ is a locally asymptotically stable. �

4 Periodic character of solutions
In this section, we give the existence and local stability of period-two solutions.

Lemma Assume that βγ > AA. Then System () has the followingminimal period-two
solutions:

A =
(
,

βγ –AA

γB

)
and B =

(
βγ –AA

AB
, 
)
. ()

If

 < βγ –AA = –B
[
A
 + γ(A –AB)

]
,

then System () has an infinite number of minimal period-two solutions of the form

Ax =
(
x,

βγ –AA – xAB

γB

)
,

Bx =
(

βγ –AA – xAB

B(x +A)
,

–xβγ

(A – γB)(x +A)

)

for x ∈ [, βγ–AA
AB

], located along the line

H =
{
(x, y) : xA + γy +A

 + γ(A –AB) = ,x ∈
[
,

βγ –AA

AB

]}
. ()

Proof The second iterate of T is (). Equilibrium curves of the map T(x, y) are

CT =
{
(x, y) ∈ [,∞) : xβγ(x +A) = x(y +A + xB)

(
A
 + xA + yγ

)}
()

and

CT =
{
(x, y) ∈ [,∞) : yβγ(y +A + xB) = y

(
AA

 + xβ + xA
 + xAB + xyA

+ xβA + yAA + yγB + yγAB + xAAB + xyγB

)}
. ()

http://www.advancesindifferenceequations.com/content/2012/1/153


Moranjkić and Nurkanović Advances in Difference Equations 2012, 2012:153 Page 11 of 19
http://www.advancesindifferenceequations.com/content/2012/1/153

We get period-two solutions as the intersection point of equilibrium curves () and ()
in the first quadrant. If x �= , y = , then System (), () is reduced to the equation

βγ(x +A) = A(A + xB)(x +A),

and the positive solution of this equation is

x =
βγ –AA

AB
> , for βγ –AA > .

If x = , y �= , then System (), () is reduced to the equation

βγ(y +A) = (y +A)(AA + yγB),

with the positive solution

y =
βγ –AA

γB
> , for βγ –AA > .

On the other hand, if x > , y > , then we have

βγ(x +A) = (y +A + xB)
(
A
 + xA + yγ

)
βγ(y +A + xB) = AA

 + xβ + xA
 + xAB + xyA + xβA + yAA

+ yγB + yγAB + xAAB + xyγB


⎫⎪⎪⎬
⎪⎪⎭ ,

that is

(x +A)(βγ –AA) = (y + xB)
(
A
 + xA + yγ

)
+ yγA ()

and

xβ + xA
 + xAB + xyA + xβA + yγB + yγAB + xyγB



= (y + xB +A)(βγ –AA). ()

Therefore, it must be (βγ –AA) >  in order to get any positive solution. By eliminating
the term (βγ –AA) from () and using condition (), we get

(y + xB +AB)
(
yγ + xA +A

 + γA – γAB
)
= ,

which implies

yγ + xA +A
 + γ(A –AB) = ,

hence

y = –

γ

(
xA +A

 + γ(A –AB)
)
, γ �= . ()
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Now, by eliminating y and the term (AA – βγ) from (), we get the identity

(x +A)(x +A – γB)
βγ – (A –AB)(A – γB)

γ
= .

If x = γB –A, we have

y = –

γ

(
xA +A

 + γ(A –AB)
)
= –A < , γ �= .

So, periodic solutions are located along line () with endpoints given by () using con-
ditions (). It is easy to see that Ax,Bx ∈H if βγ –AA = –B[A

 + γ(A –AB)]. �

Let (x, y) ∈ H, then the corresponding Jacobian matrix of the map T has the following
form:

JHT (x, y) =

(
a b
c d

)
, ()

where a := Fx(x, y), b := Fy(x, y), c :=Gx(x, y), d :=Gy(x, y).

Lemma  Assume that  < βγ – AA = –B[A
 + γ(A – AB)]. Then the following

statements are true.
(a) The points Ax,Bx ∈H are non-hyperbolic fixed points for the map T, and both of

them have eigenvalues λ =  and λ ∈ (, ).
(b) Eigenvectors corresponding to the eigenvalues λ and λ are not parallel to coordinate

axes.

Proof
(a) From () we have y′

H(x) = –A
γ

< . Since

H =
{
(x, y) ∈ [,∞) : F(x, y) = x

}
=
{
(x, y) ∈ [,∞) :G(x, y) = y

}
,

by implicit differentiation of equations F(x, y) = x andG(x, y) = y at the point (x, y) ∈H, we
obtain

y′
H(x) =

 – a
b

=
c

 – d
= –

A

γ
< . ()

Since a > , b < , c <  and d > , from (), we get

 < a <  and  < d < . ()

The characteristic polynomial of the matrix () at the point (x, y) ∈H is of the form

P(λ) = λ – (a + d)λ + (ad – bc).

Now, using () we have ( – a)( – d) = bc, and since

P() =  – (a + d) + (ad – bc) = ,
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we get λ = , and due to Vieta’s formulas and condition (), it follows

 < λ + λ =  + λ = a + d < ,

i.e.,  < λ < .
(b) Eigenvectors corresponding to the eigenvalues λ and λ are v = ( – d, c) and

v = (a – , c). By condition () it is easy to see that these vectors are not parallel to the
coordinate axes. �

Lemma  The periodic points A and B given by () are
(a) locally asymptotically stable if βγ –AA > –B[A

 + γ(A –AB)] and
βγ > AA,

(b) non-hyperbolic if  < βγ –AA = –B[A
 + γ(A –AB)],

(c) saddle points if  < βγ –AA < –B[A
 + γ(A –AB)].

Proof We have that

JT

(
βγ –AA

AB
, 
)
=

⎛
⎜⎝

AA
βγ

(βγ–AA)(A
A–A

B–βγ 
 B–βγA)

βγAB(A
B+βγ–AA)

 βγ 
 AB

(A
B+βγ–AA)(βγ–AA+γAB)

⎞
⎟⎠

and characteristic eigenvalues are

λ =
AA

βγ
<  and λ =

βγ

 AB


(βγ –AA + γAB)(BA

 –AA + βγ)
.

Now,

|λ| < 

⇔ βγ

 AB

 < (βγ –AA + γAB)
(
BA

 –AA + βγ
)

⇔ (βγ –AA + γAB)
(
BA

 –AA + βγ
)
– βγ


 AB

 > 

⇔ (βγ –AA)
(
A
B + βγ –AA – γAB

 + γAB
)
> 

⇔ (
A
B + βγ –AA – γAB

 + γAB
)
> 

⇔ βγ –AA > –B
[
A
 + γ(A –AB)

]
.

Therefore,

|λ| <  ⇔ βγ –AA > –B
[
A
 + γ(A –AB)

]
,

|λ| =  ⇔  < βγ –AA = –B
[
A
 + γ(A –AB)

]
,

|λ| >  ⇔ βγ –AA < –B
[
A
 + γ(A –AB)

]
.

On the other hand, we have

JT

(
,

βγ –AA

γB

)
=

⎛
⎜⎝

βγ 
 AB

(A
B+βγ–AA)(βγ–AA+γAB)



(βγ–AA)(AA
–γA

B–βγA–βγAB)
βγ 

 B(βγ–AA+γAB)
AA
βγ

⎞
⎟⎠
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and the corresponding eigenvalues are

λ =
AA

βγ
<  and λ =

βγ

 AB


(βγ –AA + γAB)(BA

 –AA + βγ)
,

so it comes to the same conclusion! �

5 Global results
In this section, we present the results on the global dynamics of System ().

Lemma  Every solution of System () satisfies
. xn ≤ γ

A
· β
B
, yn ≤ β

B
, n = , , . . . .

. If βγ < AA, then limn→∞ xn = , limn→∞ yn = .
The map T satisfies:
. T(B)⊆ B, where B = [, γ

A
· β
B
]× [, β

B
], that is, B is an invariant box.

. T(B) is an attracting box, that is T([,∞)) ⊆ B.

Proof From System (), we have

yn+ =
βxn

A + Bxn + yn
≤ βxn

Bxn
=

β

B
,

yn+ =
βxn

A + Bxn + yn
≤ β

A
xn,

xn+ =
γyn

A + xn
≤ γ

A
yn,

for n = , , , . . . , and

xn+ ≤ γ

A
yn ≤ γ

A
· β

B

for n = , , . . . . Furthermore, we get

xn ≤ γ

A
yn– ≤ γβ

AA
xn–,

i.e.,

xn ≤
(

γβ

AA

)n

x, xn+ ≤
(

γβ

AA

)n

x,

so it follows that limn→∞ xn = , limn→∞ yn =  if βγ < AA.
Proof of . and . is an immediate checking. �

Lemma  The map T is injective and det JT (x, y) > , for all x ≥  and y≥ .

Proof
(i) Here we prove that map T is injective, which implies that T is injective. Indeed,

T
( x
y

)
= T
( x
y

)
implies that

A(y – y) = xy – xy, A(x – x) = xy – xy. ()
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By solving System () with respect to x, x or y, y, we obtain that (x, y) = (x, y).
(ii) The map T(x, y) =

( F(x,y)
G(x,y)

)
is of the form

T(x, y)

=

⎛
⎝ xβγ(x+A)

(y+A+xB)(A
+xA+yγ)

yβγ(y+A+xB)
AA

+xβ+xA

+xAB+xyA+xβA+yAA+yγB+yγAB+xAAB+xyγB

⎞
⎠ ()

and

JT (x, y) =

(
Fx Fy
Gx Gy

)
,

where

Fx = βγ
(
A
A + yA

 + xA
A + xAA + xyγ + xyA

 + xyA

+ yγA + xyγA + yγAA + xyγB
)

/
((
yγ + xA +A


)(y +A + xB)

)
,

Fy = –
xβγ(x +A)(yγ + xA +A

 + γA + xγB)
(yγ + xA +A

 )(y +A + xB)
,

Gx = –yβγ
(
A
 + yA

 + yA + xA
B + xyβ + xβA + yβA

+ xAB
 + βAA + xβB + xyAB

)
/
(
AA

 + xβ + xA
 + xAB + xyA + xβA + yAA

+ yγB + yγAB + xAAB + xyγB

),

Gy = βγ(x +A)
(
A
 + yA

 + yA + xA
B + xyβ + xβA + xAB



+ xβB + xyAB
)

/
(
AA

 + xβ + xA
 + xAB + xyA + xβA + yAA

+ yγB + yγAB + xAAB + xyγB

).

Now, we obtain

det JT (x, y) = FxGy – FyGx =UV ,

where

U =
β
γ


 (x +A)(xA + yA +AA)

(yγ + xA +A
 )(y +A + xB)

> ,

V =
(
A
A


 + xAA

 + yA
A + xβA



+ xβA + yγA
 + yγA + xA

AB + xAAB + xyAA + xyγAB
)

/
(
AA

 + xβ + xA
 + xAB + xyA + xβA + yAA

+ yγB + yγAB + xAAB + xyγB

) > 

and the Jacobian matrix of T(x, y) is invertible for all x ≥  and y≥ . �
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Corollary  The competitive map T satisfies the condition (O+). Consequently, the se-
quences {xn}, {xn+}, {yn}, {yn+} of every solution of System () are eventually monotone.

Proof It immediately follows from Lemma , Theorem  and . �

Lemma  Assume βγ –AA > . System () has period-two solutions () and
(a) If (x, y) = (x, ), x > , then

lim
n→∞Tn(x, ) =

(
βγ –AA

AB
, 
)
= B

and

lim
n→∞Tn+(x, ) =

(
,

βγ –AA

γB

)
= A.

(b) If (x, y) = (, y), y > , then

lim
n→∞Tn(, y) =

(
,

βγ –AA

γB

)
= A

and

lim
n→∞Tn+(x, ) =

(
βγ –AA

AB
, 
)
= B.

Proof (a) For all x > , x �= βγ–AA
AB

, we have

T(x, ) =
(
,

βx
A + Bx

)
, T(x, ) =

(
γβx

AA +ABx
, 
)
,

T(x, ) =
(
,

β(γβ)x
A[AA +AB]x + Bγβx

)
,

T(x, ) =
(

(γβ)x
(AA) +ABx[(AA) + γβ]

, 
)
,

T(x, ) =
(
,

β(γβ)x
A[(AA) +AB(AA)x +AB(γβ)x] + B(γβ)x

)
,

T(x, ) =
(

(γβ)x
(AA) +ABx[(AA) +AAγβ + (βγ)]

, 
)

and by induction,

Tn(x, )

=
(

(γβ)nx
(AA)n +ABx[(AA)n– + (AA)n–(γβ) + · · · + (βγ)n–]

, 
)
,

Tn+(x, )

=
(
,

β(γβ)nx
A[(AA)n +AB(AA)n–x + · · · +AB(γβ)n–x] + B(γβ)nx

)
.
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Now, we have

lim
n→∞Tn(x, )

= lim
n→∞

(
(γβ)nx

(AA)n +ABx[(AA)n– + (AA)n–(γβ) + · · · + (βγ)n–]
, 
)

= lim
n→∞

(
x

(AA
βγ

)n + x(AB
βγ

)
–( AA

βγ
)n

– AA
βγ

, 
)
=
(

βγ –AA

AB
, 
)
= B

and

lim
n→∞Tn+(x, )

= lim
n→∞

(
,

β(γβ)nx
A[(AA)n +AB(AA)n–x + · · · +AB(γβ)n–x] + B(γβ)nx

)

= lim
n→∞

(
,

βx

A((AA
βγ

)n + x(AB
βγ

)
–( AA

βγ
)n

– AA
βγ

) + Bx

)
=
(
,

βγ –AA

γB

)
= A.

�

Lemma  The map T associated to System () satisfies the following:

T(x, y) = (x, y) only for (x, y) = (x, y).

Proof Since T is injective, then T(x, y) = (x, y) = T(x, y) ⇒ (x, y) = (x, y). �

Proof of Theorem 
Case  βγ ≤ AA

Equilibrium E is unique (see Lemma ), and by Lemma , every solution of System ()
belongs to

B =
[
,

βγ

AB

]
×
[
,

β

B

]
,

which is an invariant box. In view of Corollary  and Theorem , every solution converges
to minimal period-two solutions or E. System () has no minimal period-two solutions
(Lemma ). So, every solution of System () converges to E.
Case  βγ –AA > –B[A

 + γ(A –AB)] and βγ –AA > 
By Lemmas , ,  and Theorems  and , there exist two equilibrium points: E which

is a repeller and E+ which is a saddle point, and minimal period-two solutions A and B

which are locally asymptotically stable. Clearly T is strongly competitive and it is easy
to check that the points A and B are locally asymptotically stable for T as well. System
() can be decomposed into the system of the even-indexed and odd-indexed terms as
follows:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

xn+ = γyn
A+xn

,

xn = γyn–
A+xn–

,

yn+ = βxn
A+Bxn+yn

,

yn = βxn–
A+Bxn–+yn–

, n = , , . . . .
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The existence of the set C with the stated properties follows fromLemmas , , , , Corol-
lary , Theorems  and .
Case   < βγ –AA = –B[A

 + γ(A –AB)]
Cases (i) and (ii) from (c) in Theorem  are the consequence of Lemmas , ,  and

Theorems  and .
Since T is strongly competitive and points Ax and Bx, for all x ∈ [, βγ–AA

AB
), are non-

hyperbolic points of the map T, by Lemmas , , , , , Corollary , Theorems , ,
 and , it follows that all conditions of Theorem  are satisfied for the map T with
R =[,∞)× [,∞). By Lemma , it is clear that

CA =
{
(x, y) : x = , y > 

}
and CB =

{
(x, y) : x > , y = 

}
.

Case   < βγ –AA < –B[A
 + γ(A –AB)]

Lemma  implies that System () has minimal period-two solutions (). Furthermore,
Corollary  and Theorem  imply that all solutions of System () converge to an equi-
librium or minimal period-two solutions, and since, by Theorem , E is a repeller, all
solutions converge to E+ (which is, in view of Theorem , locally asymptotically stable) or
minimal period-two solutions (). The points A and B are saddle points of the strongly
competitive map T; and by Lemma , the stable manifold of A (under T) is

B(A) =
{
(x, y) : x = , y > 

}
and the stable manifold of B (under T) is

B(B) =
{
(x, y) : x > , y = 

}
and each of these stable manifolds is unique. This implies that the basin of attraction of
the equilibrium point E+ is the set

B(E+) =
{
(x, y) : x > , y > 

}
,

and Lemma  completes the conclusion (d) of Theorem . �
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13. Kalabušić, S, Kulenović, MRS: Dynamics of certain anti-competitive systems of rational difference equations in the

plane. J. Differ. Equ. Appl. 17, 1599-1615 (2011)
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Cite this article as:Moranjkić and Nurkanović: Basins of attraction of certain rational anti-competitive system of
difference equations in the plane. Advances in Difference Equations 2012 2012:153.

http://www.advancesindifferenceequations.com/content/2012/1/153

	Basins of attraction of certain rational anti-competitive system of difference equations in the plane
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	Linearized stability analysis
	Periodic character of solutions
	Global results
	Competing interests
	Authors' contributions
	Acknowledgements
	References


