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Abstract
This paper investigates new sets of generalizedH2 exponential stability criteria for
switched multilayer dynamic neural networks. These sets of sufficient stability criteria
in forms of linear matrix inequality (LMI) and matrix norm are presented, under which
switched multilayer dynamic neural networks reduce the effect of external input to a
predefined level. The proposed sets of criteria also guarantee exponential stability for
switched multilayer dynamic neural networks without external input.

1 Introduction
Switched systems are a class of hybrid systems consisting of a family of continuous (or
discrete) time subsystems and a logical rule that orchestrates the switching between these
subsystems. Switched systems have been extensively researched, and several efforts have
been focused on the analysis of switched systems [, ]. Recently, switched recurrent neu-
ral networks were introduced to represent some complex nonlinear systems efficiently
by integrating the theory of switched systems with recurrent neural networks [–].
Switched dynamic neural networks have found applications in the field of artificial intelli-
gence and high speed signal processing [, ]. In [–], some stability criteria for switched
dynamic neural networks were studied.
There always exist noise disturbances and model uncertainties in real physical systems.

Recently, this has led to an interest in a generalizedH approach [–]. The generalized
H approach has been known as a significant concept to examine the stability of various
nonlinear dynamical systems. Here, we have the following natural question: Canwe obtain
a generalized H stability criterion for switched dynamic neural networks. This paper
provides an answer to this question. To the best of the authors’ knowledge, the generalized
H analysis of switched dynamic neural networks has not yet been studied in the literature.
In this paper, we propose new sets of generalized H exponential stability criteria for

switched multilayer dynamic neural networks. The sets of conditions proposed in this pa-
per are a new contribution to the stability evaluation of switched neural networks. The
proposed sets of sufficient stability criteria in forms of linear matrix inequality (LMI) and
matrix norm guarantee that switched multilayer dynamic neural networks reduce the ef-
fect of external input to a predefined level. This paper is organized as follows. In Section ,
new sets of generalized H exponential stability criteria are derived. Finally, conclusions
are presented in Section .
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2 New sets of generalizedH2 exponential stability criteria
Consider the following model of switched multilayer neural networks []:

ẋ(t) = Aαx(t) +Wαφ
(
Vαx(t)

)
+ J(t), ()

z(t) =Hαx(t), ()

where x(t) = [x(t) · · · xn(t)]T ∈ Rn is the state vector, z(t) ∈ Rp is a linear combi-
nation of the states, A = diag{–a, . . . , –an} ∈ Rn×n (ak > , k = , . . . ,n) is the self-
feedback matrix, W ∈ Rn×n and V ∈ Rn×n are the connection weight matrices, φ(x(t)) =
[φ(x(t)) · · · φn(x(t))]T : Rn → Rn is the nonlinear function vector satisfying the global
Lipschitz condition with Lipschitz constant Lφ > , J(t) ∈ Rn is an external input vector,
and H ∈ Rp×n is a known constant matrix. α is a switching signal which takes its values
in the finite set I = {, , . . . ,N}. The matrices (Aα ,Wα ,Vα ,Hα) are allowed to take values,
at an arbitrary time, in the finite set {(A,W,V,H), . . . , (AN ,WN ,VN ,HN )}. Throughout
this paper, we assume that the switching rule α is not known a priori and its instantaneous
value is available in real time. Define the indicator function ξ (t) = (ξ(t), ξ(t), . . . , ξN (t))T ,
where

ξi(t) =

⎧⎨
⎩, when the switched system is described by the ith mode (Ai,Wi,Vi,Hi),

, otherwise,

with i = , . . . ,N . By using this indicator function, the model of the switched multilayer
neural networks ()-() can be written as

ẋ(t) =
N∑
i=

ξi(t)
[
Aix(t) +Wiφ

(
Vix(t)

)
+ J(t)

]
, ()

z(t) =
N∑
i=

ξi(t)Hix(t), ()

where
∑N

i= ξi(t) =  is satisfied under any switching rules. Let γ >  be a predefined level
of disturbance attenuation. In this paper, for a given κ > , we derive sets of criteria such
that the switched multilayer neural network ()-() with J(t) =  is exponentially stable
(‖x(t)‖ ≤ ϒ exp(–κt), where ϒ > ) and

sup
t≥

{
exp(κt)zT (t)z(t)

}
< γ 

∫ ∞


exp(κt)JT (t)J(t)dt, ()

under zero-initial conditions for all nonzero J(t) ∈ L[,∞), where L[,∞) is the space
of square integrable vector functions over [,∞).
A set of generalizedH exponential stability criterion of the switched multilayer neural

network ()-() is derived in the following theorem.

Theorem  For given γ >  and κ > , the switched multilayer neural network ()-() is
generalizedH exponentially stable if

‖Wi‖ <
√
ki – ‖P‖ – κ‖P‖

Lφ‖Vi‖ , ()

http://www.advancesindifferenceequations.com/content/2012/1/150


Ahn and Lee Advances in Difference Equations 2012, 2012:150 Page 3 of 8
http://www.advancesindifferenceequations.com/content/2012/1/150

‖Vi‖ �= , ()

‖P‖ <
√

ki
 + κ

, ki > ,P = PT > , ()

‖Hi‖ ≤ γ
√

λmin(P), ()

for i = , . . . ,N, where λmin(·) is the minimum eigenvalue of the matrix and P satisfies the
Lyapunov inequality AT

i P + PAi < –kiI.

Proof We consider the Lyapunov function V (t) = exp(κt)xT (t)Px(t). The time derivative
of the function along the trajectory of () satisfies

V̇ (t) <
N∑
i=

ξi(t) exp(κt)
{
–xT (t)[ki – κP]x(t) + xT (t)PWiφ

(
Vix(t)

)
+ xT (t)PJ(t)

}
. ()

Applying Young’s inequality [], we have xT (t)PWiφ(Vix(t)) ≤ xT (t)PPx(t) + φT ×
(Vix(t))WT

i Wi,φ(Vix(t))≤ ‖P‖‖x(t)‖+Lφ‖Wi‖‖Vi‖‖x(t)‖ and xT (t)PJ(t) ≤ xT (t)P×
PTx(t)+ JT (t)J(t)≤ ‖P‖‖x(t)‖ +‖J(t)‖. Substituting these inequalities into (), we have

V̇ (t) <
N∑
i=

ξi(t) exp(κt)
{
–
[
ki – ( + κ)‖P‖ – Lφ‖Wi‖‖Vi‖

]∥∥x(t)∥∥ +
∥∥J(t)∥∥}

= –
N∑
i=

ξi(t) exp(κt)
[
ki – ( + κ)‖P‖ – Lφ‖Wi‖‖Vi‖

]∥∥x(t)∥∥

+
N∑
i=

ξi(t) exp(κt)
∥∥J(t)∥∥. ()

If the following condition is satisfied,

ki – ( + κ)‖P‖ – Lφ‖Wi‖‖Vi‖ > , ()

for i = , . . . ,N , we have

V̇ (t) <
N∑
i=

ξi(t) exp(κt)
∥∥J(t)∥∥

= exp(κt)
∥∥J(t)∥∥. ()

The following inequalities

‖Wi‖ < ki – ( + κ)‖P‖
Lφ‖Vi‖ , ‖P‖ < ki

 + κ
, ()

for i = , . . . ,N , imply the condition (). Thus, we obtain () and (). Under the zero-initial
condition, we have V (t)|t= =  and V (t) ≥ . Define

	(t) = V (t) –
∫ t


exp(κσ )JT (σ )J(σ )dσ . ()
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Then, for any nonzero J(t), we obtain

	(t) = V (t) –V (t)|t= –
∫ t


exp(κσ )JT (σ )J(σ )dσ

=
∫ t



[
V̇ (σ ) – exp(κσ )JT (σ )J(σ )

]
dσ .

From (), we have 	(t) < . It means

V (t) <
∫ t


exp(κσ )JT (σ )J(σ )dσ .

The condition () implies

exp(κt)zT (t)z(t) =
N∑
i=

ξi(t) exp(κt)xT (t)HT
i Hix(t)

≤
N∑
i=

ξi(t) exp(κt)‖Hi‖
∥∥x(t)∥∥

≤ γ 
N∑
i=

ξi(t) exp(κt)λmin(P)
∥∥x(t)∥∥

≤ γ 
N∑
i=

ξi(t) exp(κt)xT (t)Px(t)

= γ V (t)

< γ 
∫ t


exp(κσ )JT (σ )J(σ )dσ

≤ γ 
∫ ∞


exp(κσ )JT (σ )J(σ )dσ . ()

Taking the supremum over t >  leads to (). This completes the proof. �

Corollary  When J(t) = , the conditions ()-() ensure that the switched multilayer neu-
ral network ()-() is exponentially stable.

Proof When J(t) = , from (), V̇ (t) <  for all x(t) �= . Thus, for any t ≥ , it implies that

exp(κt)
∥∥x(t)∥∥

λmin(P) ≤ exp(κt)xT (t)Px(t) = V (t) < V () = xT ()Px(). ()

Finally, we have

∥∥x(t)∥∥ <

√
xT ()Px()

λmin(P)
exp

(
–

κ


t
)
. ()

This completes the proof. �
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In the next theorem, we find a new set of LMI criteria for the generalizedH exponential
stability of the switched multilayer neural network ()-(). This set of LMI criteria can be
facilitated readily via standard numerical algorithms [, ].

Theorem  For given level γ >  and κ > , the switchedmultilayer neural network ()-()
is generalized H exponentially stable if there exist a positive symmetric matrix P and a
positive scalar ε such that

⎡
⎢⎣
AT
i P + PAi + κP + εLφVT

i Vi PWi P
WT

i P –εI 
P  –I

⎤
⎥⎦ < , ()

[
P HT

i

Hi γ I

]
> , ()

for i = , . . . ,N.

Proof Consider the Lyapunov function V (t) = exp(κt)xT (t)Px(t). Applying Young’s in-
equality [], we have ε[LφxT (t)VT

i Vix(t)–φT (Vix(t))φ(Vix(t))]≥ . By using this inequal-
ity, the time derivative of V (t) along the trajectory of () is

V̇ (t) =
N∑
i=

ξi(t) exp(κt)
{
xT (t)

[
AT
i P + PAi + κP

]
x(t)

+ xT (t)PWiφ
(
Vix(t)

)
+ xT (t)PJ(t)

}
≤

N∑
i=

ξi(t) exp(κt)
{
xT (t)

[
AT
i P + PAi + κP

]
x(t)

+ xT (t)PWiφ
(
Vix(t)

)
+ xT (t)PJ(t)

+ ε
[
Lφx

T (t)VT
i Vix(t) – φT(

Vix(t)
)
φ
(
Vix(t)

)]}

=
N∑
i=

ξi(t) exp(κt)

⎡
⎢⎣

x(t)
φ(Vix(t))

J(t)

⎤
⎥⎦

T ⎡
⎢⎣
AT
i P + PAi + κP + εLφVT

i Vi PWi P
WT

i P –εI 
P  –I

⎤
⎥⎦

×
⎡
⎢⎣

x(t)
φ(Vix(t))

J(t)

⎤
⎥⎦ +

N∑
i=

ξi(t) exp(κt)JT (t)J(t). ()

If the LMI () is satisfied, we have

V̇ (t) <
N∑
i=

ξi(t) exp(κt)JT (t)J(t)

= exp(κt)JT (t)J(t). ()

Under the zero-initial condition, one has V (t)|t= =  and V (t) ≥ . Define

	(t) = V (t) –
∫ t


exp(κσ )JT (σ )J(σ )dσ . ()
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Then, for any nonzero J(t), we obtain

	(t) = V (t) –V (t)|t= –
∫ t


exp(κσ )JT (σ )J(σ )dσ

=
∫ t



[
V̇ (σ ) – exp(κσ )JT (σ )J(σ )

]
dσ .

From (), we have 	(t) < . It means

V (t) <
∫ t


exp(κσ )JT (σ )J(σ )dσ .

The LMI () implies

exp(κt)zT (t)z(t) =
N∑
i=

ξi(t) exp(κt)xT (t)HT
i Hix(t)

< γ 
N∑
i=

ξi(t) exp(κt)xT (t)Px(t)

= γ V (t)

< γ 
∫ t


exp(κσ )JT (σ )J(σ )dσ

≤ γ 
∫ ∞


exp(κσ )JT (σ )J(σ )dσ . ()

Taking the supremum over t >  leads to (). This completes the proof. �

Corollary  When J(t) = , a set of LMI conditions ()-() ensure that the switchedmul-
tilayer neural network ()-() is exponentially stable.

Proof When J(t) = , from (), we have

V̇ (t) < , ∀x(t) �= . ()

Thus, for any t ≥ , it implies that

exp(κt)
∥∥x(t)∥∥

λmin(P) ≤ exp(κt)xT (t)Px(t) = V (t) < V () = xT ()Px(). ()

Finally, we have

∥∥x(t)∥∥ <

√
xT ()Px()

λmin(P)
exp

(
–

κ


t
)
. ()

This completes the proof. �

Example  Consider the switched neural network ()-(), where

x(t) =

[
x(t)
x(t)

]
, φ

(
x(t)

)
=

[
tanh(x(t))
tanh(x(t))

]
, J(t) =

[
J(t)
J(t)

]
,
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Figure 1 State trajectories.

A =

[
–. 
 –.

]
, A =

[
–. 
 –.

]
,

W =

[
– .
 –.

]
, W =

[
 –.
. .

]
,

V =

[
. –.
–. 

]
, V =

[
–. .
 –.

]
,

H =
[
 

]
, H =

[
 

]
, N = , κ = ..

Applying Theorem  with γ = ., we obtain

P =

[
. .
. .

]
, ε = ..

The switching signal α ∈ {, } is given by

α =

⎧⎨
⎩, k ≤ t ≤ k + ,k ∈ Z,

, otherwise,

where Z is the whole set of nonnegative integers. Figure  shows state trajectories when
x() = [–. .]T and Ji(t) (i = , ) is a white noise.

3 Conclusion
In this paper, we have proposed new sets of generalized H exponential stability cri-

teria for switched multilayer dynamic neural networks. These sets of sufficient stability
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criteria are represented by matrix norm and LMI. The proposed sets of criteria ensured
that switched multilayer dynamic neural networks attenuate the effect of external input
on the state vector. These sets of criteria also guaranteed exponential stability for switched
multilayer dynamic neural networks when there is no external input.
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