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Abstract

This article deals with the problem of stability of descriptor neutral systems with
multiple delays. Using Lyapunov functional and free-weighting matrix method, a
delay-dependent stability criterion is obtained and formulated in the form of linear
matrix inequalities, which can easily be checked by utilizing Matlab linear matrix
inequality toolbox. Finally, a numerical example is presented to illustrate the
effectiveness of the method.
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1. Introduction
Since the time delay is frequently viewed as a source of instability and encountered in

various engineering systems such as chemical processes, long transmission lines in

pneumatic systems, networked control systems, etc., the study of delay systems has

received much attention and various topics have been discussed over the past years.

Commonly, the existing results can be classified into two types: delay-independent

conditions and delay-dependent conditions. In general, the delay-dependent case is

more conservative than delay-independent case.

A neutral system with time-delays which contains delays both in its state and in its

derivatives of state is encountered in many dynamic systems and their presences must

be taken into account in real dynamic process such as circuit systems, population

dynamics, automatic control, and heat exchangers, etc. Due to its profound and practi-

cal background, much attention has been focused on the problems of stability analysis

for neutral time-delay system from mathematics and control communities [1-7]. Using

Lyapunov method, Park [1] presented new sufficient conditions for the stability of the

systems in terms of linear matrix inequality (LMI) which can be easily solved by var-

ious convex optimization algorithms. Some delay-independent stability criteria were

given in terms of the characteristic equation of system, involving the measures, eigen-

values, spectral radius, and spectral norms of the corresponding matrices [3]. Although

the conditions are easy to check, they require the matrix measure to be Hurwitz

matrix. The problem of delay-dependent stability criteria for a class of constant time-

delay neutral systems with time-varying structured uncertainties was investigated [4].

Han [5] obtained delay-dependent stability conditions for uncertain neutral time-vary-

ing system by model transformation method, due to cross terms of model
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transformation, results are less conservative. Zhao [6] dealt with the problem of delay-

dependent robust stability for delay neutral type control system with time-varying

structured uncertainties and time-varying delay. Some new delay and its derivative-

dependent criteria were derived. He [7] concerned the problem of the delay-dependent

robust stability of neutral systems with mixed delays and time-varying structured

uncertainties. A new method based on linear matrix inequalities was presented that

makes it easy to calculate both the upper stability bounds on the delays and the free

weighting matrices. Since the criteria take the sizes of the neutral- and discrete-delays

into account, it is less conservative than previous methods.

Recently, Li [8] studied the stability of the neutral-type descriptor system with mixed

delays, and derived some stability criteria, but the criteria are all delay independent

which do not include the information on delay, therefore have a some conservative in.

However, the descriptor delay neutral system stability and control have not yet fully

investigated, and their stability conditions are not given a strict linear matrix inequal-

ities, it is difficult to achieve through the LMI toolbox in Matlab. Particularly delay-

dependent sufficient conditions are few even non-existing in the published works.

In this article, the problem of stability of neutral type descriptor systems with time-

varying delays is researched. Using free-weight matrix method in combination with

Lyapunov-Krasovskii functional method is used to obtain the LMI-based delay-depen-

dent sufficient conditions for stability. And we consider parameter uncertainties both

in its state and in the derivatives of its state. Examples are given to illustrate the effec-

tiveness of the condition.

Notations: The notation in this article is quite standard. Rn and Rn × m denote, respec-

tively the n-dimensional Euclidean space and the set of all n × m real matrices. The super-

script XT and X-1 denote, respectively, the transpose and the inverse of any square matrix

X. I is the identity matrix of appropriate dimension. || · || will refer to the Euclidean vector

norm. The symbol * always denotes the symmetric block in one symmetric matrix.

2. System description
Consider the following uncertain neutral type descriptor time-delay systems:⎧⎪⎪⎨

⎪⎪⎩
Eẋ(t) −

m∑
i=1

(Di + �Di)ẋ(t − hi(t)) = (A0 + �A0)x(t) +
m∑
i=1

(Ai + �Ai)x(t − di(t))

x(t) = ϕ(t), t ∈ [−max{h, d}, 0]
(1)

where x(t) Î Rn is the state, �(t) is a continuous vector-valued initial function,

0 < h1(t) < h2(t) < · · · < hm(t) ≤ h, 0 = d0(t) < d1(t) < · · · < dm(t) ≤ d, 0 <

ḣt(t) < τi(t) < τi ≤ τ ≤ 1, 0 < ḋi(t) < μi ≤ μ ≤ 1
, A0, Ai, Di

Î Rn, Ai, Di are known constant matrices with appropriate dimensions. Where ΔAi,

ΔDi are the constant matrices which denote time-varying parameter uncertainties and

are assumed to belong to certain bounded compact sets. The parameter uncertainties

are assumed to be of the following form:[
�A0(t) �Ai(t) �Di(t)

]
= HF(t) [E0 Ei1 Ei2] (2)

where H, Eik(k = 1, 2) are known real constant matrices with appropriate dimensions,

and F(t) is the uncertain matrix satisfying FT (t)F(t) ≤ I, ∀t, I is unit matrix with appro-

priate dimensions.

Remark 1. When E = I, the system (1) reduces to the traditional uncertain neutral

system with time-varying delays.
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Remark 2. Li [8] considered the stability of neutral type descriptor systems with con-

stant time-delay, and the system did not include parameter uncertainty in the deriva-

tive of its state. So the system (1) is more widely in our article.

Lemma 1 (Schur-complement) For any matrix S =
[
S11 S12
ST12 S22

]
, with

S11 = ST11, S12 = ST12, then the following conditions are equivalent:

(1)S < 0, (2)S11 < 0, S22−ST12S
−1
11 S12 < 0, (3)S22 < 0, S11−S12S

−1
22 S

T
12 < 0

Lemma 2 [9]If there is symmetric matrix X,
[
P1 + X Q1

QT
1 R1

]
> 0,

[
P2 + X Q2

QT
2 R2

]
> 0if

and only if⎡
⎣P1 + P2 Q1 Q2

QT
1 R1 0

QT
2 0 R2

⎤
⎦ > 0

Lemma 3 [10]Given matrices Q = QT, H, E with appropriate dimensions, we have

Q +HFE + ETFTHT < 0,

for all F(t) satisfying FTF ≤ I if and only if there exists a constant ε > 0, such that

Q + εHHT + ε−1ETE < 0.

3. Main results
Theorem 1 The nominal system of the system (1) is asymptotically stable, if there exist

nonsingular symmetric matrix P, and positive-definite symmetric matrices Qi, Si, Ri and

any appropriate dimensional matrices Ni0, Nij, Mij(i, j = 1, 2,. .., m), such that the fol-

lowing LMI holds:

ETP = PTE ≥ 0 (3a)

⎡
⎢⎢⎣

� �TS̄ �TR̄ −N̄
∗ −S 0 0
∗ ∗ −R 0
∗ ∗ ∗ −R

⎤
⎥⎥⎦ < 0 (3b)

where

� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

�00 · · · �0m �0m+1 · · · �02m+1
...

. . .
...

...
. . .

...
· · · · �mm �mm+1 · · · �m2m+1

· · · · ∗ �m+1m+1 · · · �m+12m+1
...

. . .
...

...
. . .

...
∗ · · · ∗ ∗ · · · �2m+12m+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, N̄i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ni0
...

Nim

Mi1
...

Mim

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

S̄ = [S1 S2 · · · Sm] , R̄ =
[
d1R1d2R2 . . . dmRm

]
,� = [A0 A1 . . . Am D1 . . . Dm] ,

N̄ =
[
d1N̄1 d2N̄2 . . . dmN̄m

]
, S = diag{S1, S2, . . . , Sm},R = diag{d1R1, d2R2, . . . , dmRm},

�00 = PTA0 + AT
0P +

m∑
i=0

[Ni0E + ETNT
i0] +

m∑
i=1

Qi,�0k = PAk − Nk0E +
m∑
i=0

ETNT
ik,

�0m+k = PDk +
m∑
i=0

ETMT
ik,�kk = −(1 − μi)Qk − (NkkE + ETNT

kk), k = 1, 2, . . . ,m,

�lm+k = −ETMT
lk, l, k = 1, 2, . . . ,m,�lk = −NklE − ETNT

lk, l = 1, 2, . . . ,m, l < k ≤ m,

�m+km+k = −(1 − τi)ETSkE, k = 1, 2, . . . ,m,
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Proof: Constructing a Lyapunov-Krasovskii functional as follows:

V(x, t) = V1 + V2 + V3 + V4 (4)

in which

V1 = xT(t)ETPx(t),V2 =
m∑
i=0

t∫
t−di(t)

xT(s)Qix(s)ds,

V3 =
m∑
i=0

t∫
t−hi(t)

ẋT(s)ETSiEẋ(s)ds,V4 =
m∑
i=0

0∫
−di(t)

t∫
t+θ

ẋT(s)ETRiEẋ(s)dsdθ ,

The time derivative of V(x, t) along the trajectory of system (1) is given by

V̇ = V̇1 + V̇2 + V̇3 + V̇4

V̇1 = 2xT(t)PEẋ(t) = 2xT(t)P

(
A0x(t) +

m∑
i=0

Aix(t − di(t)) +
m∑
i=0

Diẋ(t − hi(t))

)

V̇2 =
m∑
i=1

xT(t)Qix(t) −
m∑
i=1

(1 − μi)xT(t − di(t))Qix(t − di(t)),

V̇3 =
m∑
i=1

ẋT(t)ETSiEẋ(t) −
m∑
i=1

(1 − τi)ẋT(t − hi(t))ETSiEẋ(t − hi(t))

V̇4 =
m∑
i=1

diẋ
T(t)ETRiEẋ(t) −

m∑
i=1

t∫
t−di(t)

ẋT(s)ETRiEẋ(s)ds

(5)

According to Newton-Leibniz formula, apparently for any appropriate dimensional

matrices Ni0, Nij, Mij (i, j = 1, 2,..., m), then

2
m∑
i=0

⎡
⎣xT(t)Ni0 +

m∑
j=1

xT(t − di(t))Nij +
m∑
j=1

ẋT(t − hj(t))Mij

⎤
⎦

⎡
⎢⎣Ex(t) − Ex(t − di(t)) −

t∫
t−di(t)

Eẋ(s)ds

⎤
⎥⎦ = 0, (6)

As for any appropriate dimensional matrix Xi ≥ 0, (i = 1, 2,..., m), then

m∑
i=0

⎡
⎢⎣ξT1 (t)Xiξ1(t) −

t∫
t−di(t)

ξT1 (t)Xiξ1(t)ds

⎤
⎥⎦ = 0, (7)

where

Xi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Xi00 . . . Xi0m Xi0m+1 · · · Xi02m+1
...

. . .
...

...
. . .

...
· · · · Ximm Xmm+1 · · · Xim2m+1

· · · · ∗ Xim+1m+1 · · · Xim+12m+1
...

. . .
...

...
. . .

...
∗ · · · ∗ ∗ · · · Xi2m+12m+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

ξT1 (t) =
[
xT(t)xT(t − d1(t)) . . . xT(t − dm(t))ẋT(t − hm(t)) . . . ẋT(t − hm(t))

]
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from (6),(7) and (5), lead to

V̇ = ξT1 (t)

(
� +

m∑
i=0

diXi +
m∑
i=0

�T(Si + diRi)�

)
ξ1(t) −

t∫
t−di(t)

ξT2 (t, s)
iξ2(t, s)ds (8)

in which

ξT2 (t, s) =
[
ξT1 (t)(Eẋ(s))

T
]
, 
i =

[
diXi diNi

∗ diRi

]

If (
� +

m∑
i=0

diXi +
m∑
i=0

�T(Si + diRi)�

)
< 0, 
i ≥ 0 (9)

According to Lyapunov-Krasovskii stability theorem, the system (1) is asymptotically

stable. According to Schur-complement,(
� +

m∑
i=0

diXi +
m∑
i=0

�T(Si + hiRi)�

)
< 0

⇔

⎡
⎢⎢⎣

� +
m∑
i=0

diXi �TS̄ �TR̄

∗ −S 0
∗ ∗ −R

⎤
⎥⎥⎦ < 0,

⇔

⎡
⎢⎢⎣

−� −
m∑
i=0

diXi −�TS̄ −�TR̄

∗ S 0
∗ ∗ R

⎤
⎥⎥⎦ > 0

(10)


i ≥ 0 ⇔
[
diXi diNi

∗ diRi

]
> 0 (11)

According to Lemma 2, from (10) and (11), if and only if⎡
⎢⎢⎢⎢⎣

−� −
m∑
i=0

diXi −�TS̄ �TR̄ −N̄

∗ S 0 0
∗ ∗ R 0
∗ ∗ ∗ R

⎤
⎥⎥⎥⎥⎦ > 0 ⇔

⎡
⎢⎢⎣

� �TS̄ �TR̄ −N̄
∗ −S 0 0
∗ ∗ −R 0
∗ ∗ ∗ −R

⎤
⎥⎥⎦ < 0

Then, we can get the theorem easily.

According to Theorem 1 and Lemma 3, it can be generalized to its structure uncer-

tain neutral generalized time-delay systems, we have the following theorem:

Theorem 2 The system (1) is robustly asymptotically stable, if there exists constant ε1
> 0, nonsingular symmetric matrix P, positive-definite symmetric matrices Qi, Si, Ri and

any appropriate dimensional matrices Ni0, Nij, Mij (i, j = 1, 2,. .., m), such that the fol-

lowing LMI holds:

ETP = PTE ≥ 0 (12a)
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⎡
⎢⎢⎢⎢⎢⎢⎣

� �TS̄ �TR̄ ε�1 �T
2 −N̄

∗ −S 0 0 0 0
∗ ∗ −R 0 0 0
∗ ∗ ∗ −εI 0 0
∗ ∗ ∗ ∗ −εI 0
∗ ∗ ∗ ∗ ∗ −R

⎤
⎥⎥⎥⎥⎥⎥⎦

< 0 (12b)

in which

�T
1 =

[
HTP . . . . . .HTS̄ HTR̄

]
,�2 = [E0 E11 . . . Em1 E12 . . . Em2]

Proof: Replacing Ai, Di in (3b) with Ai + ΔAi, Di + ΔDi respectively, we find that (2)

for (1) is equivalent to the following condition:⎡
⎢⎢⎣

� �TS̄ �TR̄ −N̄
∗ −S 0 0
∗ ∗ −R 0
∗ ∗ ∗ −R

⎤
⎥⎥⎦ + �1F(t)�2 + �T

2F
T(t)�T

1 < 0 (13)

By Lemma 3, a sufficient condition guaranteeing (13) for (1) is that there exists a

positive number ε > 0 such that⎡
⎢⎢⎣

� �TS̄ �TR̄ −N̄
∗ −S 0 0
∗ ∗ −R 0
∗ ∗ ∗ −R

⎤
⎥⎥⎦ + ε�1�

T
1 + ε−1�T

2�2 < 0 (14)

Applying the Schur complement shows that (14) is equivalent to (12b).The proof is

completed.

Remark 3. In the proof of the theorem, it is worth noting that the method taking the

relationship between Ex(t) and Ex(t − di(t)) − ∫ t
t−di(t)

Eẋ(s)ds into account is suitable or

deriving LMI conditions of the stability.

4. Numerical examples
Consider the system (1) described by

E =
[
1 0
0 0

]
, A0 =

[
1 0.3
1 −2

]
, A1 =

[
2 1

−0.3 0.5

]
, A2 =

[
0.5 0
0 −0.2

]
, D1 =

[
0.1 0.3
0 0.2

]
, D2 =

[
0.2 0
0.3 0.1

]
,

H =
[
0.1 0.5
0.2 −0.1

]
, E0 =

[−0.2 0.1
0.1 0.3

]
, E1 =

[
0.1 0
0 0.3

]
, E2 =

[
0.1 0.3

−0.15 0.2

]
,E3 =

[
0.2 0.3

−0.1 0.2

]
,

E4 =
[

0.2 0
−0.15 0.1

]
, d1 = 1.2, d2 = 1.5, τ1 = 0.3, τ2 = 0.4, μ1 = 0.6, μ2 = 0.8, ε = 0.01

According to the theorem, form (12a), (12b) by LMI toolbox in Matlab, lead to

p =
[−0.3494 3.7287

3.7287 −4.6081

]
, Q1 = 108

[
3.0945 −0.0510
−0.0510 −3.1127

]
, Q2 = 108

[
4.7370 0.0538
0.0538 4.7511

]
,

S1 = 10−3
[

0.2771 −0.3533
−0.3533 0.6516

]
, S2 =

[
0.0010 −0.0016

−0.0016 −0.0031

]
, R1 = 10−3

[
0.0558 −0.1204

−0.1204 0.3384

]
,

R2 = 10−3
[

0.0446 −0.0963
−0.0963 0.2707

]
, N10 = 10−3

[−0.0575 0.2862
−0.0725 −0.0215

]
, N11 =

[
0.0018 0.0010
0.0006 0.0006

]
,

N12 =
[−0.0001 0.0001

−0.0013 −0.0007

]
, M11 = 10−8

[−0.1552 −0.1066
0.2627 0.1663

]
, M12 = 10−8

[
0.2665 0.2039

−0.2238 −0.1461

]
,

N20 = 10−3
[−0.3006 −0.0287

0.0327 −0.0163

]
, N21 =

[ −0.0011 −0.0004
−0.0005 −0.0002

]
, N22 = 10−3

[
0.2400 −0.0615
0.5240 0.2985

]
,

M21 = 10−9
[

0.7342 0.4191
−0.9933 −0.6986

]
, M22 = 10−8

[−0.2313 −0.1270
0.0793 0.0460

]
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5. Conclusion
The stability of neutral type descriptor systems with time-varying delays has been

solved in terms of LMI approach. Using Lyapunov-Krasovskii functional method, and

free-weight matrix method, a criterion for stability of systems is given. In the criterion,

the relationship between Ex(t) and Ex(t − di(t)) − ∫ t
t−di(t)

Eẋ(s)ds is taken into account.

The criterion is presented in terms o linear matrix inequalities, which can be easily

solved by Matlab Toolbox. Finally, a numerical example is presented to illustrate the

effectiveness of the method.
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