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Abstract

In this paper, we study a nonlinear fractional g-difference equation with nonlocal
boundary conditions. The existence of solutions for the problem is shown by
applying some well-known tools of fixed-point theory such as Banach's contraction
principle, Krasnoselskii's fixed-point theorem, and the Leray-Schauder nonlinear
alternative. Some illustrating examples are also discussed.
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1 Introduction

In recent years, the topic of fractional differential equations has gained considerable atten-
tion and has evolved as an interesting and popular field of research. It is mainly due to the
fact that several times the tools of fractional calculus are found to be more practical and
effective than the corresponding ones of classical calculus in the mathematical modeling
of dynamical systems associated with phenomena such as fractals and chaos. In fact, frac-
tional calculus has numerous applications in various disciplines of science and engineering
such as mechanics, electricity, chemistry, biology, economics, control theory, signal and
image processing, polymer rheology, regular variation in thermodynamics, biophysics,
blood flow phenomena, aerodynamics, electrodynamics of complex medium, viscoelas-
ticity and damping, control theory, wave propagation, percolation, identification, fitting
of experimental data, etc. [1-4]. The development of fractional calculus ranges from the
theoretical aspects of existence and uniqueness of solutions to the analytic and numerical
methods for finding solutions. For some recent work on fractional differential equations,
we refer to [5-13] and the references therein.

The pioneer work on g-difference calculus or quantum calculus dates back to Jackson’s
papers [14, 15], while a systematic treatment of the subject can be found in [16, 17]. For
some recent existence results on g-difference equations, see [18—20] and the references
therein.

There has also been a growing interest on the subject of discrete fractional equations on
the time scale Z. Some interesting results on the topic can be found in a series of papers
[21-29].
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Fractional g-difference equations have recently attracted the attention of several re-
searchers. For some earlier work on the topic, we refer to [30] and [31], whereas some
recent work on the existence theory of fractional g-difference equations can be found in
[32-36]. However, the study of boundary value problems of fractional g-difference equa-
tions is at its infancy and much of the work on the topic is yet to be done.

In this paper, we discuss the existence and uniqueness of solutions for the nonlocal
boundary value problem of fractional g-difference equations given by

‘Dyx(t)=f(t,x(t), 0<t<ll<a<2, 1)

a12(0) — B1Dx(0) = y1x(11), a2x(1) + B2Dgx(1) = yrx(n2), (12)

where f € C([0,1] x R,R), ”DZ is the fractional g-derivative of the Caputo type, and
a, Bivoni €R(i=1,2).

2 Preliminaries on fractional g-calculus
In this section, we cite some definitions and fundamental results of the g-calculus as well
as of the fractional g-calculus [37, 38]. We also give a lemma that will be used in obtaining
the main results of the paper.

Let g € (0,1) and define

The g analogue of the power (a — b)” is

n-1
(a-b)? =1, (a-b)" = l_[(a -bq"), abeRneN
k=0

The g-gamma function is defined by

(1-gq)*

Fq(x) = W’

xeR\{0,-1,-2,...},0<g<1

and satisfies I'y(x + 1) = [x],I"y(x) (see, [38]).
For 0 < g < 1, we define the g-derivative of a real valued function f as

D) 21‘(3:_{1(;?)’ tel,={0),  Dyf(0)=limDyf(@).

The higher order g-derivatives are given by
DYf(t)=f(t),  Dif(t)=DDy'f(t), neN.

For x > 0, we set J, = {xq" : n € NU {0}} U {0} and define the definite g-integral of a
function f : J, — R by

176 = [ 16 ds= Y501 'S (50
n=0

provided that the series converges.
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For a,b € J,, we set
b o0
[ 10150 - 1@ - 1= S (8 (6a") - af ")),
a n=0

provided that the series exist. Throughout the paper, we will assume that the series in the
q-integrals converge.

Note that for a,b € ], we have a = xg™, b = xq" for some n;,n, € N, thus the definite
integral f: f(s) dys is just a finite sum, so no question about convergence is raised.

We note that

Dqqu(x) :f(x)¢

while if f is continuous at x = 0, then

1;Dy4f (x) = f (x) = £(0).
For more details of the basic material on g-calculus, see the book [38].

Definition 2.1 ([31]) Let & > 0 and f be a function defined on [0,1]. The fractional g-
integral of the Riemann-Liouville type is (Igf )(2) =f(¢) and

ft-go)?

(I2f) @) = 0, e>0relon,
q

Definition 2.2 ([39]) The fractional g-derivative of the Riemann-Liouville type of order
a > 0 is defined by (Dgf)(t) =f(t) and

(Dgf)®) = (DI f)(®), >0,

where [«] is the smallest integer greater than or equal to «.

Definition 2.3 ([39]) The fractional g-derivative of the Caputo type of order « > 0 is
defined by

(“D2f)(8) = (I*D¥f) (1), >0,
where [«] is the smallest integer greater than or equal to «.

Lemma 2.4 Let o, B > 0 and let f be a function defined on [0,1]. Then the next formulas
hold:

(@) IFI2A)@) = Uy P10,

(i) (DEISF)(0) = ().

Lemma 2.5 ([33]) Let o > 0 and n € N. Then the following equality holds:
[o]-1 ta—n+k

(DO = Df 0 = 3 1o (PO

k=0
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Lemma 2.6 ([39]) Let « > 0. Then the following equality holds:

>_.

[a]- £k

(D)) =f() - Y = 0 Af)(0).

k=0 a(k
Lemma 2.7 ([40]) For a € R*, A € (-1,00), the following is valid:

a0 +1)

" (x—a)®M, O0<a<x<b.
Moe+A+1)

E(w-a%) =

In particular, for A = 0, a = 0, using g-integration by parts, we have

a1 (-1) q(x t)
@ =5 )/ (=) gt r(a)/ lal, L

_ (Ot)
,,(a+1)/ (= 0)) dyt = q(ot+1) :

In order to define the solution for the problem (1.1)-(1.2), we need the following lemma.

Lemma 2.8 Fora given g € C([0,1],R) the unique solution of the boundary value problem

DEx() = g(t), tel0,1],
a1%(0) = B1Dyx(0) = y1x(m), (21)
o2x(1) + B2Dgx(1) = yox(172),

is given by

_ [ t—g
x(t)—/o Wg(s)dqs

+ %[(az =12t = (o2 + Bo = ya112) ] /0 b %g(s) dgs
Ll ] [P 0
+ %[(al —y)t+ B+ ] /01 %g(s) dys
* %[(“1 -7t + Bi+ yam] 01 %g(s) dys, (2.2)
where
A= (2 =)+ yim) + (1 — )@z + B2 = yama) 7 0. (2.3)

Proof In view of Lemmas 2.4 and 2.6, integrating equation in (2.1), we have

t _ a-1
x(t) = /0 %g(s) dgs+cot +c1, te[0,1]. (24)
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Using the boundary conditions of (2.1) in (2.4), we have

(a-1)

mno(n _
—(B1 + yim)co + (1 — y1)er = )’1/ m — 49) g(s)dys,
0

Fq(a)

(a2 + B2 — yama)co + (2 — Y2)c

™ (2 —gs) (1= gs)e
_y2/(; Wg(s)dqs—azfo Wg(s)dqs

1 1-— (x=2)
8, /0 (Fq(‘f%l)gu)dqs.

Solving the above system of equations for ¢y, ¢1, we get

m 1)
{Vl(az )/2)/ 7(171 I (@) g(s)dys
q

n2 _ o—
— (0 - VI)VZ/(; %g(s) dys
q
t(1-gs)?

A 7{,(1(0[_1) g(s)d, }r

1 _ (a-1)
+ ooy — Vl)/o %g(s) dys + 2o — y1)

1 m —gs)@-D
a= { yilog + B2 - 7/27]2)/ %g(s) dys

" (1 = gs)*!

F,, (a) g (s)dys

- (B + Vﬂ?l)/

-2)

+ Ba(Br +)/1771)/ —_—

! g(s)dys

' (1—gs)*V
+aa(B1 + yim) ; Wg(s) dqs}-

Substituting the values of ¢, ¢; in (2.4), we obtain (2.2). O

In view of Lemma 2.8, we define an operator F : C([0,1],R) — C([0,1],R) as

/(t qs)"‘ 1 s, (s))dqs

mn — gs)@-1
A A R L

2 _ (a-1)
- %[(OH -yt + (B + )/1771)]/(; %f(s,x(s)) dys
1 (rx 1)
[(011 Yot + (Br+yim) / 7f(s,x(5)) dgs
[y(e)
1- gs)?
+ %[(m -yt + (B + J/ﬂh)]/o (Fqg%l)f(s,x(s)) dgs. (2.5)

Observe that problem (1.1)-(1.2) has a solution if the operator equation Fx = x has a fixed
point, where F is given by (2.5).
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3 Main results
Let C := C([0,1], R) denote the Banach space of all continuous functions from [0,1] — R
endowed with the norm defined by ||x|| = sup{|x(¢)| : ¢ € [0,1]}.

For the sake of convenience, we set

k= (1+ oal82) (IL) (1) + 111 (I2L) (m) + 2182 (IZL) (72) + |Bal82 (1LY (), (3.1)

where
5, = laa — ol + oz + B2 )/2772|’ (3.2)
[A|
and
il + 1B+
5= lon — 1l + | B + yaim| (3.3)

|Al

Theorem 3.1 Assume that f : [0,1] x R — R is continuous and that there exists a q-
integrable function L : [0,1] — R such that

(A) [ftx) - f(&)) = LBk -yl £ €[0,1], x,y €R.

Then the boundary value problem (1.1)-(1.2) has a unique solution provided
k<1, (3.4)

where k is given by (3.1).

Proof Let us fix sup,c (o [f (£,0)| = M and choose

- MA
P=1"%
where
1 (@-1) (@-1) |B2162
A=———(1+ 1) + 1) + |ota]89) + . 3.5
Fq(oz+1)( [v1181m; [y21821; |or2]52) I (@) (3.5)

We define B, = {x € C : ||| < p} and show that FB, C B,,, where F is defined by (2.5). For
x € B,, observe that

If (6:x(0)| < |f(6:%(8)) = f(£0)] + |[f(£,0)| < L@)|()| + |[f(£,0)| <L({®)p + M.
Thenx € B,, t € [0,1], we have

F(t—gs)“

E)] < | =05

[L(s)p + M] dys

" (in - gs) ™V
+| |8f —————|L(s)p+ M|d,s
Y1101 o Fq((x) [ ] q

" (2 - gqs) "
+ 8 ————|L(s)p+M|d,s
[yal 2]0 T (@) [L(s)p +M]d,
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1 1-— S(Ol—l)
rlaalsy [ BT M]ds
0

Fg(a)
+ 182182 01 (lr;(z—s)_(al)m[L(s)p + M) dys
SM{/;%%H |y1|81f0m (m%(l);“”dqs
+ |)/2|82/0’72 %dﬁ
*leald2 /: % dys + 1216, 01 %dqs}
[ e [ T 00

" (n - gqs) "
+ 2|8 / ————L(s)d,s
raite 0 Fq(Ol) 7

1(1_ )(a—l) 1(1_ )(a—z)
+|a2|82/0 %L(s)dqsﬂﬂng 0 %L(s)dqs}

1+ [alsin ™ + [1218nE ™ + o] 82) +

|/32|52}

Y
- { Lglor + 1)( Iy(e)

{ '(1-gs)@?
0

" (i —gs)*“ ™"
L(s)d, ) —_
Fiy Lo+

; @ L(s)dys

" (1y — gs)@V '(1-gs)e D
+ 5 711 S d S+ | 5 —L S d S
el 2/0 g Lo ool | SR 10d,

tA-g9?
+1Balbs /0 e dqs},

which, in view of (3.1) and (3.5), implies that
| Fx|l < MA + pk < p.

This shows that FB, C B,,.
Now, for x,y € C, we obtain

| (Ex) = (B

t _ (a-1)
< sup {/0 %V(s,x(s)) —f(s:9(9)) | dys
q

te[0,1]

n _ g¢)(@-1)
+|nlé /0 %V (5,%(5)) —f (5,%(5)) | dgs

n2 _ gg)(@-1)
+ |)’2|52/0 %V(W(ﬂ) —f(s,5(5)) | dgs

t1-gs)"
+ |aa| 82 ; WV(SMC(S)) —f(S,y(s))|dqs

1 _ (=2)
il [ S 6x0) 609 s

Page 7 of 15


http://www.advancesindifferenceequations.com/content/2012/1/140

Ahmad et al. Advances in Difference Equations 2012, 2012:140
http://www.advancesindifferenceequations.com/content/2012/1/140

tt_ (a-1)
< eyl sup{ [ S e
eion) LJo  Tgla)

m (- gs)@D 2 (py — gs)@D
AT f D) L5 dgs + [yl / By (s)dys
0

Fq(O‘) 0 Fq(a)
' (1-gs)V ' (1 - gs)e?
+ |Ol2|32/0 WL(S) dq5+ |ﬂ2|52/(; mL(S)qu},

which, in view of (3.1), yields
|(Ex)(2) = (By)(0)|| < Kkllx =yl

Since k € (0,1) by assumption (3.4), therefore, F is a contraction. Hence, it follows by
Banach’s contraction principle that the problem (1.1)-(1.2) has a unique solution. O

In case L(t) = L (L is a constant), the condition (3.4) becomes LA < 1 and Theorem 3.1
takes the form of the following result.

Corollary 3.2 Assume that f : [0,1] x R — R is a continuous function and that

there exists a constant L € (0,1/A) with |f(t,x)—f(t,y)| < Llx—y|, t € [0,1], x,y € R,
where A is given by (3.5).

Then the boundary value problem (1.1)-(1.2) has a unique solution.
Our next existence results is based on Krasnoselskii’s fixed-point theorem [41].

Lemma 3.3 (Krasnoselskii) Let M be a closed, bounded, convex, and nonempty subset of
a Banach space X. Let A, B be two operators such that:
(i) Ax+ By € M whenever x,y € M;
(ii) A is compact and continuous;
(iii) B is a contraction mapping.
Then there exists z € M such that z = Az + Bz.

Theorem 3.4 Let f:[0,1] x R — R be a continuous function satisfying (A;). In addition,
we assume that

(Az) there exists a function u € C([0,1],R*) and a nondecreasing function ¢ € C([0,1],R*)
with

[f(&x)| < u@®¢ (1), (&%) €[0,1] x R;

(A3) there exists a constant v with

1 nict—l) ngx—l)
7> — Si—t §o—12
r= |:Fq(oz +1) +inl 1l"q(oz +1) +lrl 2F‘q(ot +1)
|eta| 82 [Balb2 ],
TN , 3.6
T+ + r,@) o)l (3.6)

where || = sup,co,7) |4 (0).
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¥

(1)

" (i —gs)“ ™ " (12 — g5)"*"
|V1|51f LL(S)qu+ |V2|52/ S
0

Fq (a) 0 Iﬂq(c’l) L) dqs

1(1_ )a—l) 1(1_ )a—2)
+ |a2|82/0 ﬁL(s) dys + 182182 ; %L(s) dgs<1, (3.7)

then the boundary value problem (1.1)-(1.2) has at least one solution on [0, 1].

Proof Consider the set By = {x € C: ||x|| <7}, where 7 is given in (3.6) and define the op-

erators P and Q on B; as

t(s_ (a-1)
(Px)(t) = /0 %f(s,x(s))dqs, telo,1],

Fy()
(@900 = B {(ar = e~ e+ = o] h %f(s,x(s)) dys
Ll o] [T oa0)ds
+ %[(al -yt + B+ yim | /01 (I%g;_nf(&x(s)) dys
Bl -t o] | 1 %f(s,x(s)) dys, telo1],
For x,y € By, we find that
s+ o9 < [ t % )6 (|(5)]) d,s

n — gs)@-D
+lnlé fo %M(SW(WS)D%S
q

(2 - qs)
+V252/0 WM(SW(PC(S)D

1 _ (a-1)
+ IazISz/O mM(S)qﬁ(lx(S)l)dqs

Fq(a)
+ |52|52/ M(S)¢>(|x(S)|) oS
N 1 nia—l) ga—l)
<@ lwll { TS + |7/1|81—Fq(a T |V2|527Fq(a D

1
+|az|52m [B282 (e )}

<r.

Thus, Px + Qy € Br. From (A;) and (3.7) it follows that Q is a contraction mapping. Con-

tinuity of f implies that the operator P is continuous. Also, P is uniformly bounded on B;
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as

¢(7)
Px|l < mllull.

Now, for any x € By, and #, £, € [0,1] with £ < £,, we have

|(Px)(t2) - (Px) (1)

ty _ (a-1) 4 B (@-1)
- /O %f(s,x(s))dqs_ O %f(s,x(s))dqs

- /tl (t2 — qs) ™ - (t — gs) @V
N 0 l_‘q(Ol)

-f (s, x(s)) dys

ty _ (a-1)
+ / % f (5,(5)) dgs
3l q

") - (0 -g) D % ma)
q i q5
1

§¢mmm[o T o

which is independent of x and tends to zero as t; — £;. Thus, P is equicontinuous. So P is
relatively compact on By. Hence, by the Arzela-Ascoli theorem, P is compact on By. Thus,
all the assumptions of Lemma 3.3 are satisfied. So the conclusion of Lemma 3.3 implies
that the boundary value problem (1.1)-(1.2) has at least one solution on [0,1]. (|

In the special case when ¢ (u) = 1, we see that there always exists a positive r so that (3.6)
holds true, thus we have the following corollary.

Corollary 3.5 Letf:[0,1] x R — R be a continuous function satisfying (A;). In addition,
we assume that

V(t,x)‘ <u(t), V(tx)e[0,1] xR, and u € C([O, 1],R+).
If(3.7) holds, then the boundary value problem (1.1)-(1.2) has at least one solution on [0,1].
The next existence result is based on Leray-Schauder nonlinear alternative.

Lemma 3.6 (Nonlinear alternative for single valued maps [42]) Let E be a Banach space,
C a closed, convex subset of E, U an open subset of C with 0 € U. Suppose that F : U — C is
a continuous, compact (that is, F(U) is a relatively compact subset of C) map. Then either
(i) F has a fixed point in U, or
(ii) thereis a u € U (the boundary of U in C) and A € (0,1) with u = AF (u).

Theorem 3.7 Letf:[0,1] x R — R be a continuous function. Assume that:

(Ay) there exist functions py, pr € L}([0,1],R"), and a nondecreasing function y : R* — R*
such that |f (¢,x)| < p1@) ¥ (|x]) + p2(2), for (£,x) € [0,1] x R;
(As) there exists a number M > 0 such that

M

—1//(M)a)1 . >1 (3.8)
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where

o; = (1+ [al82) (I pi) (1) + 11181 (I pi) () + |2 l82 (I pi) (n2)

BB p) W), =12
Then the boundary value problem (1.1)-(1.2) has at least one solution on [0,1].

Proof Consider the operator F : C — C defined by (2.5). It is easy to show that F is con-
tinuous. Next, we show that F maps bounded sets into bounded sets in C([0,1],R). For
a positive number p, let B, = {x € C([0,1],R) : ||x|| < p} be a bounded set in C([0,1],R).
Then we have

|(Fx)(0)]

a-1)

t(s_ e)(@-1) n —_ g5)(
- fo %V(s,x(s))}dqﬁlnl& f %V(s’x@)%s

0

2 _ gs)@-1
il [ I (509 dys

1 (1 _ )(ot—l) 1 (1 _ )(01—2)
+ |a2|52/0 %V(S’X(S))|dqs+ |,32|52/0 %V(s,x(s))\dqs

t (4 _ gg)l@-1)
= [ g ) + ]
q

m _ ge)la-1)
+ |V1|51/0 %[Pl(sw(ﬂxﬂ) +p(s)] dgs

») _ (1)
+ 172182 /0 %[w(sw(nxn) +pa(s)] dys

1 _ (a-1)
+ |012|52/0 %[lﬁ(s)l/f(ﬂx”) +pa(s)] dys

t1-gs)?

1Bty | 2L
|B2162  Tola—1)

[1&)W (Ilxll) + pals)] dgs

1 a—1 a—-1

(l _qs)( ) /7]1 (nl_qs)( )

— < P1\s d,s + 1) —
T ( ) 1() q |)/1| 1 T ( )

"2 (13 — qs)* Y / '(1-gs)
+[y,8 — pi(s)dgs + a8 T pi(s)d,s
[yal 2/(‘) r,@) p1(8) dys + 2|52 ) T,@ pi(s)dy

1 1-— (x-2)
+ |ﬁz|81/0 %pl(ﬂdqs}

{ t1-gs)
0 Fq(a)

< 10(,0){ pi(s) dys

a-1)

(1 — gs)*
(s)dgs + |16 / _
P2 q Y1101 ; Fq(a)

" (3 — gs)*Y / ' (1 - gs)
+ 18 T p(8)ds + oS = o (s)d,s
[val 2/0 I @) P2(8) dys + o[ 82 T, pa(s)d,

t1-gs)?
+ |,82|52/0 mpz(s)qu}.

Pp2(8) dys
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Thus, for any x € B,, it holds
1Fxll < ¥ (p)ewr + wo,

which proves our assertion.

Now we show that F maps bounded sets into equicontinuous sets of C([0,1],R). Let
ti,ty € [0,1] with ¢; < t, and x € B,,, where B, is a bounded set of C([0,1], R). Then taking
into consideration the inequality (£, — gs)*™ — (& — gs)@ ™) < (t, — 1) for 0 < 4 < t, (see,
[33, p.4]), we have

|(Fx)(t2) - (Fx)(11) |

B o(p (a-l) a (4 _ go)a-1)
< / Mf(s,x(s)) dgs — / Mf(s,x(s)) dgs
0

- 1—‘q(O‘) 0 Fq(a)
m _ ge)le-1)
+ %{ [n(ez = 2)| (2 - fl)/o % If (s,(5)) | dgs

" (1, — gs)©@V
+V2|0t1—7/1|(t2—t1)/ —_
0 Fq(a)

1 1)

(1-gs)@
+ lazlle —y|(t—t)/ Q-g)
2llen =nllz =) | T, (@)

[/ (s(5)) [ s

[f(s, x(s)) ’ dgs

t1-gs)?

+|Ballog =y ; m[f(s,x(s))]dqs}

15}

< ' [ =00l 229 os+ [ (6= ohp0) a9 s
1 mn _ gs)@-1
*A { 1l = y2)|(82 - fl)[o %[PMW/(P) +pa(s)] dys
n2 _ g¢)(@-1)
+yalar =yt - tl)/o % [21(8)¥ (0) + pa(s)] dgs
1 _ (a-1)
laallan - it ) [ %[pl(s)mpnm(s)] dys

1 (-2)
(1-gs)
+|,32||011—)/1|(52—t1)/ 1
0

T,a-1) [21()¥ () + pa(s)] qu}'

Obviously, the right-hand side of the above inequality tends to zero independently of
x € B, as t — 1 — 0. Therefore, it follows by the Arzela-Ascoli theorem that F :
C([0,1],R) — C([0,1],R) is completely continuous.

Thus, the operator F satisfies all the conditions of Lemma 3.6, and hence by its conclu-
sion, either condition (i) or condition (ii) holds. We show that the conclusion (ii) is not
possible.

Let U = {x € C([0,1],R) : ||x|| < M} with ¥ (M)w;, + w, < M (by (3.8)). Then it can be
shown that ||Fx|| < M. Indeed, in view of (A4), we have

1= (a-1) m _ (a-1)
||Fx||sw(||xn>{ fo %pl(s)dqsﬂylwl f %pl(s)dqs
q q

0

" (19, — gs)*Y / ' (1 - gs)e
+|10l8 2T pi(s)dys + |aa|S = p(s)d,s
[yal 2/0 T (@) pi(s) dys + |ora| 8o ) Ty pi(s)dy
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1 _ (x=2)
+ |,32|52/O 7(1%(?)— D Pl(S)dqs}

{ tA-gs)
0 Fq(a)

" (- gs)@ Y
[y(e)

" (1 —gs)*V f b1 -gs)
8 - d 8 - d,
+ 12l 2/0 T, (@) P2(5) dgs + |a2 |8, ) T,@ pa(s)dys

1 1- )(0(—2)
+ 1Bl /0 (Fq(‘fﬁpz(s)dqs}

=< 1/f(M)a)1 + wy <M.

pas) ds + 7118, / pa(s)d,s
0

Suppose there exists ax € U and a A € (0,1) such that x = AFx. Then for such a choice of
x and A, we have

M = |lx|l = MEx] < ¥ (I} + @2 = Y (Mo + w2 < M,

which is a contradiction. Consequently, by the Leray-Schauder alternative (Lemma 3.6),
we deduce that F has a fixed point x € I which is a solution of the problem (1.1)-(1.2). This
completes the proof. d

Remark 3.8 If py, p, in (A4) are continuous, then w; < A||p;|, i = 1,2, where A is defined
by (3.5).

Example 3.9 Consider the fractional g-difference nonlocal boundary value problem
p3* (t)—é( tan'x +sint), 0<t<1 (3.9)
g ¥t} =5 +tan"5+sing), <t<], .
1 3
x(0) —1/2D,4x(0) = x(1/3), Ex(l) + Equ(l) =x(2/3). (3.10)

Here, a1 =1, 81 =1/2, 00 =1/4, By =3/4, y1 =1 = y»,m1 =1/3, 12 = 2/3,and L is a constant
to be fixed later on. Moreover, A =5/8, 8; =26/15, 8, = 4/3, |f(¢,x) —f(t,y)| < L|x—y|, and

‘e L (2&(13 +10+/2 +154/3) . 1)
" T12(3/2) 15v/3(2+/2 1) ’

Choosing

L. [ 1 <2J§(13 +104/2 +154/3) . 1>]1
I'12(3/2) 1543242 - 1) ’

all the assumptions of Theorem 3.1 are satisfied. Therefore, by Theorem 3.1, problem (3.9)-
(3.10) has a unique solution.

Example 3.10 Consider the problem

o3 1, eF(2+1) 1

Dq x(t) = Z COS [ Sln(|x|/2) + m + g, 0 <t< 1, (311)
1 3

#(0) ~12Dgx(0) =(1/3), (1) + = Dya(1) = 2/3), (3.12)

Page 13 0of 15
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whereoy =1, 81 =1/2, a5 =1/4, B2 =3/4, 1 =1 = y», n1 = 1/3, 2 = 2/3. In a straightforward
manner, it can be found that A =5/8, §; = 26/15, {8, = 4/3, and

P (1) 1

211 s 2 1
[f(t,%)| = 2 cos ¢” sin(|x/2) + ATy t3

1
< —|x|+1
8

Clearly, p1 =1/8, po = 1, ¥ (M) = M. Consequently, @; = 0.567120414, w, = 4.536963312,
and the condition (3.8) implies that M >10.48055997. Thus, all the assumptions of The-
orem 3.7 are satisfied. Therefore, the conclusion of Theorem 3.7 applies to the problem
(3.11)-(3.12).
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