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Abstract

We investigate the discretisation of the linear parabolic equation du/dt = A(t)u + f(t)
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1 Introduction
In this article, we study the discretisation, with finite-difference methods, of the evolu-

tion equation problem

du
dt

= A(t)u + f (t) in [0,T], u(0) = g, (1)

where, for every t Î [0, T] with T Î (0, ∞), A(t) is a linear operator from a reflexive

separable Banach space V to its dual V*, u: [0, T] ® V is an unknown function, f: [0,

T] ® V*, g belongs to a Hilbert space H, with f and g given, and V is continuously and

densely embedded into H. We assume that operator A(t) is continuous and impose a

coercivity condition.

Our motivation lies in the numerical approximation of multidimensional PDE pro-

blems arising in European financial option pricing. Let us consider the stochastic mod-

eling of a multi-asset financial option of European type under the framework of a

general version of Black-Scholes model, where the vector of asset appreciation rates

and the volatility matrix are taken time and space-dependent. Owing to a Feynman-

Kač type formula, pricing this option can be reduced to solving the Cauchy problem

(with terminal condition) for a second-order linear parabolic PDE of nondivergent

type, with null term and unbounded coefficients, degenerating in the space variables

(see, e.g., [1]).

After a change of the time variable, the PDE problem is written

∂u
∂t

= Lu + f in [0,T] × Rd, u(0, x) = g(x) in Rd, (2)
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where L is the second-order partial differential operator in the nondivergence form

L(t, x) = aij(t, x)
∂2

∂xi∂xj
+ bi(t, x)

∂

∂xi
+ c(t, x), i, j = 1, ..., d,

with real coefficients, f and g are given real-valued functions (the free term f is

included to further improve generality), and T Î (0, ∞) is a constant. For each t Î [0,

T] the operator - L is degenerate elliptic, and the growth in the spatial variables of the

coefficients a, b, and of the free data f, g is allowed. One possible approach for the

numerical approximation of the PDE problem (2) is to proceed to a two-stage discreti-

sation. First, the problem is semi-discretised in space, and both the possible equation

degeneracy and coefficient unboundedness are dealt with (see, e.g., [2,3], where the

spatial approximation is pursued in a variational framework, under the strong assump-

tion that the PDE does not degenerate, and [4]). Subsequently, a time discretisation

takes place.

For the time discretisation, the topic of the present article, it can be tackled by

approximating the linear evolution equation problem (1) which the PDE problem (2)

can be cast into. This simpler general approach, which we follow, is powerful enough

to obtain the desired results. On the other hand, it covers a variety of problems,

namely initial-value and initial boundary-value problems for linear parabolic PDEs of

any order m ≥ 2.

Several studies dealing with the discretisation of parabolic evolution problems in

abstract spaces can be found in the literature. Most of them are concerned with the

discretisation of problems with constant operator A (see, e.g., [5-9]). Other studies

(see, e.g., [10-13]), study the general case where the operator A is time-dependent,

under Hölder or Lipschitz-continuity assumptions. Also, in some of the above men-

tioned studies and in others, as in [14], the discretisation is pursued by considering a

particular discretisation of the datum f (namely, by using integral averages).

In the present study, we study the discretisation in time of problem (1) with time-

dependent operator A in a general setting. We use both the implicit and the explicit

finite-difference schemes. To further improve generality, we proceed to the study leav-

ing the discretised versions of A and f nonspecified. Also, in order to obtain the con-

vergence of the schemes, we need to assume that the solution of (1) satisfies a

smoothness condition but weaker than the usual Hölder-continuity.

It is well known that, to guarantee the explicit scheme stability, an additional

assumption has to be made, usually involving an inverse inequality between V and H

(see, e.g., [15]). In our study, the explicit discretisation is investigated by assuming

instead a not usual inverse inequality between H and V*.

In addition, we illustrate our study by exploring examples where different choices are

made for the discretised versions of A and f.

First, we consider the approximation of A and f by integral averages. We show that

the standard smoothness and coercivity assumptions for problem (1) induce correspon-

dent properties for the discretised problem, so that stability results can be proved.

Moreover, the rate of convergence we obtain is optimal. Then, we study the alternative

approximation of A and f by weighted arithmetic averages of their respective values at

consecutive time-grid points. In this case, stronger smoothness assumptions are needed

in order to obtain the scheme convergence.
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We emphasize that none of the above mentioned choices is artificial: there are appli-

cations where the available information regards the values of A and f at the time-grid

points and others the integral averages, but usually not both.

The article is organized as follows. In Section 2, we set an abstract framework for a

linear parabolic evolution equation and present a solvability classical result. In the fol-

lowing two sections, we study the discretisation of the evolution equation with the use

of the Euler’s implicit scheme (Section 3) and the Euler’s explicit scheme (Section 4).

In Sections 5 and 6, we discuss some examples, respectively, for the implicit and the

explicit discretisation schemes and, finally, in Section 7, we present some computa-

tional results.

2 Preliminaries
We establish some facts on the solvability of linear evolution equations of parabolic

type.

Let V be a reflexive separable Banach space embedded continuously and densely into

a Hilbert space H with inner product (·, ·). Then H*, the dual space of H, is also con-

tinuously and densely embedded into V*, the dual of V. Let us use the notation 〈·,·〉 for

the dualization between V and V*. Let H* be identified with H in the usual way, by the

Riesz isomorphism. Then we have the so called normal (or Gelfand) triple

V ↪→ H ≡ H∗ ↪→ V∗,

with continuous and dense embeddings. It follows that 〈u, v〉 = (u, v), for all u Î H

and for all v Î V. Furthermore, |〈u,v〉| ≤ ∥u∥V* ∥v∥v, for all u Î V* and for all v Î V

(the notation ∥ · ∥X stands for the Banach space X norm). Let us consider the Cauchy

problem for an evolution equation

du
dt

= A(t)u + f (t) in [0,T], u(0) = g, (3)

with T Î (0, ∞), where A(t) is a linear operator from V to V* for every t Î [0, T] and

A(·)v : [0, T] ® V* is measurable for fixed v Î V, u : [0, T] ® V is an unknown differ-

entiable function, f : [0, T] ® V* is a measurable given function, d/dt is the standard

derivative with respect to the time variable t, and g Î H is given.

We assume that the operator A(t) is continuous and impose a coercivity condition,

as well as some regularity on the free data f and g.

Assumption 1. Suppose that there exist constants l > 0, K, M, and N such that

1.
〈
A(t)v, v

〉
+ λ ‖v‖2V ≤ K ‖v‖2H , ∀v Î V and ∀t Î [0,T];

2. ∥A(t)v∥V* ≤ M∥v∥V, ∀v Î V and ∀t Î [0, T];

3.
∫ T
0

∥∥f (t)∥∥2V∗dt ≤ Nand ∥g∥H ≤ N.

We define the generalized solution of problem (3).

Definition 1. We say that u Î C([0,T]; H) is a generalized solution of (3) on [0,T] if

1. u Î L2([0,T];V);

2. (u(t), v) = (g, v) +
t∫
0

〈
A(s)u(s), v

〉
ds +

t∫
0

〈
f (s), v

〉
ds, ∀v ∈ V,∀t ∈ [0,T].
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Let X be a Banach space with norm ∥ · ∥X. We denote by C([0,T]; X) the space of all

continuous X-valued functions z on [0,T] such that

‖z‖C([0,T],X) := max
0≤t≤T

∥∥z(t)∥∥X < ∞

and by L2([0,T];X) the space comprising all strongly measurable functions w : [0,T]

® X such that

‖w‖L2([0,T];X) :=
⎛
⎝ T∫

0

∥∥w(t)∥∥2X dt
⎞
⎠

1/2

< ∞.

The following well-known result states the existence and uniqueness of the general-

ized solution of problem (3) (see, e.g., [16]).

Theorem 1. Under conditions (1)-(3) of Assumption 1, problem (3) has a unique gen-

eralized solution on [0,T]. Moreover

sup
t∈[0,T]

∥∥u(t)∥∥2H +

T∫
0

∥∥u(t)∥∥2V dt ≤ N

⎛
⎝∥∥g∥∥2H +

T∫
0

∥∥f (t)∥∥2V∗ dt

⎞
⎠ ,

where N is a constant.

3 Implicit discretisation
We will now study the time discretisation of problem (3) making use of an implicit

finite-difference scheme. We begin by constructing an appropriate discrete framework.

Take a number T Î (0, ∞), a non-negative integer n such that T/n Î (0,1], and

define the n-grid on [0,T]

Tn =
{
t ∈ [0,T] : t = jk, j = 0, 1, ..., n

}
, (4)

where k := T/n. Denote tj = jk for j = 0,1,..., n.

For all z Î V, we consider the backward difference quotient

�−z(tj+1) = k−1 (z (tj+1)− z
(
tj
))
, j = 0, 1, ...,n − 1.

Let Ak, fk be some time-discrete versions of A and f, respectively, i.e., Ak(tj) is a linear

operator from V to V* for every j = 0,1,..., n and fk : Tn ® V* a function. For all z Î V,

denote Ak,j+1z = Ak(tj+1)z, fk,j+1 = fk(tj+1), j = 0, 1,..., n - 1.

For each n ≥ 1 fixed, we define vj = v(tj), j = 0,1,..., n, a vector in V satisfying

�−vi+1 = Ak,i+1vi+1 + fk,i+1 for i = 0, 1, ..., n − 1, v0 = g. (5)

Problem (5) is a time-discrete version of problem (3).

Assumption 2. Suppose that

1.
〈
Ak,j+1v, v

〉
+ λ ‖v‖2V ≤ K ‖v‖2H , ∀v Î V, j = 0,1,..., n - 1,

2. ∥Ak,j+1v∥V* ≤ M∥v∥V, ∀v Î V, j = 0,1,..., n - 1,

3.
∑n−1

j=0

∥∥fk,j+1∥∥2V∗k ≤ Nand ∥g∥H ≤ N,
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where l, K, M, and N are the constants in Assumption 1.

Remark 1. Note that as problem (5) is a time-discrete version of problem (3) and g

denotes the same function in both problems, under Assumption 1 we have that g Î H

and ∥g∥H ≤ N.

Under the above assumption, we establish the existence and uniqueness of the solu-

tion of problem (5).

Theorem 2. Let Assumption 2 be satisfied and the constant K be such that Kk ≤ 1.

Then for all n Î N there exists a unique vector v0, v1, ... ,vn in V satisfying (5).

To prove this result, we consider the following well known lemma (see, e.g., [16,17]).

Lemma 1 (Lax-Milgram). Let B : V ® V* be a bounded linear operator. Assume

there exists l > 0 such that 〈Bv, v〉 ≥ λ ‖v‖2V , for all v Î V. Then Bv = v* has a unique

solution v Î V for every given v* Î V*.

Proof. (Theorem 2)

From (5), we have that (I - kAk,1)v1 = g + fk,1k and

(I - kAk,i+1)vi+1 = vi + fk,i+1k, for i = 0,1,..., n - 1, with I the identity operator on V.

We first check that the operators I - kAk,j+1, j = 0,1,..., n - 1, satisfy the hypotheses of

Lemma 1. These operators are obviously bounded. We have to show that there exists

l > 0 such that
〈(
I − kAk,j+1

)
v, v
〉 ≥ λ ‖v‖2V , for all v Î V, j = 0,1,..., n - 1. Owing to (1)

in Assumption 2, we have〈(
I − kAk,j+1

)
v, v
〉
=
〈
Iv − kAk,j+1v, v

〉
= ‖v‖2H − k

〈
Ak,j+1v, v

〉
≥ ‖v‖2H − kK ‖v‖2H + kλ ‖v‖2V .

Then, as Kk ≤ 1, we have that
〈(
I − kAk,j+1

)
v, v
〉 ≥ kλ ‖v‖2V and the hypotheses of

Lemma 1 are satisfied.

For v1, we have that (I - kAk1)v1 = g + fk,1k. This equation has a unique solution by

Lemma 1. Suppose now that equation (I - kAk,i)vi = vi-1 + fk,ik has a unique solution.

Then equation (I - kAk,i+1)vi+1 = vi + fk,i+1k has also a unique solution, again by

Lemma 1. The result is obtained by induction.

Next, we prove an auxiliary result and then obtain a version of the discrete Gron-

wall’s lemma convenient for our purposes.

Lemma 2. Let an1, a
n
2, ..., a

n
n be a finite sequence of numbers for every integer n ≥ 1 such

that 0 ≤ anj ≤ c0 + C
∑j−1

i=1 ani , for all j = 1, 2,..., n, where C is a positive constant and c0

≥ 0 is some real number. Then anj ≤ (C + 1)j−1c0 , for all j = 1, 2,..., n.

Proof. Let bnj := c0 + C
∑j−1

i=1 bni , j = 1, 2,..., n. Then anj ≤ bnj for all j ≥ 1. Indeed for j =

1, we have that an1 ≤ bn1 = c0 . Assume now that ani ≤ bni for all i ≤ j. Then

bnj+1 = c0 + C
j∑

i=1

bni ≥ c0 + C
j∑

i=1

ani ≥ anj+1

and, by induction, anj ≤ bnj for all j ≥ 1. It is easy to see that bnj+1 − bnj = Cbnj , j ≥ 1,

giving

anj+1 ≤ bnj+1 = (C + 1)bnj = (C + 1)2bnj−1 = ... = (C + 1)jbn1 = (C + 1)jc0,

and the result is proved.
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Lemma 3 (Discrete Gronwall’s inequality). Let an0, a
n
1, ..., a

n
n be a finite sequence of

numbers for every integer n ≥ 1 such that

0 ≤ anj ≤ an0 + K
j∑

i=1

ani k (6)

holds for every j = 1, 2, ..., n, with k := T/n, and K a positive number such that Kk =:

q < 1, with q a fixed constant. Then

anj ≤ an0e
KqT ,

for all integers n ≥ 1 and j = 1, 2,..., n, where Kq := -K ln(1 - q)/q.

Proof. The result is obtained by using standard discrete Gronwall arguments. From

(6), as Kk < 1 we have

(1 − Kk)anj ≤ an0 + K
j−1∑
i=1

ani k ⇔ anj ≤ an0
1 − Kk

+
Kk

1 − Kk

j−1∑
i=1

ani , (7)

for every j = 1, 2,..., n. Owing to Lemma 2, with c0 = an0/(1 − Kk) and C = Kk/(1 -

Kk), from the right inequality in (7) we obtain

anj ≤
(

Kk

1 − Kk
+ 1
)j−1 an0

1 − Kk
=

an0
(1 − Kk)j

≤ an0
(1 − Kk)n

.

Noting that

(1 − Kk)n = exp(n ln(1 − Kk)) = exp
(
nKk

ln(1 − q)
q

)

= exp
(
KT

ln(1 − q)
q

)
,

the result is proved.

We are now able to prove that the scheme (5) is stable, that is, the solution of the

discrete problem remains bounded independently of k.

Theorem 3. Let Assumption 2 be satisfied and assume further that constant K satis-

fies: 2Kk < 1. Denote vk,j, with j = 0, 1, ..., n, the unique solution of problem (5) in Theo-

rem 2. Then there exists a constant N independent of k such that

1. max
0≤j≤n

∥∥vk,j∥∥2H ≤ N

(∥∥g∥∥2H +
n∑
j=1

∥∥fk,j∥∥2V∗ k

)
;

2.
n∑
j=0

∥∥vk,j∥∥2V k ≤ N

(∥∥g∥∥2H +
n∑
j=1

∥∥fk,j∥∥2V∗ k

)
.

Remark 2. Owing to (3) in Assumption 2, the estimates (1) and (2) above can be writ-

ten, respectively,

sup
n≥1

(
max
0≤j≤n

∥∥vk,j∥∥2H ≤ N
)

and sup
n≥1

⎛
⎝ n∑

j=0

∥∥vk,j∥∥2V k ≤ N

⎞
⎠ .
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Remark 3. Under Assumption 2, with K satisfying 2Kk < 1, Theorem 2 obviously holds

so that problem (5) has a unique solution.

Proof. (Theorem 3)

For i = 0,1,..., n - 1, we have that

∥∥vk,i+1∥∥2H − ∥∥vk,i∥∥2H = 2
〈
vk,i+1 − vk,i, vk,i+1

〉− ∥∥vk,i+1 − vk,i
∥∥2
H

(8)

and, summing up both members of equation (8), we obtain, for j = 1, 2,..., n,

∥∥vk,j∥∥2H =
∥∥vk,0∥∥2H +

j−1∑
i=0

2
〈
vk,i+1 − vk,i, vk,i+1

〉− j−1∑
i=0

∥∥vk,i+1 − vk,i
∥∥2
H .

Hence

∥∥vk,j∥∥2H ≤ ∥∥vk,0∥∥2H +
j−1∑
i=0

2
〈
vk,i+1 − vk,i, vk,i+1

〉

=
∥∥vk,0∥∥2H +

j−1∑
i=0

2
〈
Ak,i+1vk,i+1k + fk,i+1k, vk,i+1

〉
.

As, by Cauchy’s inequality,

2
〈
fk,i+1, vk,i+1

〉
k ≤ λ

∥∥vk,i+1∥∥2V k +
1
λ

∥∥fk,i+1∥∥2V∗ k,

with l > 0, owing to (1) in Assumption 2 we obtain

∥∥vk,j∥∥2H ≤ ∥∥vk,0∥∥2H + 2K
j−1∑
i=0

∥∥vk,i+1∥∥2H k − λ

j−1∑
i=0

∥∥vk,i+1∥∥2H k +
1
λ

j−1∑
i=0

∥∥fk,i+1∥∥2V∗k,

and then

∥∥vk,j∥∥2H + λ

j∑
i=1

∥∥vk,i∥∥2V k ≤ ∥∥vk,0∥∥2H + 2K
j∑

i=1

∥∥vk,i∥∥2H k +
1
λ

n∑
i=1

∥∥fk,i∥∥2V∗k. (9)

In particular,

∥∥vk,j∥∥2H ≤ ∥∥vk,0∥∥2H + 2K
j∑

i=1

∥∥vk,i∥∥2H k +
1
λ

n∑
i=1

∥∥fk,i∥∥2V∗ k, (10)

and, using Lemma 3,

∥∥vk,j∥∥2H ≤
(∥∥vk,0∥∥2H +

1
λ

n∑
i=1

∥∥fk,i∥∥2V∗ k

)
e2KqT , (11)

where Kq is the constant defined in the Lemma. Estimate (1) follows. From (9), (10),

and (11) we finally obtain

∥∥vk,j∥∥2H + λ

j∑
i=1

∥∥vk,i∥∥2V k ≤
(∥∥vk,0∥∥2H +

1
λ

n∑
i=1

∥∥fk,i∥∥2V∗ k

)
e2KqT
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and

j∑
i=1

∥∥vk,i∥∥2V k ≤
(∥∥vk,0∥∥2H +

1
λ

n∑
i=1

∥∥fk,i∥∥2V∗ k

)
1
λ
e2KqT .

Estimate (2) follows.

We will now study the convergence properties of the scheme we have constructed.

We impose stronger regularity on the solution u = u(t) of problem (3):

Assumption 3. Let u be the solution of problem (3) in Theorem 1. We suppose that

there exist a fixed number δ Î (0, 1] and a constant C such that

1
k

ti+1∫
ti

∥∥u(ti+1) − u(s)
∥∥
Vds ≤ Ckδ ,

for all i = 0, 1, ..., n - 1.

Remark 4. Assume that u satisfies the following condition: “There exist a fixed number

δ Î (0,1] and a constant C such that ∥u(t) - u(s)∥V ≤ C|t - s|δ, for all s, t Î [0,T]”. Then

Assumption 3 obviously holds.

By assuming this stronger regularity of the solution u of (3), we can prove the con-

vergence of the solution of problem (5) to the solution of problem (3) and determine

the convergence rate. The accuracy we obtain is of order δ.

Theorem 4. Let Assumptions 1 and 2 be satisfied and assume further that constant K

satisfies: 2Kk < 1. Denote u(t) the unique solution of (3) in Theorem 1 and vk,j, j = 0, 1,

..., n, the unique solution of (5) in Theorem 2. Let also Assumption 3 be satisfied. Then

there exists a constant N independent of k such that

1.

max
0≤j≤n

∥∥vk,j − u(tj)
∥∥2
H ≤ N

⎛
⎜⎝k2δ +

n∑
j=1

1
k

∥∥∥∥∥∥∥Ak,ju(tj)k −
tj∫

tj−1

A(s)u(tj)ds

∥∥∥∥∥∥∥
2

V∗

+
n∑
j=1

1
k

∥∥∥∥∥∥∥fk,jk −
tj∫

tj−1

f (s)ds

∥∥∥∥∥∥∥
2

V∗

⎞
⎟⎠ ;

2.

n∑
j=0

∥∥vk,j − u(tj)
∥∥2
V k ≤ N

⎛
⎜⎝k2δ +

n∑
j=1

1
k

∥∥∥∥∥∥∥Ak,ju(tj)k −
tj∫

tj−1

A(s)u(tj)ds

∥∥∥∥∥∥∥
2

V∗

+
n∑
j=1

1
k

∥∥∥∥∥∥∥fk,jk −
tj∫

tj−1

f (s)ds

∥∥∥∥∥∥∥
2

V∗

⎞
⎟⎠ .

Proof. Define w(ti) := vk,i - u(ti),i = 0,1, ..., n. For i = 0, 1, ..., n - 1,

w(ti+1) − w(ti) = Ak,i+1w(ti+1)k + fk,i+1k − u(ti+1) + u(ti) + Ak,i+1u(ti+1)k

= Ak,i+1w(ti+1)k + ϕ(ti+1),

where �(ti+1) := fk,i+1k - u(ti+1) + u(ti) + Ak,i+1u(ti+1)k.
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Owing to (1) in Assumption 2, we obtain∥∥w(ti+1)∥∥2H − ∥∥w(ti)∥∥2H = 2
〈
w(ti+1) − w(ti),w(ti+1)

〉− ∥∥w(ti+1) − w(ti)
∥∥2
H

≤ 2
〈
Ak,i+1w(ti+1),w(ti+1)

〉
k + 2

〈
ϕ(ti+1),w(ti+1)

〉
≤ −2λ

∥∥w(ti+1)∥∥2V k + 2K
∥∥w(ti+1)∥∥2H k

+ 2
∣∣〈ϕ(ti+1),w(ti+1)〉∣∣ .

(12)

Noting that �(ti+1) can be written

ϕ(ti+1) =

ti+1∫
ti

A(s)(u(ti+1) − u(s))ds + ϕ1(ti+1) + ϕ2(ti+1),

where

ϕ1(ti+1) := Ak,i+1u(ti+1)k −
ti+1∫
ti

A(s)u(ti+1)ds

and

ϕ2(ti+1) := fk,i+1k −
ti+1∫
ti

f (s)ds,

for the last term in (12) we have the estimate

2
∣∣〈ϕ(ti+1),w(ti+1)〉∣∣ ≤ 2

∣∣∣∣∣∣
〈 ti+1∫
ti

A(s)(u(ti+1) − u(s))ds,w(ti+1)

〉∣∣∣∣∣∣
+ 2
∣∣〈ϕ1(ti+1),w(ti+1)

〉∣∣ + 2
∣∣〈ϕ2(ti+1),w(ti+1)

〉∣∣ .
(13)

Let us estimate separately each one of the three terms in (13).

For the first term, owing to (2) in Assumption 1 and using Cauchy’s inequality, we

obtain

2

∣∣∣∣∣∣
〈 ti+1∫
ti

A(s)(u(ti+1) − u(s))ds,w(ti+1)

〉∣∣∣∣∣∣
≤ 2

ti+1∫
ti

∣∣〈A(s)(u(ti+1) − u(s))ds,w(ti+1)
〉∣∣ds

≤ 2M
∥∥w(ti+1)∥∥V

ti+1∫
ti

∥∥u(ti+1) − u(s)
∥∥
Vds

≤ λ

3

∥∥w(ti+1)∥∥2V k +
3M2

λk

⎛
⎝ ti+1∫

ti

∥∥u(ti+1) − u(s)
∥∥
Vds

⎞
⎠

2

,

(14)

with l > 0.
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For the two remaining terms, we have the estimates

2
∣∣〈ϕ1(ti+1),w(ti+1)

〉∣∣ ≤ λ

3

∥∥w(ti+1)∥∥2V k +
3
λk

∥∥ϕ1(ti+1)
∥∥2
V∗ (15)

and

2
∣∣〈ϕ2(ti+1),w(ti+1)

〉∣∣ ≤ λ

3

∥∥w(ti+1)∥∥2V k +
3
λk

∥∥ϕ2(ti+1)
∥∥2
V∗ , (16)

with l > 0, using Cauchy’s inequality.

Therefore, from (14), (15), and (16) we get the following estimate for (13)

2
∣∣〈ϕ(ti+1),w(ti+1)〉∣∣ ≤ λ

∥∥w(ti+1)∥∥2V k +
3M2

λk

⎛
⎝ ti+1∫

ti

∥∥u(ti+1) − u(s)
∥∥
Vds

⎞
⎠

2

+
3
λk

∥∥ϕ1(ti+1)
∥∥2
V∗ +

3
λk

∥∥ϕ2(ti+1)
∥∥2
V∗.

(17)

Putting estimates (12) and (17) together and summing up, owing to Assumption 3

we obtain, for j = 1, 2,..., n,

∥∥w(tj)∥∥2H + λ

j−1∑
i=0

∥∥w(ti+1)∥∥2V k ≤ 2K
j−1∑
i=0

∥∥w(ti+1)∥∥2H k +
3C2M2

λ

j−1∑
i=0

k2δ+1

+
3
λk

j−1∑
i=0

∥∥ϕ1(ti+1)
∥∥2
V∗ +

3
λk

j−1∑
i=0

∥∥ϕ2(ti+1)
∥∥2
V∗ .

Hence

∥∥w(tj)∥∥2H + λ

j∑
i=0

∥∥w(ti)∥∥2V k ≤ 2K
j∑

i=0

∥∥w(ti)∥∥2H k +Nk2δ

+N
n∑
i=1

1
k

∥∥∥∥∥∥Ak,iu(ti)k −
ti∫

ti−1

A(s)u(ti)ds

∥∥∥∥∥∥
2

V∗

+N
n∑
i=1

1
k

∥∥∥∥∥∥fk,ik
ti∫

ti−1

f (s)ds

∥∥∥∥∥∥
2

V∗

,

with N a constant. Following the same steps as in the proof of Theorem 3, estimates

(1) and (2) follow.

Next result is an immediate consequence of Theorem 4.

Corollary 1. Let the hypotheses of Theorem 4 be satisfied and denote u(t) the unique

solution of (3) in Theorem 1 and vk,j, j = 0,1,..., n, the unique solution of (5) in Theorem

2. If there exists a constant N’ independent of k such that∥∥∥∥∥∥∥Ak,ju(tj) − 1
k

tj∫
tj−1

A(s)u(tj)ds

∥∥∥∥∥∥∥
2

V∗

+

∥∥∥∥∥∥∥fk,j −
1
k

tj∫
tj−1

f (s)ds

∥∥∥∥∥∥∥
2

V∗

≤ N′k2δ ,
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for j = 1, 2, ..., n, then

max
0≤j≤n

∥∥vk,j − u(tj)
∥∥2
H ≤ Nk2δ and

n∑
j=0

∥∥vk,j − u(tj)
∥∥2
V k ≤ Nk2δ ,

with N be a constant independent of k.

4 Explicit discretisation
We now approach the time-discretisation with the use of an explicit finite-difference

scheme. As in the previous section, we begin by setting a suitable discrete framework

and then investigate the stability and convergence properties of the scheme.

Observe that, when using the explicit scheme, a previous “discretisation in space” has

to be assumed. Therefore, we will consider the following version of problem (3) in the

spaces Vh, Hh, and V∗
h , “space-discrete versions” of V, H, and V*, respectively,

du
dt

= Ah(t)u + fh(t) in [0,T], u(0) = gh, (18)

with Ah(t), fh(t), and gh “space-discrete versions” of A(t), f(t), and g, and h Î (0,1] a

constant. We will use the notation (·,·)h for the inner product in Hh and 〈·,·〉h for the

duality between V∗
h and Vh.

Let the time-grid Tn as defined in (4). For all z Î Vh, consider the forward difference

quotient in time

�+z(tj) = k−1(z(tj+1) − z(tj)), j = 0, 1, ...,n − 1.

Let Ahk, fhk be some time-discrete versions of Ah and fh, respectively, and denote, for

all z Î Vh,

Ahk,jz = Ahk(tj)z, fhk,j = fhk(tj),

with j = 0,1,..., n - 1.

For each n ≥ 1 fixed, we consider the time-discrete version of (18),

�+vi = Ahk,ivi + fhk,i for i = 0, 1, ..., n − 1, v0 = gh, (19)

with vj = v(tj), j = 0,1,..., n, in Vh.

Problem (19) can be solved uniquely by recursion

vj = gh +
j−1∑
i=0

Ahk,ivik +
j−1∑
i=0

fhk,ik for j = 1, ...,n, v0 = gh.

We make some assumptions.

Assumption 4. Suppose that

1.
〈
Ahk,jv, v

〉
h + λ ‖v‖2Vh

≤ K ‖v‖2Hh
, ∀v Î Vh, j = 0,1,..., n - 1,

2.
∥∥Ahk,jv

∥∥
V∗
h

≤ M‖v‖Vh , ∀v Î Vh, j = 0,1,..., n - 1,

3.
∑n−1

j=0

∥∥fhk,j∥∥2V∗
h
k ≤ N and

∥∥gh∥∥Hh
≤ N ,
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where l, K, M, and N are the constants in Assumption 1.

Remark 5. We refer to Remark 1 and note that, under Assumption 1, gh Î Hh and∥∥gh∥∥Hh
≤ N .

The following version of the discrete Gronwall’s inequality is an immediate conse-

quence of Lemma 3.

Lemma 4. Let an0, a
n
1, ..., a

n
n be a finite sequence of numbers for every integer n ≥ 1 such

that

0 ≤ anj ≤ an0 + K
j−1∑
i=0

ani k, (20)

holds for every j = 0, 1, ..., n, with k := T/n and K a positive number such that Kk =:

q < 1, with q a fixed constant. Then

anj ≤ an0e
KqT ,

for all integers n ≥ 1 and j = 0, 1,..., n, where Kq := -K ln(1 - q)/q.

Proof. From (20), owing to Lemma 3 we have

(1 + Kk)anj ≤ (1 + Kk)an0 + K
j∑

i=1

ani k ≤ (1 + Kk)an0e
KqT ,

for j = 1, 2,..., n. The result follows.

In order to obtain stability for the scheme (19) we make an additional assumption,

involving an inverse inequality between Hh and V∗
h . We note that, for the case of the

implicit scheme, there was no such need: the implicit scheme’s stability was met

unconditionally.

Assumption 5. Suppose that there exists a constant Ch, dependent of h, such that

‖z‖Hh
≤ Ch‖z‖V∗

h
, for all z ∈ Vh. (21)

Remark 6. The usual assumption involves instead an inverse inequality between Vh

and Hh:

‖z‖Vh
≤ Ch‖z‖Hh

, for all z ∈ Vh. (22)

It can be easily checked that (22) implies (21). In fact, for all z Î Vh,z ≠ 0,

‖z‖V∗
h
= sup

u∈Vh
u �=0

∣∣(z, u)h∣∣
‖u‖Vh

≥
∣∣(z, z)h∣∣
‖z‖Vh

=
‖z‖2Hh

‖z‖Vh

≥ ‖z‖2Hh

Ch‖z‖Hh

=
‖z‖Hh

Ch
,

with the last inequality above due to (22).

Remark 7. Assumption 5 is not void. For example, when the solvability of a multidi-

mensional linear PDE of parabolic type is considered in Sobolev spaces, and its discre-

tised version solvability in discrete counterparts of those spaces (see [3]), (21) is satisfied

with Ch such that C2
h − 1 ≥ Ch−2 , with C a constant independent of h.

Theorem 5. Let Assumptions 4 and 5 be satisfied and l, K, M, and Ch the constants

defined in the Assumptions. Denote by vhk,j, with j = 0,1, ...,n, the unique solution of pro-

blem (19). Assume that constant K is such that 2Kk < 1. If there exists a number p such
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that M2C2
hk ≤ p < λ then there exists a constant N, independent of k and h, such that

1. max
0≤j≤n

∥∥vhk,j∥∥2Hh
≤ N

⎛
⎝∥∥gh∥∥2Hh

+
n−1∑
j=0

∥∥fhk,j∥∥2V∗
h
k

⎞
⎠ ;

2.
n−1∑
j=0

∥∥vhk,j∥∥2Vh
k ≤ N

⎛
⎝∥∥gh∥∥2Hh

+
n−1∑
j=0

∥∥fhk,j∥∥2V∗
h
k

⎞
⎠ .

Remark 8. Remark 2 applies to the above theorem with the obvious adaptations.

Proof. (Theorem 5)

For i = 0,1,..., n - 1, we have∥∥vhk,i+1∥∥2Hh
− ∥∥vhk,i∥∥2Hh

= 2
〈
vhk,i+1 − vhk,i, vhk,i

〉
h +
∥∥vhk,i+1 − vhk,i

∥∥2
Hh

(23)

and, summing up both members of equation (23), for j = 1, 2,..., n, we get

∥∥vhk,j∥∥2Hh
=
∥∥vhk,0∥∥2Hh

+
j−1∑
i=0

2
〈
vhk,i+1 − vhk,i, vhk,i

〉
h +

j−1∑
i=0

∥∥vhk,i+1 − vhk,i
∥∥2
Hh

=
∥∥vhk,0∥∥2Hh

+
j−1∑
i=0

2
〈
Ahk,ivhk,i, vhk,i

〉
hk +

j−1∑
i=0

2
〈
fhk,i, vhk,i

〉
hk

+
j−1∑
i=0

∥∥Ahk,ivhk,i + fhk,i
∥∥2
Hh

k2.

(24)

Owing to (1) in Assumption 4 and using Cauchy’s inequality, from (24) we obtain

the estimate

∥∥vhk,j∥∥2Hh
≤ ∥∥vhk,0∥∥2Hh

+ 2K
j−1∑
i=0

∥∥vhk,i∥∥2Hh
k − λ

j−1∑
i=0

∥∥vhk,i∥∥2Vh
k

+
1
λ

j−1∑
i=0

∥∥fhk,i∥∥2V∗
h
k +

j−1∑
i=0

∥∥Ahk,ivhk,i + fhk,i
∥∥2
Hhk2

,

(25)

with l > 0.

For the last term in the above estimate (25), owing to (2) in Assumption 4 and to

Assumption 5, and using Cauchy’s inequality we obtain

j−1∑
i=0

∥∥Ahk,ivhk,i + fhk,i
∥∥2
Hh

k2

≤ C2
hk

j−1∑
i=0

∥∥Ahk,ivhk,i + fhk,i
∥∥2
V∗
h
k

≤ (1 + μ)C2
hk

j−1∑
i=0

∥∥Ahk,ivhk,i
∥∥2
V∗
h
k +
(
1 +

1
μ

)
C2
hk

j−1∑
i=0

∥∥fhk,i∥∥2V∗
h
k

≤ (1 + μ)M2C2
hk

j−1∑
i=0

∥∥vhk,i∥∥2Vh
k +
(
1 +

1
μ

)
C2
hk

j−1∑
i=0

∥∥fhk,i∥∥2V∗
h
k,

(26)
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with μ > 0.

Finally, putting estimates (25) and (26) together, we get

∥∥vhk,j∥∥2Hh
≤ ∥∥vhk,0∥∥2Hh

+ 2K
j−1∑
i=0

∥∥vhk,i∥∥2Hh
k

+
(
(1 + μ)M2C2

hk − λ
) j−1∑

i=0

∥∥vhk,i∥∥2Vh
k

+
(
1
λ
+
(
1 +

1
μ

)
C2
hk
) j−1∑

i=0

∥∥fhk,i∥∥2V∗
h
k.

(27)

Now, if there is a constant p such that

M2C2
hk ≤ p ≤ λ,

implying that, for μ sufficiently small,

(1 + μ)M2C2
hk − λ ≤ (1 + μ)p − λ < 0,

then from (27) we obtain the estimate

∥∥vhk,j∥∥2Hh
+
(
λ − (1 + μ)p

) j−1∑
i=0

∥∥vhk,i∥∥2Vh
k

≤ ∥∥vhk,0∥∥2Hh
+ 2K

j−1∑
i=0

∥∥vhk,i∥∥2Hh
k + L

n−1∑
i=0

∥∥fhk,i∥∥2V∗
h
k,

(28)

where L := (μM2 + l(1 + μ)p)/lμM2.

In particular,

∥∥vhk,j∥∥2Hh
≤ ∥∥vhk,0∥∥2Hh

+ 2K
j−1∑
i=0

∥∥vhk,i∥∥2Hh
k + L

n−1∑
i=0

∥∥fhk,i∥∥2V∗
h
k (29)

and, using Lemma 4,

∥∥vhk,j∥∥2Hh
≤
(∥∥vhk,0∥∥2Hh

+ L
n−1∑
i=0

∥∥fhk,i∥∥2V∗
h
k

)
e2KqT , (30)

where Kq is the constant defined in Lemma 4. (1) follows.

From (28), (29), and (30) we finally obtain

∥∥vhk,j∥∥2Hh
+
(
λ − (1 + μ)p

) j−1∑
i=0

∥∥vhk,i∥∥2Vh
k∞

≤
(∥∥vhk,0∥∥2Hh

+ L
n−1∑
i=0

∥∥fhk,i∥∥2V∗
h
k

)
e2KqT

and (2) follows.

Finally, we prove the convergence of the scheme and determine the convergence

rate. The accuracy obtained is of order δ, with δ given by Assumption 3.
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Theorem 6. Let Assumptions 1, 4, and 5 be satisfied and l, K, M, and Ch the con-

stants defined in the Assumptions. Denote by uh(t) the unique solution of problem (18)

in Theorem 1 and by vhk,j, with j = 0, 1,..., n, the unique solution of problem (19).

Assume that constant K is such that 2Kk < 1 and that Assumption 3 is satisfied. If

there exists a number p such that M2C2
hk ≤ p < λ then there exists a constant N, inde-

pendent of k and h, such that

1.

max
0≤j≤n

∥∥vhk,j − uh(tj)
∥∥2
Hh

≤ N

⎛
⎜⎜⎝k2δ +

n−1∑
j=0

1
k

∥∥∥∥∥∥∥Ahk,juh(tj)k −
tj+1∫
tj

Ah(s)uh(tj)ds

∥∥∥∥∥∥∥
2

V∗
h

+
n−1∑
j=0

1
k

∥∥∥∥∥∥∥fhk,jk −
tj+1∫
tj

fh(s)ds

∥∥∥∥∥∥∥
2

V∗
h

⎞
⎟⎟⎠ ;

2.

n−1∑
j=0

∥∥vhk,j − uh(tj)
∥∥2
Vh
k ≤ N

⎛
⎜⎜⎝k2δ +

n−1∑
j=0

1
k

∥∥∥∥∥∥∥Ahk,juh(tj)k −
tj+1∫
tj

Ah(s)uh(tj)ds

∥∥∥∥∥∥∥
2

V∗
h

+
n−1∑
j=0

1
k

∥∥∥∥∥∥∥fhk,jk −
tj+1∫
tj

fh(s)ds

∥∥∥∥∥∥∥
2

V∗
h

⎞
⎟⎟⎠ .

Proof. Define w(ti) := vhk,i - uh(ti), i = 0,1,..., n. For i = 0,1,..., n - 1

w(ti+1) − w(ti) = Ahk,iw(ti)k + fhk,ik − uh(ti+1) + uh(ti) + Ahk,iuh(ti)k

= Ahk,iw(ti)k + ϕ(ti),

where �(ti) := fhk,ik - uh(ti+1) + uh(ti) + Ahk,iuh(ti)k.

We have that∥∥w(ti+1)∥∥2Hh
− ∥∥w(ti)∥∥2Hh

= 2
〈
w(ti+1) − w(ti),w(ti)

〉
h +
∥∥w(ti+1) − w(ti)

∥∥2
Hh

≤ 2
〈
Ahk,iw(ti),w(ti)

〉
hk + 2

∣∣〈ϕ(ti),w(ti)〉h∣∣
+
∥∥Ahk,iw(ti)k + ϕ(ti)

∥∥2
Hh

.

(31)

We want to estimate each one of the three terms in (31). For the first term in (31),

owing to (1) in Assumption 4, we obtain

2
〈
Ahk,iw(ti),w(ti)

〉
hk ≤ −2λ

∥∥w(ti)∥∥2Vh
k + 2K

∥∥w(ti)∥∥2Hh
k. (32)

Noting that �(ti) can be written

ϕ(ti) =

ti+1∫
ti

Ah(s)(uh(ti) − uh(s))ds + ϕ1(ti) + ϕ2(ti),

where

ϕ1(ti) := Ahk,iuh(ti)k −
ti+1∫
ti

Ah(s)uh(ti)ds and ϕ2(ti) := fhk,ik −
ti+1∫
ti

fh(s)ds,
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for the second term in (31) we have

2
∣∣〈ϕ(ti),w(ti)〉h∣∣ ≤ 2

∣∣∣∣∣∣
〈 ti+1∫
ti

Ah(s)(uh(ti) − uh(s))ds,w(ti)

〉
h

∣∣∣∣∣∣
+ 2
∣∣〈ϕ1(ti),w(ti)

〉
h

∣∣ + 2
∣∣〈ϕ2(ti),w(ti)

〉
h

∣∣
(33)

and, following the same steps as in the proof of Theorem 4, we obtain the estimate

2
∣∣〈ϕ(ti),w(ti)〉h∣∣ ≤ λ

∥∥w(ti)∥∥2Vh
k +

3M2

λk

⎛
⎝ ti+1∫

ti

∥∥uh(ti) − uh(s)
∥∥
Vh
ds

⎞
⎠

2

+
3
λk

∥∥ϕ1(ti)
∥∥2
V∗
h
+

3
λk

∥∥ϕ2(ti)
∥∥2
V∗
h
.

(34)

Next, we estimate the last term in (31). Owing to (2) in Assumption 4 and to

Assumption 5, and using Cauchy’s inequality,∥∥Ahk,iw(ti)k + ϕ(ti)
∥∥2
Hh

≤ C2
h

∥∥Ahk,iw(ti)k + ϕ(ti)
∥∥2
V∗
h

≤ (1 + μ)C2
h

∥∥Ahk,iw(ti)
∥∥2
V∗
h
k2 +

(
1 +

1
μ

)
C2
h

∥∥ϕ(ti)∥∥2V∗
h

≤ (1 + μ)M2C2
hk
∥∥w(ti)∥∥2Vh

k +
(
1 +

1
μ

)
C2
h

∥∥ϕ(ti)∥∥2V∗
h
,

(35)

with μ > 0. As, owing to (2) in Assumption 1 and to Cauchy’s inequality,
∥∥ϕ(ti)∥∥2V∗

h

in (35) can be estimated by

∥∥ϕ(ti)∥∥2V∗
h
=

∥∥∥∥∥∥
ti+1∫
ti

Ah(s)(uh(ti) − uh(s))ds + ϕ1(ti) + ϕ2(ti)

∥∥∥∥∥∥
2

V∗
h

≤
(
1 + v +

1
v

)∥∥∥∥∥∥
ti+1∫
ti

Ah(s)(uh(ti) − uh(s))ds

∥∥∥∥∥∥
2

V∗
h

+
(
1 + v +

1
v

)∥∥ϕ1(ti)
∥∥2
V∗
h
+
(
1 + v +

1
v

)∥∥ϕ2(ti)
∥∥2
V∗
h

≤
(
1 + v +

1
v

)
M2

⎛
⎝ ti+1∫

ti

∥∥uh(ti) − uh(s)
∥∥
Vh
ds

⎞
⎠

2

+
(
1 + v +

1
v

)∥∥ϕ1(ti)
∥∥2
V∗
h
+
(
1 + v +

1
v

)∥∥ϕ2(ti)
∥∥2
V∗
h
,

(36)

with ν > 0, from (35) and (36), we obtain the following estimate for the last term in (31)

∥∥Ahk,iw(ti)k + ϕ(ti)
∥∥2
Hh

≤ (1 + μ)M2C2
hk
∥∥w(ti)∥∥2Vh

k

+
(
1 +

1
μ

)(
1 + v +

1
v

)
M2C2

h

⎛
⎝ ti+1∫

ti

∥∥uh(ti) − uh(s)
∥∥
Vh
ds

⎞
⎠

2

+
(
1 +

1
μ

)(
1 + v +

1
v

)
C2
h

∥∥ϕ1(ti)
∥∥2
V∗
h
+
(
1 +

1
μ

)(
1 + v +

1
v

)
C2
h

∥∥ϕ2(ti)
∥∥2
V∗
h
.

(37)
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Putting estimates (32), (34), and (37) together and summing up, owing to Assump-

tion 3, we have, for j = 0,1,..., n,

∥∥w(tj)∥∥2Hh
≤ 2K

j−1∑
i=0

∥∥w(ti)∥∥2Hh
k +
(
(1 + μ)M2C2

hk − λ
) j−1∑

i=0

∥∥w(ti)∥∥2Vh
k

+M2C2
((

1 +
1
μ

)(
1 + v +

1
v

)
C2
hk +

3
λ

) j−1∑
i=0

k2δ+1

+
((

1 +
1
μ

)(
1 + v +

1
v

)
C2
hk +

3
λ

) j−1∑
i=0

1
k

∥∥ϕ1(ti)
∥∥2
V∗
h
.

+
((

1 +
1
μ

)(
1 + v +

1
v

)
C2
hk +

3
λ

) j−1∑
i=0

1
k

∥∥ϕ2(ti)
∥∥2
V∗
h
.

(38)

As we assume that there is a constant p such that

M2C2
hk ≤ p < λ

we have that, for μ sufficiently small,

(1 + μ)M2C2
hk − λ ≤ (1 + μ)p − λ < 0.

Then, from (38),

∥∥w(tj)∥∥2Hh
+ (λ − (1 + μ)p)

j−1∑
i=0

∥∥w(tj)∥∥2Vh
k

≤ 2K
j−1∑
i=0

∥∥w(tj)∥∥2Hh
k +M2C2TLk2δ

+ L
n−1∑
i=0

1
k

∥∥∥∥∥∥Ahk,iuh(ti)k −
ti+1∫
ti

Ah(s)uh(ti)ds

∥∥∥∥∥∥
2

V∗
h

+ L
n−1∑
i=0

1
k

∥∥∥∥∥∥fhk,ik −
ti+1∫
ti

fh(s)ds

∥∥∥∥∥∥
2

V∗
h

,

where L := ((3M2 + lp+ νlp)μν + (1 + μ+ ν + ν2)lp)/μνlM2. Estimates (1) and (2)

are obtained following the same steps as in Theorem 5.

Next result follows immediately from Theorem 6.

Corollary 2. Assume that the hypotheses of Theorem 6 are satisfied. Denote by uh(t)

the unique solution of problem (18) in Theorem 1 and by vhk,j, with j = 0,1, ..., n, the

unique solution of problem (19). If there exists a constant N’, independent of k, such

that ∥∥∥∥∥∥∥Ahk,juh(tj) − 1
k

tj+1∫
tj

Ah(s)uh(tj)ds

∥∥∥∥∥∥∥
2

V∗
h

+

∥∥∥∥∥∥∥fhk,j −
1
k

tj+1∫
tj

fh(s)ds

∥∥∥∥∥∥∥
2

V∗
h

≤ N′k2δ ,
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for j = 0, 1, ..., n - 1, then

max
0≤j≤n

∥∥vhk,j − uh(tj)
∥∥2
Hh

≤ Nk2δ and
n−1∑
j=0

∥∥vhk,j − uh(tj)
∥∥2
Vh
k ≤ Nk2δ ,

with N a constant independent of k.

5 Examples for the implicit scheme
In this Section, we investigate two possible ways of specifying the discretised operator

Ak and function fk, under the framework of the implicit scheme. We begin by consider-

ing the particular case where Ak and fk in problem (5) are specified, respectively, by the

integral averages

Āk(tj+1)z :=
1
k

tj+1∫
tj

A(s)zds and f̄k(tj+1) :=
1
k

tj+1∫
tj

f (s)ds, (39)

for all z Î V, j = 0,1,..., n - 1.

For all z Î V, we denote

Āk,j+1z = Āk(tj+1)z, f̄k,j+1 = f̄k(tj+1), j = 0, 1, ...,n − 1.

We prove that, under Assumption 1, Āk and f̂k satisfy Assumption 2.

Proposition 1. Under Assumption 1, operator Āk and function f̂ksatisfy

1.
〈
Āk,j+1v, v

〉
+ λ ‖v‖2V ≤ K ‖v‖2H, ∀v Î V, j = 0,1,..., n - 1,

2.
∥∥Āk,j+1v

∥∥
V∗ ≤ M‖v‖V, ∀v Î V, j = 0,1,..., n - 1,

3.
∑n−1

j=0

∥∥∥f̄k,j+1∥∥∥2
V∗
k ≤ N

where l, K, M, and N are the constants in Assumption 1.

Proof. For all v Î V, owing to (1) in Assumption 1,

〈
Āk,j+1v, v

〉
=

〈
1
k

tj+1∫
tj

A(s)vds, v

〉
=
1
k

tj+1∫
tj

〈
A(s)v, v

〉
ds

≤ 1
k

tj+1∫
tj

(
K ‖v‖2H − λ ‖v‖2V

)
ds

= K ‖v‖2H − λ ‖v‖2V ,

with j = 0,1,..., n - 1, and (1) is proved.

For all v Î V, owing to (2) in Assumption 1,

∥∥Āk,j+1v
∥∥
V∗ =

∥∥∥∥∥∥∥
1
k

tj+1∫
tj

A(s)vds

∥∥∥∥∥∥∥
V∗

≤ 1
k

tj+1∫
tj

∥∥A(s)v∥∥V∗ds

≤ 1
k

tj+1∫
tj

M‖v‖Vds = M‖v‖V ,

Gonçalves et al. Advances in Difference Equations 2012, 2012:14
http://www.advancesindifferenceequations.com/content/2012/1/14

Page 18 of 29



with j = 0, 1, ..., n - 1, and (2) is proved.

For (3), we have

n−1∑
j=0

∥∥∥f̄k,j+1∥∥∥2
V∗

k =
n−1∑
j=0

∥∥∥∥∥∥∥
1
k

tj+1∫
tj

f (s)ds

∥∥∥∥∥∥∥
2

V∗

k ≤
n−1∑
j=0

1
k

tj+1∫
tj

∥∥f (s)∥∥2V∗ dsk

=

T∫
0

∥∥f (s)∥∥2V∗ ds ≤ N,

using Jensen’s inequality and owing to (3) in Assumption 1.

As an immediate consequence of Proposition 1, the existence and uniqueness and

the stability results, Theorems 2 and 3, respectively, hold for this particular scheme

under Assumption 1 instead of Assumption 2. For the scheme’s convergence, we state

a new result.

Theorem 7. Let Assumption 1 be satisfied and assume that constant K satisfies: 2Kk <

1. Denote by u(t) the unique solution of problem (3) in Theorem 1. Assume that Ak and

fk in problem (5) are specified, respectively, by Āk and f̂kin (39) and denote by vk,j, j = 0,

1, ..., n, the unique solution of problem (5) in Theorem 2. Let Assumption 3 be satisfied.

Then there exists a constant N independent of k such that

max
0≤j≤n

∥∥vk,j − u(tj)
∥∥2
H ≤ Nk2δ and

n∑
j=0

∥∥vk,j − u(tj)
∥∥2
V k ≤ Nk2δ .

Proof. The estimates in Theorem 4 are obtained as an immediate consequence of

Proposition 1. Additionally, due to the particular form of operator Āk and function f̂k,

we have

n∑
j=1

1
k

∥∥∥∥∥∥∥Āk,ju(tj)k −
tj∫

tj−1

A(s)u(tj)ds

∥∥∥∥∥∥∥
2

V∗

=
n∑
j=1

1
k

∥∥∥∥∥∥∥
1
k

tj∫
tj−1

A(s)u(tj)dsk −
tj∫

tj−1

A(s)u(tj)ds

∥∥∥∥∥∥∥
2

V∗

= 0

and

n∑
j=1

1
k

∥∥∥∥∥∥∥f̄k,jk −
tj∫

tj−1

f (s)ds

∥∥∥∥∥∥∥
2

V∗

=
n∑
j=1

1
k

∥∥∥∥∥∥∥
1
k

tj∫
tj−1

f (s)dsk −
tj∫

tj−1

f (s)ds

∥∥∥∥∥∥∥
2

V∗

= 0.

The result follows.

From Theorem 7, we see that the rate of convergence is optimal when A and f are

approximated by the integral averages Āk and f̂k, respectively.

Moreover, it can be easily checked that any operator Âk and function f̂k optimizing

the rate of convergence coincide with Āk and f̂k, in the sense that
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∥∥∥Âk,j+1z − Āk,j+1z
∥∥∥
V∗

= 0 and
∥∥∥f̂k,j+1 − f̄k,j+1

∥∥∥
V∗

= 0

for all z Î V, j = 0,1,..., n - 1. In fact,

k2
∥∥∥Âk,ju(tj) − Âk,ju(tj)

∥∥∥2
V∗

≤ 2

∥∥∥∥∥∥∥Âk,ju(tj)k −
tj∫

tj−1

A(s)u(tj)ds

∥∥∥∥∥∥∥
2

V∗

+ 2

∥∥∥∥∥∥∥Ak,ju(tj)k −
tj∫

tj−1

A(s)u(tj)ds

∥∥∥∥∥∥∥
2

V∗

= 0

and

k2
∥∥∥f̂k,j − f̄k,j

∥∥∥2
V∗

≤ 2

∥∥∥∥∥∥∥f̂k,jk −
tj∫

tj−1

f (s)ds

∥∥∥∥∥∥∥
2

V∗

+ 2

∥∥∥∥∥∥∥f̄k,jk −
tj∫

tj−1

f (s)ds

∥∥∥∥∥∥∥
2

V∗

for all j = 1, 2,..., n.

Next, we investigate a different type of specification for Ak and fk in problem (5).

Consider the pairs of discrete weight functions(
ρ j+1(tj),ρ j+1(tj+1)

)
,
(
rj+1(tj), rj+1(tj+1)

)
, j = 0, 1, ..., n − 1

such that

ρ j+1(tj),ρ j+1(tj+1), rj+1(tj), rj+1(tj+1) ≥ 0

and

ρ j+1(tj) + ρ j+1(tj+1) = rj+1(tj) + rj+1(tj+1) = 1,

for all j = 0,1,..., n - 1.

We define the discrete operator

Ãk(tj+1)z := ρ j+1(tj)A(tj)z + ρ j+1(tj+1)A(tj+1)z (40)

and the discrete function

f̃k(tj+1) := rj+1(tj)f (tj) + rj+1(tj+1)f (tj+1), (41)

for all z Î V, j = 0,1,..., n - 1. Denote

Ãk,j+1z = Ãk(tj+1)z, f̃k,j+1 = f̃k(tj+1)

and

ρ
j+1
j = ρ j+1(tj), ρ

j+1
j+1 = ρ j+1(tj+1), rj+1j = rj+1(tj), rj+1j+1 = rj+1(tj+1),

for all z Î V, j = 0,1,..., n - 1.

We prove that, in this particular case, under Assumption 1, Assumption 2 is

satisfied.
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Proposition 2. Under Assumption 1, Ãk and f̂ksatisfy

1.
〈
Āk,j+1v, v

〉
+ λ ‖v‖2V ≤ K ‖v‖2H, ∀v Î V, j = 0,1,..., n - 1,

2.
∥∥Āk,j+1v

∥∥
V∗ ≤ M‖v‖V, ∀v Î V, j = 0,1,..., n - 1,

3.
∑n−1

j=0

∥∥∥f̄k,j+1∥∥∥2
V∗
k ≤ N,

where l, K, M, and N are constants, with l, K, and M the constants in Assumption 1.

Proof. For all v Î V, owing to (1) in Assumption 1,〈
Ãk,j+1v, v

〉
=
〈
ρ
j+1
j A(tj)v + ρ

j+1
j+1A(tj+1)v, v

〉
= ρ

j+1
j

〈
A(tj)v, v

〉
+ ρ

j+1
j+1

〈
A(tj+1)v, v

〉
≤
(
ρ
j+1
j + ρ

j+1
j+1

) (
K ‖v‖2H − λ ‖v‖2V

)
= K ‖v‖2H − λ ‖v‖2V ,

with j = 0,1,..., n - 1, and (1) is proved.

For all v Î V, owing to (2) in Assumption 1, we have∥∥∥Ãk,j+1v
∥∥∥
V∗

=
∥∥∥ρ j+1

j A(tj)v + ρ
j+1
j+1A(tj+1)v

∥∥∥
V∗

≤ ρ
j+1
j

∥∥A(tj)v∥∥V∗ + ρ
j+1
j+1

∥∥A(tj+1)v∥∥V∗

≤ M
(
ρ
j+1
j + ρ

j+1
j+1

)
‖v‖V = M‖v‖V ,

with j = 0,1,..., n - 1, and (2) is proved.

Inequality (3) is satisfied trivially and the result is proved.

For this particular scheme, the existence and uniqueness and the stability results,

respectively, Theorems 2 and 3, hold under Assumption 1 instead of Assumption 2 as

an immediate consequence of Proposition 2.

In order to prove a result on the scheme’s convergence, we assume further smooth-

ness. Denote by B(V,V∗) the Banach space of all bounded linear operators from V into

V*. Also, denote by Lip([0,T];X) the space of Lipschitz-continuous X-valued functions

on [0,T], with X a Banach space. Let both spaces be endowed with the usual norms.

Assumption 6. Suppose that

1. A Î Lip([0,T]; B(V,V∗));
2. f Î Lip([0,T]; V*).

Remark 9. (1) and (2) in Assumption 6 could be replaced, respectively, by the weaker

conditions

A ∈ Cα
(
[0,T];B(V,V∗)

)
and f ∈ Cα

(
[0,T];V∗) ,

where 0 <δ ≤ a ≤ 1, with δ the constant defined in Assumption 3.

Theorem 8. Let Assumption 1 be satisfied and assume further that constant K satis-

fies: 2Kk < 1. Denote by u(t) the unique solution of problem (3) in Theorem 1. Assume

that Ak and fk in problem (5) are specified, respectively, by Ãk and f̃k in (40), (41) and

denote by vk,j, j = 0,1,..., n, the unique solution of problem (5) in Theorem 2. Let

Assumptions 3 and 6 are satisfied. Then there exists a constant N independent of k
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such that

max
0≤j≤n

∥∥vk,j − u(tj)
∥∥2
H ≤ Nk2δ and

n∑
j=0

∥∥vk,j − u(tj)
∥∥2
V k ≤ Nk2δ .

Proof. The estimates in Theorem 4 are obtained as an immediate consequence of

Proposition 2. Due to the particular form of operator Ãk and function f̃k , we have

n∑
j=1

1
k

∥∥∥∥∥∥∥Ãk,ju(tj)k −
tj∫

tj−1

A(s)u(tj)ds

∥∥∥∥∥∥∥
2

V∗

=
n∑
j=1

1
k

∥∥∥∥∥∥∥
(
ρ
j
j−1A(tj−1)u(tj) + ρ

j
jA(tj)u(tj)

)
k −

tj∫
tj−1

A(s)u(tj)ds

∥∥∥∥∥∥∥
2

V∗

=
n∑
j=1

1
k

∥∥∥∥∥∥∥
tj∫

tj−1

(
ρ
j
j−1A(tj−1) + ρ

j
jA(tj) −

(
ρ
j
j−1 + ρ

j
j

)
A(s)

)
u(tj)ds

∥∥∥∥∥∥∥
2

V∗

≤
n∑
j=1

tj∫
tj−1

∥∥∥(ρ j
j−1

(
A(tj−1) − A(s)

)
+ ρ

j
j(A(tj) − A(s))

)
u(tj)

∥∥∥2
V∗

ds,

(42)

with the inequality obtained by the use of Jensen’s inequality.

For the argument of the integral in (42),∥∥∥(ρ j
j−1(A(tj−1) − A(s)) + ρ

j
j (A(tj) − A(s))

)
u(tj)

∥∥∥2
V∗

≤ 2
(
ρ
j
j−1

)2 ∥∥(A(tj−1) − A(s))u(tj)
∥∥2
V∗ + 2

(
ρ
j
j

)2 ∥∥(A(tj) − A(s)
)
u(tj)

∥∥2
V∗

≤ 2
(
N
∣∣tj−1 − s

∣∣ · ∥∥u(tj)∥∥V)2 + 2
(
N
∣∣tj − s

∣∣ · ∥∥u(tj)∥∥V)2
≤ Nk2

∥∥u(tj)∥∥2V ≤ Nk2 ≤ Nk2δ ,

(43)

owing to (1) in Assumption 6.

Finally, from (42), (43),

n∑
j=1

1
k

∥∥∥∥∥∥∥Ãk,ju(tj)k −
tj∫

tj−1

A(s)u(tj)ds

∥∥∥∥∥∥∥
2

V∗

≤ N
n∑
j=1

tj∫
tj−1

k2δds ≤ Nk2δ .

Following the same steps, owing to (2) in Assumption 6, we also obtain

n∑
j=1

1
k

∥∥∥∥∥∥∥f̃k,jk −
tj∫

tj−1

f (s)ds

∥∥∥∥∥∥∥
2

V∗

≤ Nk2δ ,

and the result follows.

Remark 10. For j = 1,..., n, the two-point closed Newton-Cotes quadrature formulas

for the integrals
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tj∫
tj−1

A(s)u(tj)ds and

tj∫
tj−1

f (s)ds

are written, respectively,

tj∫
tj−1

A(s)u(tj)ds � Ãk,ju(tj)k and

tj∫
tj−1

f (s)ds � f̃k,jk,

with the weights

(
ρ j(tj−1),ρ j(tj)

)
=
(
rj(tj−1), rj(tj)

)
=
(
1
2
,
1
2

)
.

It can be easily shown that in the particular case where A(s)u(tj) and f(s), with tj-i ≤ s

≤ tj and j = 1, ..., n, are real-valued polynomials of degree 1 the approximation error is

null.

6 Examples for the explicit scheme
In this section, we investigate the same types of specification for the discretised opera-

tor Ahk and function fhk but now under the framework of the explicit scheme.

We begin by considering the particular case, where Ahk and fhk in problem (19) are

specified, respectively, by the integral averages

Āhk(tj)z :=
1
k

tj+1∫
tj

Ah(s)zds and f̄hk(tj) :=
1
k

tj+1∫
tj

fh(s)ds, (44)

for all z Î Vh, j = 0,1,..., n - 1. For all z Î Vh, denote

Āhk,jz = Āhk(tj)z, f̄hk,j = f̄hk(tj), j = 0, 1, ...,n − 1.

For this particular scheme, under Assumption 1, Assumption 4 is satisfied.

Proposition 3. Under Assumption 1, operator Āhk and function f̄hk satisfy

1.
〈
Āhk,jv, v

〉
h + λ ‖v‖2Vh

≤ K ‖v‖2Hh
, ∀v Î Vh, j = 0,1,..., n - 1,

2.
∥∥Āhk,jv

∥∥
V∗
h

≤ M‖v‖Vh, ∀v Î Vh, j = 0,1,..., n - 1,

3.
∑n−1

j=0

∥∥∥f̄hk,j∥∥∥2
V∗
h

k ≤ N ,

where l, K, M, and N are the constants in Assumption 1.

Proof. Operator Āhk,j and function f̄hk,j coincide, respectively, with Āk,j+1 and f̄k,j+1 in

(39), for j = 0,1,..., n - 1, replacing A and f by their versions Ah and fh in the integrals’

arguments. The result follows from Proposition 1.

Owing to Proposition 3, the stability result, Theorem 5, holds for this particular

scheme under Assumption 1 instead of Assumption 4.
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As for the implicit scheme, an optimal rate of convergence is obtained when Ah and

fh are discretised, respectively, by the integral averages Āhk and f̄hk . The proof is the

same as for Theorem 7.

Theorem 9. Let Assumptions 1 and 5 be satisfied, and l, K, M, and Ch the constants

there defined. Denote by uh(t) the unique solution of problem (18) in Theorem 1.

Assume that Ahk and fhk in problem (19) are specified, respectively, by Āhk and f̄hk in

(44) and denote by vhk,j, with j = 0,1,..., n, the unique solution of problem (19). Assume

that constant K is such that 2Kk < 1 and that Assumption 3 is satisfied. If there exists

a number p such that M2C2
hk ≤ p < λ then there exists a constant N, independent of k

and h, such that

max
0≤j≤n

∥∥vhk,j − uh(tj)
∥∥2
Hh

≤ Nk2δ and
n−1∑
j=0

∥∥vhk,j − uh(tj)
∥∥2
Vh
k ≤ Nk2δ .

Similarly to what we have done in Section 5, we study an alternative discretisation

for Ah and fh in problem (18). Consider the pairs of discrete weight functions(
ρ j(tj),ρ j(tj+1)

)
,
(
rj(tj), rj(tj+1)

)
, j = 0, 1, ..., n − 1

such that

ρ j(tj),ρ j(tj+1), rj(tj), rj(tj+1) ≥ 0

and

ρ j(tj) + ρ j(tj+1) = rj(tj) + rj(tj+1) = 1,

for all j = 0,1,..., n - 1.

We define the discrete operator

Ãhk(tj)z := ρ j(tj)Ah(tj)z + ρ j(tj+1)Ah(tj+1)z (45)

and the discrete function

f̃hk(tj) := rj(tj)fh(tj) + rj(tj+1)fh(tj+1), (46)

for all z Î V, j = 0,1,..., n - 1. We denote

Ãhk,jz = Ãhk(tj)z, f̃hk,j = f̃hk(tj)

and

ρ
j
j = ρ j(tj), ρ

j
j+1 = ρ j(tj+1), rjj = rj(tj), rjj+1 = rj(tj+1),

for all z Î V, j = 0,1,..., n - 1.

We prove that, under Assumption 1, Assumption 4 is satisfied.

Proposition 4. Under Assumption 1, Ãhk and f̃hk satisfy

1.
〈
Ãhk,jv, v

〉
h
+ λ ‖v‖2Vh

≤ K ‖v‖2Hh
, ∀v Î Vh, j = 0,1,..., n - 1,

2.
∥∥∥Ãhk,jv

∥∥∥
V∗
h

≤ M‖v‖Vh , ∀v Î Vh, j = 0,1,..., n - 1,
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3.
∑n−1

j=0

∥∥∥f̃hk,j∥∥∥2
V∗
h

k ≤ N ,

where l, K, M, and N are constants, with l, K, and M the constants in Assumption 1.

Proof. Operator Ãhk,j and function f̃hk,j coincide, respectively, with Ãk,j+1 and f̃k,j+1 in

(40), (41), for j = 0,1,..., n - 1, after replacing A and f by Ah and fh in their analytic

expressions. The result follows from Proposition 2.

Owing to Proposition 4, Theorem 5 on the scheme’s stability holds under Assump-

tion 1 instead of Assumption 4.

Finally, we state a result on the scheme’s convergence. The proof is the same as for

Theorem 8.

Theorem 10. Let Assumptions 1 and 5 be satisfied, and l, K, M, and Ch the con-

stants there defined. Denote by uh(t) the unique solution of problem (18) in Theorem 3.

Assume that Ahk and fhk in problem (19) are specified, respectively, by Ãhk and f̃hk in

(45), (46) and denote by vhk,j, j = 0, 1,...,n, the unique solution of problem (19). Assume

that constant K is such that 2Kk < 1 and that Assumptions 3 and 6 are satisfied. If

there exists a number p such that M2C2
hk ≤ p < λ then there exists a constant N, inde-

pendent of k and h, such that

max
0≤j≤n

∥∥vhk,j − uh(tj)
∥∥2
Hh

≤ Nk2δ and
n−1∑
j=0

∥∥vhk,j − uh(tj)
∥∥2
Vh
k ≤ Nk2δ .

Remark 11. Remark 10 still applies here with the obvious modifications.

7 Computational results
In this final Section we apply the above study to the discretisation of the Cauchy pro-

blem for a linear parabolic PDE. When the implicit scheme is used, a previous localiza-

tion procedure is needed. We avoid additional issues and discretise the PDE problem

by using only an explicit scheme.

Let us consider problem (2) under the assumption that the PDE does not degenerate,

and in the particular 1D case

∂u
∂t

= Lu + f in [0,T] × R, u(0, x) = g(x) in R, (47)

where L is the second-order partial differential operator

L(t, x) = a(t, x)
∂2

∂x2
+ b(t, x)

∂

∂x
+ c(t, x),

with real-valued coefficient functions, and f and g given real-valued functions.

To make the framework simpler, we specify the PDE coefficients as bounded func-

tions

a(t, x) =
10 + cos2(x)

1 + t
, b(t, x) =

sin(x)
1 + t

, and c(t, x) =
cos(x)
1 + t

,
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as well as the free data f and g

f (t, x) =
1

(1 + t)
√
1 + x2

, and g(x) =
1√

4 + x2
.

Then, problem (47) reads

∂u
∂t

= Lu +
1

(1 + t)
√
1 + x2

in [0,T] × R, u(0, x) =
1√

4 + x2
in R, (48)

where

L(t, x) =
10 + cos2(x)

1 + t
∂2

∂x2
+
sin(x)
1 + t

∂

∂x
+
cos(x)
1 + t

.

We now semi-discretise problem (48) in the spatial variable. Consider the h-grid Zh

on ℝ, with h Î (0,1],

Zh = {x ∈ R : x = nh, n = 0,±1,±2, ...} ,

For every x Î Zh, with w a real valued function in [0,T] × Zh, denote

∂+w = ∂+w(t, x) = h−1 (w(t, x + h) − w(t, x)
)

and

∂−w = ∂−w(t, x) = h−1 (w(t, x) − w(t, x − h)
)
,

the forward and backward difference quotients in space, respectively. For t Î [0,T]

and x Î Zh, define the operator

Lh(t, x) = a(t, x)∂−∂+ + b(t, x)∂+ + c(t, x)

and the data functions

fh(t, x) := f (t, x) =
1

(1 + t)
√
1 + x2

and gh(x) := g(x) =
1√

4 + x2
,

discrete versions of L, f, and g, respectively.

We then have the following space-discretised version of problem (48)

∂u
∂t

= Lhu +
1

(1 + t)
√
1 + x2

in [0,T] × Zh, u(0, x) =
1√

4 + x2
in Zh, (49)

where

Lh(t, x) =
10 + cos2(x)

1 + t
∂−∂+ +

sin(x)
1 + t

∂+ +
cos(x)
1 + t

.

By considering problem (48) in the appropriate classes of Sobolev spaces and pro-

blem (49) in their discrete versions, it can be shown that both problems (48) and (49)

can be cast into problem (3). Therefore, problems (48) and (49) have unique general-

ized solutions. Moreover, the solution of the space-discretised problem (49) converges

to the solution of the exact problem (48). The theoretical justification of the above is

beyond the scope of the present study. For this, we refer to [2-4], where the spatial
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approximation of a more general PDE problem is investigated by using standard varia-

tional techniques.

Finally, we fully discretise problem (48) by discretising problem (49) in the time vari-

able t. Consider the n-grid Tn on [0,T] in (4). We use the explicit scheme (19) and

obtain⎧⎨
⎩

�+v(ti, x) = Lhk(ti, x)v(ti, x) + fhk(ti, x), i = 0, 1..., n − 1, x ∈ Zh;

v(0, x) =
1√

4 + x2
, x ∈ Zh.

(50)

Operator Lhk and function fhk will be specified considering the two alternative proce-

dures studied in Section 6:

• by using integral averages,

L̄hk(ti, x)

=
1
k

ti+1∫
ti

10 + cos2(x)
1 + s

ds∂−∂+ +
1
k

ti+1∫
ti

sin(x)
1 + s

ds∂+ +
1
k

ti+1∫
ti

cos(x)
1 + s

ds

and

f̄hk(ti, x) =
1
k

ti+1∫
ti

1

(1 + s)
√
1 + x2

ds,

for all i = 0,1,..., n - 1;

• and by using arithmetic averages, with weights(
ρ i(ti),ρ i(ti+1)

)
=
(
ri(ti), ri(ti+1)

)
= (1/2, 1/2) for i = 0, 1, ...,n − 1,

L̃hk(ti,x) =
1
2

(
10 + cos2(x)

1 + ti
∂−∂+ +

sin(x)
1 + ti

∂+ +
cos(x)
1 + ti

)

+
1
2

(
10 + cos2(x)

1 + ti+1
∂−∂+ +

sin(x)
1 + ti+1

∂+ +
cos(x)
1 + ti+1

)

and

f̃hk(ti,x) =
1
2

· 1

(1 + ti)
√
1 + x2

+
1
2

· 1

(1 + ti+1)
√
1 + x2

,

for all i = 0,1,..., n - 1.

Let us consider the stepsizes h = 1 and k = 0.01 for problem (50). It can be easily

checked that the hypotheses of Theorems 5, 9, and 10 hold. Therefore the schemes are

stable and the solution vhk of the fully discretised problem (50) converges to the solu-

tion uh of the semi-discretised problem (49). Both numerical schemes were implemen-

ted making use of the software Mathematica, version 8.0.4. We considered the

intervals [0,10] and [-20, 20] for the time and space variables, respectively.

In Figures 1 and 2, there is a representation of the solution vhk of problem (50): Fig-

ure 1 corresponds to the integral average type of discretisation and Figure 2 to the

arithmetic average type.
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We note that the solution surfaces are very similar. In fact, we have

max
tj,x

∣∣∣∣∣ v
1
hk(tj, x) − v2hk(tj, x)

v1hk(tj, x)

∣∣∣∣∣ � 5.13035.10−6,

where v1hk and v2hk denote the solutions of problem (50) obtained, respectively, with

the integral average and the arithmetic average types of discretisation.

This implies that, for this particular example, the arithmetic average discretisation

produces a solution very close to the solution obtained with the optimal integral aver-

age discretisation.

Figure 1 The solution vhk determined with the integral average explicit scheme, with T = 10, h = 1,
and k = 0.01.

Figure 2 The solution vhk determined with the arithmetic average explicit scheme, with T = 10, h =
1, and k = 0.01.
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