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Introduction

The problem of the stability of functional equations started in 1940 by S. M. Ulam [1]
when he proposed the question ‘Let Gy be a group and let Gy be a metric group with the
metric d. Given g > 0, does there exist a § > 0 such that if f : Gi — Gy satisfies the inequality
d(f (xy),f(x)f () < 8 for all x,y € G, then there exists a homomorphism H : Gi — G, with
d(f(x),H(x)) < & for all x € G, ? In the following year, the answer of this question for the
case of a mapping f between Banach spaces E; and E; satisfying ||f(x +y) —f(x) —f(y)|| < ¢
for all x,y € E; and for some ¢ > 0 was attested by D. H. Hyers [2]. It was shown that for
each x € Ej, the additive mapping A : E; — E; defined by A(x) = lim,,_, o 27"f(2"x) has a
property that ||A(x) — f(x)|| < ¢ for all x € E;. Furthermore, the mapping A is also unique.
Since then, this kind of stability was known as the Hyers-Ulam stability and became a fun-
damental stability theory concept of functional equations. In 1950, T. Aoki [3] published a
paper on the stability of the additive mappings in Banach spaces, while in 1978, Th. M. Ras-
sias [4] extended the problem to ||f(x +y) - f(x) = fW) || < e(||x[|? + ||¥]|”), %,y € E}, for some
¢ > 0 and some 0 < p < 1. Subsequently, in 1994, P. Gavruta [5] generalized the problem
to ||f(x+y)—f(x) —fW) < @(x,y) with certain conditions imposed on the function ¢. This
type of stability is referred to as the generalized stability.

In recent years, a number of researchers [6, 7] have investigated stability problem of var-
ious types of functional equations which are mostly based on the Cauchy additive func-
tional equation of the form f(x + y) = f(x) + f(y), the classical quadratic functional equation
fx+y) +fx—y) =2f(x) + 2f(y) [8], and the functional equations of higher degree [9, 10].
The stability problem of functional equations can be determined on various domains of
functions. There were related efforts on functions being defined on groupoid. A typical
work was carried out by A. Gildnyi [11] in 1999, who proved the Hyers-Ulam stability of
monomial functional equation on a power-associative, power-symmetric groupoid. Such
efforts investigate a viable further investigation on generalizing the stability problem.
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In this paper, we will prove the general solution of functional equations of the form

AF() = nif (3) 8§

which is the diagonalization of a symmetric n-additive function. We will refer to (1) in this
paper as a classical polynomial functional equation of order n. (1) was called a monomial
functional equation in [11]. Proof of generalized stability of functional equation based on
(1) is elucidated as follows. If  is a positive integer, X is a linear space, Y is a Banach space,
and a function f : X — Y satisfies

| AL @) = nf )| < plx, ),

where ¢ : X2 — [0, 00) is a function which satisfies certain conditions, then there exists a

unique function A” : X — Y satisfying (1) and

Jw-arw] <3 "2,
i=0

where 7 : X — [0, 00) is a function related to the function ¢.

Basic theorems and lemmas

In this section, we provide some basic theorems and lemmas concerning the difference
operators as well as multi-additive functions. For further details and proofs, please refer
to the book by S. Czerwik [12]. Throughout the section, we shall let X and Y be two linear
spaces and let f : X — Y be an arbitrary function.

Definition 1 Define the difference operator Aj with the span i € X by
Apfx)=flx+h)—f(x) forallxe X.
For each positive integer #, we define the iterates A} by the recurrence
AR = Au(afF).
We may also write the iterated operators Ay, --- Ay, shortly as Ay,..4,,.

Some properties of the difference operator are shown in the following lemmas.

Lemma 1 The difference operators commute; that is, for all hy, hy € X,
Ay Apof = Ay A f.

Lemma 2 Let n be a positive integer. Then, for all x,h € X,

Ajf(e) = 3 (1 <Z)f(x + k). 2)
k=0
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We then recall the definition of an n-additive function and its diagonalization along with
their useful properties.

Definition 2 Let #n be a positive integer. A function A, : X — Y will be called an n-
additive function if it is additive in each of its arguments; i.e., for each 1 <i < n and for all
Xl Xms Vi €X,

Au(Xr, o Xi+ Vi oo s kn) = Au(X1y oo Xiy oo X0) + An (X1, Vis oo X).

Lemma3 Let A, : X" — Y be an n-additive function, where n is a positive integer, and let
r be a rational number. Then, for all x,,...,x, € X,

A1y Py ey %) = FAL KL, o Xy %), (3)
In particular, when r = 0, A, (x1,...,0,...,%x,) =0.

Definition 3 The diagonalization of an n-additive function A, : X" — Y, where n is a
positive integer, is the function A” : X — Y defined by

A"(x) =A,(x,...,x) forallx e X. (4)

Lemma 4 Let A” : X — Y be the diagonalization of an n-additive function, where n is a
positive integer, and let r be a rational number. Then, for all x € X,

A’(rx) =r"A"(x).

Definition 4 A function f : X" — Y will be called symmetric if it is invariant under a
permutation of its arguments; that is,

S nx) =f (. x0)
forall %y, ...,x, € X and (x},...,,) denotes any permutation of (x1,...,%,).

Lemma5 LetA”: X — Y bethe diagonalization of a symmetric n-additive function, where
n is a positive integer. Then, for all x,y € X,

" (n
A'(x+y) = Z (k)An(x,...,x,y,...,y).

k=0 k ek

Later on, we can state the relation between an n-additive function and the difference
operator of its diagonalization as shown below.

Theorem 5 Let A, : X" — Y be a symmetric n-additive function, where n is a positive
integer, and let A" : X — Y be the diagonalization of A,.. If m > n is an integer, then, for all
XM, hy €X,

nA,(hy,....h,) ifm=n,

Ahl...hmAn(x) =
0 ifm>n.
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We thereafter define a polynomial function of order # and then provide the consequent
result often used.

Definition 6 Let n be a nonnegative integer. A function f : X — Y which satisfies
AP (x) = 0,
for all x, i1 € X, will be called a polynomial function of order n.

Theorem 7 Iff : X — Y is a polynomial function of order n, then, for all x, hy, ..., hy1 € X,

Apy, i f () = 0.

Generalized polynomial functional equations
In this section, we will show that the general solution of the proposed functional equation
(1) is the diagonalization of a symmetric n-additive function.

Theorem 8 Let X and Y be two linear spaces. Let n be a positive integer. A function f :
X — Y satisfies the functional equation (1) if and only if f(x) = A”(x) for all x € X where
A" : X — Y is the diagonalization of a symmetric n-additive function.

Proof Suppose a function f : X — Y satisfies (1). Define a function A, : X" — Y by

1
Ay, .,x,) = —'Axl...xnf(O) for all xy,...,x, € X.
n!

Since the difference operators commute, it immediately follows that A, is symmetric
under any permutation of its arguments. Next, we will show that A, is additive in the first
argument. From the definition of A, and by the definition and the commutative property
of the difference operators, we have

An(x+y)x21---7xn) _An(x7x21---;xn) _Arl(y!x2;~~)xn)

_ %(AXWA,Q...XJ(O) Ay f(0) = AyAgyf(0))

L A (B (0) = Af(0) — Af(0))

- n!
- niA (Fex +9) - f(x) —£) +£(0)

1
= By, B Bf 0).

Noting that AZ“f(x) = Abf(x + h) — ALf(x) = nlf (h) — nlf (h) = 0 for all x,k € X, and, by
virtue of Theorem 7, we have Ay, ..., Ay A,f(0) = 0, which in turn implies that

An(x"'y:xbnuxn) :An(xrxz;u~rxn) +An()/rx2r~--xxn)

for all x,y,%5,...,%, € X. Thus, A, is additive in the first argument. Taking into account
the symmetry of A,, we conclude that 4,, is n-additive.
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Setting x = 0 in (1) gives

AF(0) = nif (7).

If we let A” : X — Y be the diagonalization of A,, that is, A" (x) = %A;f(o) for all x € X,
then the above equation simply states that f(x) = A”(x) for all x € X.

Conversely, if f(x) = A"(x) where A” : X — Y is the diagonalization of a symmetric n-
additive function, then Theorem 5 tells us that

AJA"(x) = n!A"(y),
which yields the function equation (1). Thus, the proof is complete. d

Theorem 8 proves that the general solution of the functional equation (1) is the diago-
nalization of a symmetric n-additive function. Hence, if a function f : X — Y satisfies (1),
then, with the aid of Lemma 4, we have

Sf(rx) =7"f (x) (5)
for all rational numbers r and for all x € X.

Generalized stability

In this section, we aim to prove the stability of the functional equation (1). Let us start
with some lemmas that will be used in the proof of the main theorem. It should be noted
that we will adopt the usual extension of the binomial coefficients, that is (2) =0 for all
integers m >n > 0.

Lemma 6 Let m and n be nonnegative integers. Then
i( b n n 0 if m is odd,
o if\m-i (~1)"2( ) if miseven.

Proof Simply equate the coefficients of x in both sides of the identity
Q1-x)"1+x)"= (l—xz)n. O

Lemma 7 Let X and Y be two linear spaces and let f : X — Y be a function. Then, for all
xeX,

" (n

INNIOEDY ( ) A (kx).

k
k=0

Proof From Lemma 2, we have

3 (Z) A"f(kx) = Z (:) ; (=)™ (’l’) Flk + Ix).
I

k=0 k=0 =0
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Evaluate the sums over k and / by summing over k + [ and /. Thus,

> (Z) Alflkn) = 35 (-1 (m”_ l) (’;)f(mxy

k=0 m=0 [=0

By Lemma 6, the inner sum over / vanishes for all odd values of 7, and the remaining sums
for all even values of m give

n " n
3 () = S () o - a0 ;

n
k=0 p=0 p

Lemma8 Let ¢ : X? — [0,00) be a function. If a function f : X — Y satisfies the inequality

I AL (x) = nlf (y) | <¢(xy) forallx,yeX,

then

| ALF(©0) - 27 ATF(0)] < (”) plkx,x) + (2" ~1)$(0,x) forallx € X.

k=1 k

Proof From Lemma 7, we obtain, for every x € X,

ALF(0)-2"A%f(0)= ) (Z) A (k) = 2" ALF(0).
k=0

Using the identity Y ;_, ( Z) = 2", we will have

n

ALf(0) = 2" ALf(0) =) (:) (A%Lf (kx) — nlf (x)) = 2" (ALF(0) — nlf (x))

k=0

= Z (Z) (A%Lf (kx) — nlf (x) — (2" = 1) (ALf(0) - nlf (%)).
k=1

From the assumption in the lemma, || A%f (kx) — nlf (x)|| < ¢(kx,x). Therefore,

n

| A5 fO) -2" A% O] <> (Z) pkx, x) + (2" = 1)¢(0, ). -

k=1

We will now move on to the proof of the generalized stability of the functional equa-
tion (1).

Theorem 9 Let X be a linear space and let Y be a Banach space. Let ¢ : X* — [0,00) be a
function and n be a positive integer. Define a function t : X — [0,00) by

T(x) =

<¢(0, 2x) + (2”4’1 - 1)¢(0,x) + Z (Z) ¢(kx,x)) forallx € X.

2"n!
k=1
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Moreover, assume that

= (2! 2", 2
Z t(z %) converges and  lim w =0 forallx,yeX. (6)
in M—> 00 mn
i=0
If a function f : X — Y satisfies the inequality
|| A;,’f(x) —nlf(y) H <¢(xy) forallxyeX, 7)

then there exists a unique function A" : X — Y satisfying the functional equation (1) and

If () = A"@)|| < Z r(z2i;x) forallx € X. (8)

i=0

In addition, A*(x) = lim,, 0o Y% for all x € X.
Proof Assume all conditions in the theorem. For every x € X, we have
n!(f(2x) = 2"f (x)) = (nf (2x) — A%f(0)) + (A% f(0) — 2" ALf(0)) + 2" (ALf(0) - nif (x)).
By the inequality (7),
|A5f(0) - nif (2x)| < ¢(0,2x) and | ALF(0) - nlf (x)|| < $(0,x).
By Lemma 8,
| ALF(0) -2 A"F(0)| < ; (Z) $lhkx, x) + (2" — 1) (0, ).

Therefore,

[f2x) - 27| = (| 42/ - 9] + | 45,50 -2 a7 O)
+2" H AZf(0) - n!f(x)H)

n

=< % (¢(0,2x) + Z (Z) ¢(kx’x) + (2’1 _ 1)¢(0’x) i 2n¢(0,x)>

k=1
= 2"t (x).

Dividing the above inequality by 2”, we arrive at

2x)
’f(x —f@)| <tlx) forallxeX. ©)
We can now follow the standard steps to prove the stability. Let 7 > 1 be an integer. For
everyx € X,
f(zmx) m—. f(21+1x) le) m— x) l
‘ 2mn Z +1)n in Z —f (2 )
i=0

Page 7 of 11
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Using inequality (9), we get

m—

Z zlx) (10)

i=0

Hf (2"x)
2mn

From the conditions (6) we finally have ||f zm,, —fl) <3 . Next, we will show

that the sequence {f 2,,,,, > o is a Cauchy sequence. For any integers k, [ > 0, using inequal-

ity (9), we have

i=0 zm

1
= S

k kn

2k+l 2k 2l . 9k o itk
”f( ety fOL2D) oy “ S Ppcanay

Qln
i=0

From the conditions (6), the rightmost term in the above inequality vanishes when k — oo,

which implies that the sequence {f S }

o is a Cauchy sequence in the Banach space Y.
Hence, we can define a function A” : X — Y by

f()

A'(x) = forallx € X.

From the inequality (10), if we let m — oo, then we obtain the inequality (8).

Next, we will show that the function A” satisfies the functional equation (1). Replacing
x and y, respectively, by 2”x and 2™y in the inequality (7) and dividing the result by 2",
we obtain

Recalling the definition of A” and noting that

¢(2"x,2™y)

s ay

2mn

" m (2™y)
Azm;‘f(z ) nrfzmny HS

n

lim 1 Agmyf(Z x) = mli_)moo Zylnn Z(—l)”’k (Z)f(2m(x +ky))

m—o0 QMn o

= Z(—l)”’k (Z) A"(x + ky) = A;A”(x).

k=0

Now taking the limit of (11) as m — oo and using the conditions (6), we will see that A”
indeed satisfies the functional equation (1).

We still need to prove the uniqueness of A”. Assume that there exists another function
A" : X — Y which satisfies the functional equation (1) as well as the inequality (8). We
have already shown in Theorem 8 that a solution of the functional equation (1) satisfies
(5), that is, for every rational number r and for every x € X,

A'rx) =r"A"(x) and A"(rx) = r"A"(x).

Hence, for every positive integer m,

476 - 2@ = o 47 (2"%) - A7 (27|

2mn

= 2mn(llA”(T’“ %) =f(2"x) | + £ (27x) - A7(2"x) )
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IA

2 o T(2- 2"x)
Qmn Z 2in

i=0
o0

‘E(2me)
= 22 2 (i+m)n :

i=0

Taking the limit as m — 00, and using the conditions (6), we will have A" (x) = A"(x) which
asserts the uniqueness of A”. This completes the proof. 0

We will also give a stability theorem with the conditions slightly different from those in
Theorem 9.

Theorem 10 Let X be a linear space and let Y be a Banach space. Let ¢ : X> — [0,00) be
a function and n be a positive integer. Define a function T : X — [0, 00) by

T(x) = 2nln! (qb(O,zx) + (2”*1 -1)p(0,%) + Z (:) q’)(kx,x)) forallx € X.

k=1

Moreover, assume that

o]

Z 2"t (27'%) convergesand  lim 2"™¢(27"x,27"y) =0 forallx,yeX. (12)

1 m— 00
If a function f : X — Y satisfies the inequality
” A;,’f(x) —nlf(y) ” <¢x,y) forallxyeX, (13)

then there exists a unique function A" : X — Y satisfying the functional equation (1) and

Hf(x) —-A"(x) || < Z 2iny (2_ix) forallx € X. (14)

i=1
In addition, A" (x) = limy,—, oo 2""f(27"x) for all x € X.

Proof We can follow the beginning of the proof of Theorem 9. But the inequality (9) will
be replaced by

24(3) -

which will ends up at a bound similar to (10), that is,

< 2”1'(;) forallx € X,

||2’””f(2_”’x) —f(x) || < Z 2y (2_ix).
i=1

The rest of the proof can be carried out in the same fashion as that of Theorem 9. d

The following corollary states the Hyers-Ulam stability of the functional equation (1).
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Corollary1 Let X be a linear space and let Y be a Banach space. Let n be a positive integer
and let € > 0 be a constant. If a function f : X — Y satisfies the inequality

I AT (x) = nif (y) | <e forallx,yeX, (15)
then there exists a unique function A" : X — Y satisfying the functional equation (1) and

If(x) - A" ()| < (é%nl_)nl‘)e forallx € X. (16)

Proof The function ¢(x,y) = ¢ satisfies the conditions in Theorem 9 and we will get
3.27-1
2l

equation (1) with the bound

ad Z’x) 3.2
“f( Z <2n_1) )8’ O

i=0

T(x) = €. Hence, there exists a unique function A” : X — Y satisfying the functional

Finally, we will give a result related to the problem extended by T. Aoki and Th. M. Ras-
sias in the following corollary.

Corollary 2 Let X be a linear space and let Y be a Banach space. Let n be a positive integer,
let & > 0 be a constant and let p > 0 be a constant with p # n. If a functionf : X — Y satisfies
the inequality

|ALf @) = nf )| < e(ll=ll? + Iy17)  forall x,y € X, (17)

then there exists a unique function A" : X — Y satisfying the functional equation (1) and

If @) - A"@)| < (217 = 2(2_ f;)g,kl(k)kp}uxu” forallx e X. (18)

Proof The function ¢(x,y) = e(||x||? + ||y||?) satisfies the conditions (6) in Theorem 9 when
0 < p < n and satisfies the conditions (12) in Theorem 10 when p > n. In either case, we will
have

22 4+3.2" 24+ 37 (Mk?
r(x)=( Ziali) )snxnp.

2"n!

Once we evaluate the bound according to Theorem 9 and Theorem 10, we will get the
result as desired in the corollary. O
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