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1 Introduction
The theory on time scales has been developed as a generalization of both continuous and
discrete time theory and applied to many different fields of mathematics [, , , , , ].
It is widely known that the various types of stability of nonlinear differential equations

or difference equations can be characterized by using Lyapunov’s second method, the
method of variation of parameters, and inequalities, etc. [, , , , , ].
Pinto [] introduced the notion of h-stability for differential equations with the inten-

tion of obtaining results about stability for weakly stable differential systems under some
perturbations. Also, Medina and Pinto [] applied the h-stability to obtain a uniform
treatment for the various stability notions in difference systems and extended the study of
exponential stability to a variety of reasonable systems called h-systems. Pinto and Med-
ina obtained the important properties about h-stability for the various differential systems
and difference systems [–, , –].
Choi et al. [] investigated h-stability for the nonlinear differential systems by means of

the notions of Lyapunov functions and t∞-similarity introduced by Conti []. Trench []
introduced summable similarity as a discrete analog of Conti’s definition of t∞-similarity
and investigated the various stabilities of linear difference systems by using summable
similarity. Choi and Koo [] studied the variational stability for nonlinear difference sys-
tems by means of n∞-similarity. Also, Choi et al. studied the asymptotic property and the
h-stability of difference systems via discrete similarities and comparison principle [–].
For detailed results about the various stabilities including the notions of h-stability and
strong stability of dynamic systems on time scales, see [–, , , ].
In this paper we introduce the notion of u∞-similarity which extends the continuous

t∞-similarity [] and the discrete n∞-summable similarity []. Then we give a Lyapunov
functional characterization of h-stability for nonlinear dynamic systems on time scales by
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assuming the condition of u∞-similarity between its variational systems. Furthermore, we
give some examples related to the notions of u∞-similarity and h-stability on time scales.

2 Main results
We refer the reader to Ref. [] for all the basic definitions and results on time scales nec-
essary for this work (e.g., delta differentiability, rd-continuity, exponential function and its
properties).
It is assumed throughout that a time scale T will be unbounded above. If T has a left-

scatteredmaximumm, thenTκ = T–{m}. Otherwise,Tκ = T. LetRn be the n-dimensional
real Euclidean space. Crd(T×R

n,Rn) denotes the set of all rd-continuous functions from
T×R

n to R
n and R+ = [,∞).

We consider the dynamic system

x� = f (t,x), x(t) = x, t ∈ T, (.)

where f ∈ Crd(T×R
n,Rn) with f (t, ) = , and x� is the delta derivative of x : T→R

n with
respect to t ∈ T. We assume that fx = ∂f

∂x exists and is rd-continuous on T×R
n. Let x(t) =

x(t, t,x) be the unique solution of (.) satisfying the initial condition x(t, t,x) = x.
For the existence and uniqueness of solutions of nonlinear dynamic system (.), see [].
Also, we consider its associated variational systems

v� = fx(t, )v (.)

and

z� = fx
(
t,x(t, t,x)

)
z, (.)

where I +μ(t)fx(t,x(t)) is invertible for all t ∈ T and I denotes the n× n identity matrix.
To establish our main results we will use the following lemmas.

Lemma . [, Theorem ..] Assume that x(t, t,x) and x(t, t, y) are the solutions
of system (.) through (t,x) and (t, y) respectively, which exist for each t ∈ T and are
such that x and y belong to a convex subset D of Rn. Then

x(t, t, y) – x(t, t,x) =
∫ 


�

(
t, t,x + τ (y – x)

)
dτ · (y – x), t ∈ T,

where � is a fundamental matrix of (.) and T = T∩ [t,∞).

This lemma can be proved in the same manner as that of Theorem .. in [], so we
omit the detail.

Lemma . [, Lemma ..] Let f ∈ Crd(Tκ × D,Rn), where D is an open convex set
in R

n. Suppose that fx exists and is rd-continuous. Then

f (t,x) – f (t,x) =
∫ 


fx
(
t, sx + ( – s)x

)
ds(x – x), t ∈ T.
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In order to prove the variation of parameters formula on time scales, we need the fol-
lowing result on differentiability of solutions with respect to initial values.

Lemma . Assume that f : T × R
n → R

n possesses partial derivatives on T × R
n and

fx(t,x(t, t,x)) is rd-continuous on T. Let x(t) = x(t, t,x) be the solution of (.), which
exists for t ≥ t and let

H(t, t,x) =
∂f (t,x(t, t,x))

∂x
. (.)

Then

�(t, t,x) =
∂x(t, t,x)

∂x
(.)

exists and is the solution of

��(t, t,x) =H(t, t,x)�(t, t,x), t ∈ T, (.)

�(t, t,x) = I. (.)

The proof of Lemma . follows simply by differentiating the solution identity

x�(t, t,x) = f
(
t,x(t, t,x)

)
, t ≥ t,

with respect to x. It is a special case of [, Satz ..].

Remark . [, Theorem ..] H(t, t,x) in Lemma . is given by

H(t, t,x) = lim
ξ→

∫ 


fx
(
t, sx(t, t,x) + ( – s)x(t, t,x + ξ )

)
ds.

It follows from Lemma . that the fundamental matrix solution �(t, t, ) of (.) is
given by

�(t, t, ) =
∂x(t, t, )

∂x

and the fundamental matrix solution �(t, t,x) of (.) is given by

�(t, t,x) =
∂x(t, t,x)

∂x

or equivalently

x(t, t,x) =
[∫ 


�(t, t, sx)ds

]
x. (.)

LetMn(R) be the set of all n×nmatrices overR. The class of all rd-continuous functions
A : T →Mn(R) is denoted by

Crd
(
T,Mn(R)

)
.
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Consider the quasilinear dynamic system

y� = A(t)y + g(t, y), y(t) = y, t ∈ T, (.)

where A ∈ Crd(T,Mn(R)) and g : T×R
n →R

n is rd-continuous in the first argument with
g(t, ) = .
We need the following result which is a slight modification of the variation of constants

formula in [, Theorem ..].

Lemma . [] The solution y(t, t, y) of (.) satisfies the equation

y(t) = �(t, t)y +
∫ t

t
�

(
t,σ (s)

)
g
(
s, y(s)

)
�s, t ≥ t, (.)

where � is a transition matrix of the linear system

y� = A(t)y, y(t) = y, (.)

where A ∈ Crd(Tκ ,Mn(R)).

For the Lyapunov-like function V ∈ Crd(T×R
n,R+), we recall the following definition.

Definition . [, Definition ..] We define the generalized derivative D+V�
(.)(t,x(t))

of V (t,x) relative to (.) as follows: given ε > , there exists a neighborhood N(ε) of t ∈ T

such that


σ (t) – s

[
V

(
σ (t),x

(
σ (t)

))
–V

(
s,x

(
σ (t)

)
–

(
σ (t) – s

)
f
(
t,x(t)

))]
<D+V�

(.)
(
t,x(t)

)
+ ε, s ∈N(ε), s > t,

where x(t) is any solution of (.) and the upper right Dini derivative V�
* (t) of V* is given

by

V�
* (t) =

⎧⎨
⎩limη→+,η+t∈T V*(t+η)–V*(t)

η
, if t = σ (t),

V*(σ (t))–V*(t)
μ(t) , if t < σ (t),

(.)

where V*(t) = V (t,x(t)).

Then it is well known that

D+V�
(.)

(
t,x(t)

)
= V�

* (t)

if V (t,x) is Lipschitzian in x for each t ∈ T [, ].
In case t ∈ T is right dense, we have

D+V�
(.)

(
t,x(t)

)
= DV(.)

(
t,x(t)

)
= lim

η→+


η

[
V

(
t + η,x(t) + ηf

(
t,x(t)

))
–V

(
t,x(t)

)]

= lim
η→+,η+t∈T

V (t + η,x(t + η)) –V (t,x(t))
η

=D+V*(t).
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In case t ∈ T is right scattered and V (t,x(t)) is continuous at t, we have

D+V�
(.)

(
t,x(t)

)
=


μ(t)

[
V

(
σ (t),x

(
σ (t)

))
–V

(
t,x(t)

)]
.

In fact, if x(t) is a solution of (.), we have

V�
(
t,x(t)

)
= V�t

(
t,x(t)

)
+

[∫ 


DV

(
σ (t),x(t) + ημ(t)x�(t)

)
dη

]
x�(t)

= V�t
(
t,x

(
σ (t)

))
+

[∫ 


DV

(
t,x(t) + ημ(t)x�(t)

)
dη

]
x�(t),

by the chain rule of a differentiable function V (t,x(t)) [, Theorem ].
We note that the total difference of the function V along the solutions x of (.) is given

by

�V(.)(n,x) = V
(
n + ,x(n + ,n,x)

)
–V

(
n,x(n,n,x)

)
.

Choi et al. [] investigated h-stability for nonlinear differential systems using the notions
of t∞-similarity and Lyapunov functions. Also, Choi et al. [] introduced the notion of
n∞-summable similarity which is the corresponding t∞-similarity for the discrete case
and then characterized h-stability in variation and asymptotic equilibrium in variation for
nonlinear difference system via n∞-summable similarity and comparison principle.
Now, we define u∞-similarity on time scales in order to unify (continuous ) t∞-similarity

and (discrete) n∞-similarity for matrix-valued functions.
Let Mn(R) be the set of all n× n invertible matrices over R, and C

rd(T
κ ,Mn(R)) be the

set of all rd-continuous differentiable functions S from T
κ to Mn(R) such that S and S–

are bounded on T.

Definition . A function A : Tκ → Mn(R) is called regressive if for each t ∈ T
κ the n× n

matrix I +μ(t)A(t) is invertible.

The class of all rd-continuous and regressive functions from T
κ toMn(R) is denoted by

CrdR
(
T

κ ,Mn(R)
)
.

Definition . [] Let A,B ∈ CrdR(Tκ ,Mn(R)) and t ∈ T. A function A is u∞-similar
to a function B if there exists an absolutely integrable function F ∈ Crd(T,Mn(R)), i.e.,∫ ∞
t

|F(t)|�t < ∞, such that

S�(t) + Sσ (t)B(t) –A(t)S(t) = F(t), t ∈ T
κ , (.)

for some S ∈ C
rd(T

κ ,Mn(R)).

Remark . If T = R, then u∞-similarity becomes t∞-similarity and if T = Z, then u∞-
similarity becomes n∞-similarity. Also if A and B are u∞-similar with F =  defined on T,
then they are kinematically similar [].
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Let N(n) = {n,n + , . . . ,n + k, . . .}, where n is a nonnegative integer and M denote
the set of all s× s invertible matrix-valued functions defined on N(n).

Remark . [, Definition .] A matrix function A ∈ M is n∞-summably similar to a
matrix function B ∈ M if there exists an absolutely summable s× smatrix F(n) overN(n),
that is,

∞∑
l=n

∣∣F(l)∣∣ <∞

such that

�S(n) + S(n + )B(n) –A(n)S(n) = F(n) (.)

for some S ∈S.

For the example of n∞-summable similarity, see [].

Remark . We can easily show that the n∞-summable similarity is an equivalence rela-
tion in the similar manner of Trench in []. Also, if A and B are n∞-summably similar
with F(n) = , then we say that they are kinematically similar.

Pinto [] introduced the notion of h-stability which is an extension of the notions of
exponential stability and uniform stability of the solutions of differential equations. The
symbol | · |will be used to denote any convenient vector norm inR

n. We recall the notions
of h-stability for dynamic systems on time scales in [].

Definition . System (.) is called an h-system if there exist a positive rd-continuous
function h : T →R, a constant c≥  and δ >  such that

∣∣x(t, t,x)∣∣ ≤ c|x|h(t)h(t)–, t ≥ t

for |x| < δ (here h(t)– = 
h(t) ).

Moreover, system (.) is said to be

(hS) h-stable if h is a bounded function in the definition of h-system,
(GhS) globally h-stable if system (.) is hS for every x ∈ D, where D ⊂ R

n is a region
which includes the origin,

(hSV) h-stable in variation if system (.) is hS,
(GhSV) globally h-stable in variation if system (.) is GhS.

For the various definitions of stability, we refer to [] and we obtain the following pos-
sible implications for system (.) among the various types of stability:

h-stability ⇒ uniform exponential stability

⇒ uniform Lipschitz stability

⇒ uniform stability

as in [, ]. See [, , , ] for stability of nonlinear difference systems.
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Choi et al. Advances in Difference Equations 2012, 2012:129 Page 7 of 17
http://www.advancesindifferenceequations.com/content/2012/1/129

We consider two linear dynamic systems

x� = A(t)x (.)

and

y� = B(t)y, (.)

where A,B ∈ CrdR(Tκ ,Mn(R)).
We say that if A and B are u∞-similar, then systems (.) and (.) are u∞-similar.

Lemma. [, Lemma .] System (.) is an h-system if and only if there exist a positive
rd-continuous function h defined on T and a constant c≥  such that

∣∣�A(t, t)
∣∣ ≤ ch(t)h(t)–, t ∈ T,

where �A is a fundamental matrix solution of (.).

We obtain the following result from Lemma . in [].

Lemma . Assume that A and B are u∞-similar. Then

�B(t, t) = S–(t)
[
�A(t, t)S(t) +

∫ t

t
�A

(
t,σ (s)

)
F(s)�B(s, t)�s

]
, t, t ∈ T,

where �A and �B are the matrix exponential functions of (.) and (.) respectively.

Medina and Pinto [, Theorem ] showed that hSV implies hS. Also, they proved the
converse when the condition

∞∑
l=n

h(l)
h(l + )

∣∣fx(l,n,x) – fx(l, )
∣∣ < ∞, n ≥  (.)

for |x| ≤ δ holds [, Theorem ].
In order to establish our main results, we will introduce the following condition.
(H): fx(t, ) and fx(t,x(t, t,x)) are u∞-similar for t ≥ t and |x| ≤ δ for some constant

δ >  and
∫ ∞
t

h(t)
h(σ (t)) |F(t)|�t < ∞ with the positive rd-continuous function h(t) defined

on T.

Lemma . [, Theorem .] Assume that condition (H) is satisfied. Then variational
system (.) is also an h-system if and only if variational system (.) is an h-system.

We can obtain the same result about Lemma . by assuming that fx(t, ) and
fx(t,x(t, t,x)) are u∞-quasisimilar for t ≥ t instead of the condition (H) in Lemma .
[, Theorem .].
For nonlinear dynamic system (.), we can show that

GhSV ⇔ GhS, hS ⇔ hSV

by using the concept of u∞-similarity.

http://www.advancesindifferenceequations.com/content/2012/1/129
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We study the relation of h-stability between two systems (.) and (.) by assuming the
condition (H) is satisfied.

Theorem . [, Theorem ] Suppose that condition (H) is satisfied. If x =  of (.) is
h-stable, then v =  of (.) is h-stable.

We obtain the following result from (.).

Theorem . If z =  of (.) is h-stable, then x =  of (.) is h-stable.

We can obtain the following result by using Lemma . and Theorem ..

Theorem. Assume that condition (H) is satisfied. If x =  of (.) is h-stable, then z = 
of (.) is h-stable in variation.

Remark . For nonlinear dynamic system (.), we show that two concepts of h-stability
and h-stability in variation are equivalent under the condition that two variational systems
(.) and (.) are u∞-similar.

Choi et al. investigated Massera type converse theorems for the nonlinear difference
system x(n + ) = f (n,x(n)) via n∞-similarity in [, Theorem ] and [, Theorem .]. Fur-
thermore, they characterized h-stability in variation for the nonlinear difference system
by using the notion of n∞-summable similarity in [].
We need the following lemma to prove our main theorem.

Lemma . [, Korollar ..] If the delta differentiable function h : T →R is positive,
then h�(t)

h(t) is positively regressive, and ep(t, t) satisfies

ep(t, t) =
h(t)
h(t)

,

where p(t) = h�(t)
h(t) .

We can obtain the following result that characterizes h-stability for nonlinear dynamic
system (.) via the notions of Lyapunov functions and u∞-similarity. It is adapted from
Theorem .. in [] and Theorem . in [].

Theorem . Assume that condition (H) is satisfied. Suppose further that h�(t) exists
and is rd-continuous on T. Then system (.) is GhS if and only if there exists a function
V (t,x) defined on T×R

n such that the following properties hold:
(i) |x| ≤ V (t,x)| ≤ c|x| for (t,x) ∈ T×R

n and a constant c ≥ ;
(ii) |V (t,x) –V (t,x)| ≤ c|x – x| for t ∈ T and x,x ∈R

n;
(iii) V�(t,x)≤ h�(t)

h(t) V (t,x) for (t,x) ∈ T×R
n;

(iv) V (t,x) is continuous on T×R
n;

lim
(t̂,x̂)→(t,x),t̂≥t

∣∣V (t̂, x̂) –V (t,x)
∣∣ = .

http://www.advancesindifferenceequations.com/content/2012/1/129
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Proof Necessity: Suppose that system (.) is GhS. Then system (.) is GhSV by Theo-
rem ., i.e., there exist a constant c≥  and a positive rd-continuous bounded function h
defined on T such that for each x ∈R

n

∣∣�(t, t,x)
∣∣ ≤ ch(t)h(t)–, t ≥ t, (.)

where � is a fundamental matrix solution of (.).
Fix t ∈ T. Let At := {τ ∈R+ : t + τ ∈ T}. Then we note that At is nonempty from  ∈ At .
Define the function V : T×R

n →R+ by

V (t,x) = sup
τ∈At

∣∣x(t + τ , t,x)
∣∣h(t + τ )–h(t),

where x(t + τ , t,x) is a unique solution of system (.) for (t,x) ∈ T × R
n with the initial

value x(t, t,x) = x. From GhS of (.) we have

∣∣x(t, t,x)∣∣ ≤ c|x|h(t)h(t)–, t ∈ T, |x| < ∞.

Furthermore, we obtain

|x| = ∣∣x(t, t,x)∣∣ ≤ sup
τ∈At

∣∣x(t + τ , t,x)
∣∣h(t + τ )–h(t)

≤ c|x|h(t + τ )h(t)–h(t + τ )–h(t) = c|x|.

Thus V satisfies property (i).
Let (t,x), (t,x) ∈ T×R

n. Then we have

∣∣V (t,x) –V (t,x)
∣∣ = ∣∣∣sup

τ∈At

∣∣x(t + τ , t,x)
∣∣h(t + τ )–h(t)

– sup
τ∈At

∣∣x(t + τ , t,x)
∣∣h(t + τ )–h(t)

∣∣∣
≤ sup

τ∈At

∣∣(x(t + τ , t,x) – x(t + τ , t,x)
)∣∣h(t + τ )–h(t). (.)

It follows from Lemma . that for each x and x in a convex subset D of Rn

∣∣x(t, t,x) – x(t, t,x)
∣∣ ≤ |x – x| sup

η∈D

∣∣�(t, t,η)
∣∣. (.)

In view of (.), (.) and (.), we have

∣∣V (t,x) –V (t,x)
∣∣ ≤ |x – x| sup

τ∈At ,η∈D

∣∣�(t + τ , t,η)
∣∣h(t + τ )–h(t)

≤ |x – x|c|h(t + τ )h(t)–h(t + τ )–h(t)

≤ c|x – x|, t ∈ T,x,x ∈R
n.

This implies that V (t,x) is globally Lipschitzian in x for fixed t ∈ T.

http://www.advancesindifferenceequations.com/content/2012/1/129
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Next, we will prove property (iii). Let x(t, t,x) be a unique solution of system (.) for
each initial point (t,x) ∈ T×R

n. We will consider two cases, σ (t) = t and σ (t) > t, in the
proof.
Suppose that σ (t) = t and let δ ∈ At . By the uniqueness of solutions of (.) and the

definition of hS, we have

D+V
(
t,x(t)

)
= lim

δ↘


δ

[
V

(
t + δ,x(t + δ, t,x)

)
–V

(
t,x(t)

)]
= lim

δ↘


δ

[
sup

τ∈At+δ

∣∣x(t + δ + τ , t + δ,x(t + δ, t,x)
)∣∣h(t + δ + τ )–h(t + δ)

– sup
τ∈At

∣∣x(t + τ , t,x(t)
)∣∣h(t + τ )–h(t)

]

= lim
δ↘


δ

[
sup

τ∈{τ∈[δ,∞):t+τ∈T}

∣∣x(t + τ , t,x(t)
)∣∣h(t + τ )–h(t + δ)

– sup
τ∈At

∣∣x(t + τ , t,x(t)
)∣∣h(t + τ )–h(t)

]

≤ lim
δ↘


δ

[
sup

τ∈{τ∈R+:t+τ∈T}

∣∣x(t + τ , t,x(t)
)∣∣h(t + τ )–h(t)

(
h(t + δ)h(t)– – 

)]

≤ lim
δ↘


δ

[(
h(t + δ)h(t)– – 

)]
V

(
t,x(t)

)

≤ h′(t)
h(t)

V
(
t,x(t)

)
.

Suppose that σ (t) > t. Then it follows from the definition of V�(t) that

V�
* (t) =

V (σ (t)) –V (t)
μ(t)

.

Since the solution of (.) is unique, we have the following derivative:

V�
* (t) =

V (σ (t)) –V (t)
μ(t)

=


μ(t)

[
sup

τ∈Aσ (t)

∣∣x(σ (t) + τ ,σ (t),x
(
σ (t), t,x

))∣∣h(σ (t) + τ
)–h(σ (t))

– sup
τ∈At

∣∣x(t + τ , t,x(t)
)∣∣h(t + τ )–h(t)

]

=


μ(t)

[
sup

τ∈At+μ(t)

∣∣x(t +μ(t) + τ , t +μ(t),

x
(
t +μ(t), t,x

))∣∣h(t +μ(t) + τ
)–h(t +μ(t)

)
– sup

τ∈At

∣∣x(t + τ , t,x(t)
)∣∣h(t + τ )–h(t)

]

=


μ(t)

[
sup

τ∈{τ∈[μ(t),∞):t+τ∈T}

∣∣x(t + τ , t,x(t)
)∣∣h(t + τ )–h

(
t +μ(t)

)

– sup
τ∈At

∣∣x(t + τ , t,x(t)
)∣∣h(t + τ )–h(t)

]
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≤ 
μ(t)

[
h
(
t +μ(t)

)
h(t)– – 

]
V

(
t,x(t)

)

=
h�(t)
h(t)

V
(
t,x(t)

)
.

Thus property (iii) was satisfied for two cases.
The continuity of V (t,x) can be proved in a similar manner of Theorem .. in [] and

Theorem . in []. It remains to show that V is continuous in the sense of (iv): let t ∈ T,
x ∈R

n be fixed and choose ε >  arbitrary. Then δ >  and δ >  must be found such that

∣∣V (t̂, x̂) –V (t,x)
∣∣ < ε

holds for all

t̂ = t + ν, ν ∈ At ,  ≤ ν < δ (.)

and all x̂ ∈ Bδ (x), where Bδ (x) is an open ball centered on x of radius δ.
If t ∈ T is right scattered, then we can always choose a suitable δ such that t̂ = t is the

only point satisfying condition (.) (see [, Theorem ..]). Thus V (t,x) is continuous
in (t,x) ∈ T×R

n since V is globally Lipschitz continuous in x for fixed t ∈ T.
Suppose that t ∈ T is right dense and let t̂ = t + ν for ν ∈ At with ν ≥ . Then we have

∣∣V (t̂, x̂) –V (t,x)
∣∣ = ∣∣V (t + ν, x̂) –V (t,x)

∣∣
≤ ∣∣V (t + ν, x̂) –V (t + ν,x)

∣∣ (.)

+
∣∣V (t + ν,x) –V

(
t + ν,x(t + ν, t,x)

)∣∣ (.)

+
∣∣V (

t + ν,x(t + ν, t,x)
)
–V (t,x)

∣∣. (.)

Since V (t,x) is Lipschitzian in x and x(t + ν, t,x) is continuous in ν , the first two terms
(.) and (.) on the right-hand side of the preceding inequality are small when |x̂ – x|
and ν are small. That is, we have

∣∣V (t + ν, x̂) –V (t + ν,x)
∣∣ < ε



for all x̂ ∈ Bδ (x) when δ < ε
c and

∣∣V (t + ν,x) –V
(
t + ν,x(t + ν, t,x)

)∣∣
≤ c

∣∣x – x(t + ν, t,x)
∣∣

<
ε


, ν ∈ At ,  ≤ ν < δ̂,

since it follows from limν→,ν∈At x(t + ν, t,x) = x that there exists a δ̂ >  such that

∣∣x – x(t + ν, t,x)
∣∣ < ε

c

for all ν ∈ At with  ≤ ν < δ̂.
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Let us consider the third term in (.). We note that

x
(
t + ν + τ , t + ν,x(t + ν, t,x)

)
= x(t + ν + τ , t,x).

Thus we have

∣∣V (
t + ν,x(t + ν, t,x)

)
–V (t,x)

∣∣
=

∣∣∣ sup
τ∈At+ν

∣∣x(t + ν + τ , t + ν,x(t + ν, t,x)
)∣∣h(t + ν + τ )–h(t + ν)

– sup
τ∈At

∣∣x(t + τ , t,x(t)
)∣∣h(t + τ )–h(t)

∣∣∣
=

∣∣∣ sup
τ∈{τ∈[ν,∞):t+τ∈T}

∣∣x(t + τ , t,x(t)
)∣∣h(t + τ )–h(t + ν)

– sup
τ∈At

∣∣x(t + τ , t,x(t)
)∣∣h(t + τ )–h(t)

∣∣∣
=

∣∣∣∣α(ν)h(t + ν)
h(t)

– α()
∣∣∣∣,

where α(ν) = supτ∈{τ∈[ν,∞):t+τ∈T} |x(t + τ , t,x(t))|h(t + τ )–h(t) for ν ∈ At .
We have α(ν) ≤ α() for all ν ∈ At with ν ≥ . Furthermore, α(ν) is a nonincreasing

function in ν with

lim
ν→,ν∈At

α(ν) = α().

Hence, there exists a δ̂ >  such that

∣∣∣∣α(ν)h(t + ν)
h(t)

– α()
∣∣∣∣ < ε


, ν ∈ At ,  ≤ ν ≤ δ̂.

Now, choose δ = min{δ̂, δ̂}. For t̂ = t + ν with ν ∈ At where  ≤ ν < δ and x̂ ∈ Bδ (x),
combining all of the above estimates of the terms in (.)-(.) gives

∣∣V (t̂, x̂) –V (t,x)
∣∣ < ε


+

ε


+

ε


= ε,

which proves the continuity of V (t,x).
Sufficiency: Assume that V (t,x) satisfies the properties (i)-(iv). Let x(t, t,x) be any so-

lution of system (.). Then it follows from condition (iii) of V (t,x) that

V
(
t,x(t)

) ≤ V (t,x) +
∫ t

t

h�(s)
h(s)

V
(
s,x(s)

)
�s, t ≥ t.

From Gronwall’s inequality on time scale [] and Lemma . [], we obtain

V
(
t,x(t)

) ≤ V (t,x)ep(t)(t, t)

≤ V (t,x)h(t)h(t)–, t ≥ t, (.)
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where p(t) = h�(t)
h(t) . From (.) and property (i) of V (t,x), we have

∣∣x(t, t,x)∣∣ ≤ c|x|h(t)h(t)–,

for each t ≥ t and x ∈ R
n. Hence the zero solution x =  of (.) is GhS. This completes

the proof of the theorem. �

Remark . Assume that condition (H) is satisfied forT =R. Furthermore, suppose that
h′(t) exists and is continuous on R+. Then we can obtain Theorems . and . in [] as a
continuous version of Theorem ..

Also, we can obtain the following result as a discrete version of Theorem ..

Corollary . [, Theorem .] Assume that fx(n, ) is n∞-summably similar to
fx(n,x(n,n,x)) for n ≥ n ≥  and every x ∈ R

m with h(n)
h(n+) |F(n)| ∈ l(N(n)). Then sys-

tem (.) is GhS if and only if there exists a function V (n, z) defined on N(n) × R
m such

that the following properties hold:
(i) V (n, z) is continuous on N(n)×R

m;
(ii) |x – y| ≤ V (n,x – y)| ≤ c|x – y| for (n,x, y) ∈N(n)×R

m ×R
m;

(iii) |V (n, z) –V (n, z)| ≤ c|z – z| for n ∈N(n), z, z ∈R
m;

(iv) �V (n,x–y)
V (n,x–y) ≤ �h(n)

h(n) for (n,x, y) ∈N(n)×R
m ×R

m with x = y.

Remark . Choi et al. [, ] introduced the notion of n∞-similarity which is slightly
different from n∞-summable similarity and studied a general variational stability for a
nonlinear difference system via n∞-similarity and Lyapunov functions. We can obtain the
discrete analogues [, Theorem , Corollary ] and [, Theorem .] as a discrete version
of Theorem ..

Remark . Choi et al. [, Theorem .] studied h-stability for linear dynamic equa-
tions on time scales by using the unified time scale quadratic Lyapunov functions. Also,
Mukdasai andNiamsup [, Theorem.] derived a sufficient condition for h-stability for
a linear time-varying system with nonlinear perturbation on time scales by constructing
appropriate Lyapunov functions.

We can obtain the following Massera type converse theorem for the uniform exponen-
tial asymptotic stability of linear dynamic equations on time scales as a special case of
Theorem ..

Corollary . [, Theorem .] Assume that f (t,x) = A(t)x is linear, where A ∈
CrdR(T,Rn × R

n). If system (.) is hS with h(t) = e–λt on time scales T for a nonnegative
constant λ, then there exists a function V : T×R

n → R
n such that

(i) |x| ≤ V (t,x) ≤ K |x| for all t ∈ T,x ∈R
n.

(ii) |V (t,x) –V (t,x)| ≤ K |x – x| for any fixed t ∈ T and all x,x ∈R
n.

(iii) The upper right Dini derivative of V* exists and the estimates
V�
* (t) ≤ ξ–λ(t)V*(t) <  hold for all t ≥ t for a positive constants K and λ. Here the
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function ξλ : T→R is given by

ξλ(t) =

⎧⎨
⎩

exp(μ(t)λ)–
μ(t) , t < σ (t),

λ, t = σ (t).

(iv) V is continuous from the right in (t,x) ∈ T×R
n, that is,

lim
(t̂,x̂)→(t,x),t̂≥t

∣∣V (t̂, x̂) –V (t,x)
∣∣ = .

3 Examples
In this section we give some examples which illustrate some results from the previous
section.
To illustrate the notion of u∞-similarity, we will give an example for scalar functions

defined on time scales.

Example . Let a,b : T →R be scalar functions given by

a(t) = eα(t, t) – , b(t) =


eα(t, t) – ,

where α is a negative regressive constant and limt→∞ eα(t, t) =  for fixed t ∈ T. If we put
s(t) =  for each t ∈ T, then s(t) and s–(t) are bounded and nonzero functions. Moreover,
we have

s�(t) + s
(
σ (t)

)
b(t) – a(t)s(t) = –



eα(t, t) = f (t), t ∈ T

κ ,

where f (t) = – 
eα(t, t).

Thus we have∫ ∞

t

∣∣f (t)∣∣�t =
∫ ∞

t



eα(t, t)�t ≤ –


α

< ∞.

This implies that a and b are u∞-similar on T.

For the examples of nonscalar functions about t∞-similarity onT =R and n∞-summable
similarity on T = Z, see [, Example] and [, Example .] respectively.

Example . To illustrate Lemma ., we consider the linear dynamic system

x� = A(t)x =

(
–e–t
+e–t 
 

)
x, x(t) = x, t ≥ t ∈ T, (.)

where A(t) =
(

–e–t
+e–t 
 

)
. If μ(t) < et +  for t ∈ T, then (.) is h-stable.

Proof A matrix exponential function �A(t, t) of (.) is given by

�A(t, t) =

(
ep(t, t) 

 

)
,
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where p(t) = –e–t
+e–t and ep(t, t) = exp

∫ t
t

ξμ(τ )(p(τ ))�τ . Here the cylinder transformation
ξμ(z) is given by

ξμ(z) =

⎧⎨
⎩


μ
Log( +μz) if μ = ,

z if μ = .

It follows that

 < ep(t, t) =

⎧⎨
⎩exp(

∫ t
t


μ(τ ) Log( +μ(τ )p(τ ))�τ ) if μ = ,

exp(
∫ t
t
p(τ )dτ ) if μ = 

≤
⎧⎨
⎩exp(

∫ t
t


μ(τ ) Log( +μ(τ )|p(τ )|)�τ ) if μ = ,

exp(
∫ t
t

|p(τ )|�τ ) if μ = 

= exp
∫ t

t
|p(τ )|�τ = exp

∫ t

t

e–t

 + e–t
�τ

≤ M

for each t, t ∈ T with t ≥ t, whereM is a positive constant. Thus we obtain

∣∣�A(t, t)
∣∣ = ∣∣∣∣

(
ep(t, t) 

 

)∣∣∣∣ ≤ ch(t)h(t)–, t ≥ t,

where h(t) = ep(t, t) is a positive bounded rd-continuous function for a fixed point t ∈ T,
and c :=M +  is a positive constant. Hence system (.) is h-stable by Lemma .. �

To illustrate that the converse of Theorem . does not hold in general, we give the
following example.

Example . [, Example .] Let T be the unbounded above time scales with μ(t) < 
for each t ∈ T. We consider the nonlinear dynamic equation

x� = f (t,x) = –


x + x, x(t) = x =  (.)

and its variational dynamic equation

v�(t) = fx(t, )v(t) = –


v(t), v(t) = v = , (.)

where fx(t,x) = – 
 + x. Then v =  of (.) is h-stable, but x =  of (.) is not h-stable.

Proof Since the fundamental solution is φ(t) = e– 

(t, t)v for each t ≥ t, Eq. (.) is h-

stable with a positive bounded function h(t) = e– 

(t, t̂) for a fixed point t̂ ∈ T. But (.)

is not h-stable because there exists an unbounded solution x(t, t̂, ) of (.) such that

x(t, t̂, ) = x(t) > t, t ∈ T. �
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