# Periodic boundary value problems for nonlinear first-order impulsive dynamic equations on time scales 

Da-Bin Wang

Correspondence: wangdb@lut.cn Department of Applied Mathematics, Lanzhou University of Technology, Lanzhou, Gansu 730050, People's Republic of China


#### Abstract

By using the classical fixed point theorem for operators on cone, in this article, some results of one and two positive solutions to a class of nonlinear first-order periodic boundary value problems of impulsive dynamic equations on time scales are obtained. Two examples are given to illustrate the main results in this article. Mathematics Subject Classification: 39A10; 34B15. Keywords: time scale, periodic boundary value problem, positive solution, fixed point, impulsive dynamic equation


## 1 Introduction

Let $\mathbf{T}$ be a time scale, i.e., $\mathbf{T}$ is a nonempty closed subset of $R$. Let $0, T$ be points in $\mathbf{T}$, an interval $(0, T)_{\mathbf{T}}$ denoting time scales interval, that is, $(0, T)_{\mathbf{T}}:=(0, T) \cap \mathbf{T}$. Other types of intervals are defined similarly.

The theory of impulsive differential equations is emerging as an important area of investigation, since it is a lot richer than the corresponding theory of differential equations without impulse effects. Moreover, such equations may exhibit several real world phenomena in physics, biology, engineering, etc. (see [1-3]). At the same time, the boundary value problems for impulsive differential equations and impulsive difference equations have received much attention [4-18]. On the other hand, recently, the theory of dynamic equations on time scales has become a new important branch (see, for example, [19-21]). Naturally, some authors have focused their attention on the boundary value problems of impulsive dynamic equations on time scales [22-36]. However, to the best of our knowledge, few papers concerning PBVPs of impulsive dynamic equations on time scales with semi-position condition.
In this article, we are concerned with the existence of positive solutions for the following PBVPs of impulsive dynamic equations on time scales with semi-position condition

$$
\left\{\begin{array}{l}
x^{\Delta}(t)+f(t, x(\sigma(t)))=0, \quad t \in J:=[0, T]_{\mathrm{T}^{\prime}} \quad t \neq t_{k}, \quad k=1,2, \ldots, m  \tag{1.1}\\
x\left(t_{k}^{+}\right)-x\left(t_{k}^{-}\right)=I_{k}\left(x\left(t_{k}^{-}\right)\right), \quad k=1,2, \ldots, m \\
x(0)=x(\sigma(T))
\end{array}\right.
$$

where $\mathbf{T}$ is an arbitrary time scale, $T>0$ is fixed, $0, T \in \mathbf{T}, f \in C(J \times[0, \infty),(-\infty$, $\infty)$ ), $I_{k} \in C([0, \infty),[0, \infty)), t_{k} \in(0, T)_{T}, 0<t_{1}<\ldots<t_{m}<T$, and for each $k=1,2, \ldots, m$, $x\left(t_{k}^{+}\right)=\lim _{h \rightarrow 0^{+}} x\left(t_{k}+h\right)$ and $x\left(t_{k}^{-}\right)=\lim _{h \rightarrow 0^{-}} x\left(t_{k}+h\right)$ represent the right and left limits of $x(t)$ at $t=t_{k}$. We always assume the following hypothesis holds (semi-position condition):
(H) There exists a positive number $M$ such that

$$
M x-f(t, x) \geq 0 \text { for } x \in[0, \infty), \quad t \in[0, T]_{\mathrm{T}}
$$

By using a fixed point theorem for operators on cone [37], some existence criteria of positive solution to the problem (1.1) are established. We note that for the case $\mathbf{T}=R$ and $I_{k}(x) \equiv 0, k=1,2, \ldots, m$, the problem (1.1) reduces to the problem studied by [38] and for the case $I_{k}(x) \equiv 0, k=1,2, \ldots, m$, the problem (1.1) reduces to the problem (in the one-dimension case) studied by [39].

In the remainder of this section, we state the following fixed point theorem [37].
Theorem 1.1. Let $X$ be a Banach space and $K \subset X$ be a cone in $X$. Assume $\Omega_{1}, \Omega_{2}$ are bounded open subsets of $X$ with $0 \in \Omega_{1} \subset \bar{\Omega}_{1} \subset \Omega_{2}$ and $\Phi: K \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right) \rightarrow K$ is a completely continuous operator. If
(i) There exists $u_{0} \in K \backslash\{0\}$ such that $u-\Phi u \neq \lambda u_{0}, u \in K \cap \partial \Omega_{2}, \lambda \geq 0$; $\Phi u \neq \tau u, u$ $\in K \cap \partial \Omega_{1}, \tau \geq 1$, or
(ii) There exists $u_{0} \in K \backslash\{0\}$ such that $u-\Phi u \neq \lambda u_{0}, u \in K \cap \partial \Omega_{1}, \lambda \geq 0$; $\Phi u \neq \tau u, u \in$ $K \cap \partial \Omega_{2}, \tau \geq 1$.
Then $\Phi$ has at least one fixed point in $K \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right)$.

## 2 Preliminaries

Throughout the rest of this article, we always assume that the points of impulse $t_{k}$ are right-dense for each $k=1,2, \ldots, m$.

We define

$$
\begin{aligned}
P C= & \left\{x \in[0, \sigma(T)]_{\mathrm{T}} \rightarrow R: x_{k} \in C\left(J_{k}, R\right), k=0,1,2, \ldots, m\right. \text { and there exist } \\
& \left.x\left(t_{k}^{+}\right) \text {and } x\left(t_{k}^{-}\right) \text {with } x\left(t_{k}^{-}\right)=x\left(t_{k}\right), k=1,2, \ldots, m\right\},
\end{aligned}
$$

where $x_{k}$ is the restriction of $x$ to $J_{\mathrm{k}}=\left(t_{k}, t_{k+1}\right]_{\mathbf{T}} \subset(0, \sigma(T)]_{\mathbf{T}}, k=1,2, \ldots, m$ and $J_{0}=$ $\left[0, \mathrm{t}_{1}\right]_{\mathbf{T}}, t_{m+1}=\sigma(T)$.

Let

$$
X=\{x: x \in P C, \quad x(0)=x(\sigma(T))\}
$$

with the norm $\|x\|=\sup _{t \in[0, \sigma(T)]_{T}}|x(t)|$, then $X$ is a Banach space.
Lemma 2.1. Suppose $M>0$ and $h:[0, T]_{\mathbf{T}} \rightarrow R$ is rd-continuous, then $x$ is a solution of

$$
\begin{aligned}
& \qquad x(t)=\int_{0}^{\sigma(T)} G(t, s) h(s) \Delta s+\sum_{k=1}^{m} G\left(t, t_{k}\right) I_{k}\left(x\left(t_{k}\right)\right), \quad t \in[0, \sigma(T)]_{\mathrm{T}^{\prime}} \\
& \text { where } G(t, s)=\left\{\begin{array}{l}
\frac{e_{M}(s, t) e_{M}(\sigma(T), 0)}{e_{M}(\sigma(T), 0)-1}, 0 \leq s \leq t \leq \sigma(T), \\
\frac{e_{M}(s, t)}{e_{M}(\sigma(T), 0)-1}, \quad 0 \leq t<s \leq \sigma(T),
\end{array}\right.
\end{aligned}
$$

if and only if $x$ is a solution of the boundary value problem

$$
\left\{\begin{array}{l}
x^{\Delta}(t)+M x(\sigma(t))=h(t), \quad t \in J:=[0, T]_{\mathrm{T}}, \quad t \neq t_{k}, \quad k=1,2, \ldots, m, \\
x\left(t_{k}^{+}\right)-x\left(t_{k}^{-}\right)=I_{k}\left(x\left(t_{k}^{-}\right)\right), \quad k=1,2, \ldots, m, \\
x(0)=x(\sigma(T)) .
\end{array}\right.
$$

Proof. Since the proof similar to that of [34, Lemma 3.1], we omit it here.
Lemma 2.2. Let $G(t, s)$ be defined as in Lemma 2.1, then

$$
\frac{1}{e_{M}(\sigma(T), 0)-1} \leq G(t, s) \leq \frac{e_{M}(\sigma(T), 0)}{e_{M}(\sigma(T), 0)-1} \quad \text { for all } t, s \in[0, \sigma(T)]_{\mathrm{T}}
$$

Proof. It is obviously, so we omit it here.
Remark 2.1. Let $G(t, s)$ be defined as in Lemma 2.1, then $\int_{0}^{\sigma(T)} G(t, s) \Delta s=\frac{1}{M}$.
For $u \in X$, we consider the following problem:

$$
\left\{\begin{array}{l}
x^{\Delta}(t)+M x(\sigma(t))=M u(\sigma(t))-f\left(t, u(\sigma(t)), \quad t \in[0, T]_{\mathrm{T}}, \quad t \neq t_{k}, \quad k=1,2, \ldots, m,\right.  \tag{2.1}\\
x\left(t_{k}^{+}\right)-x\left(t_{k}^{-}\right)=I_{k}\left(x\left(t_{k}^{-}\right)\right), \quad k=1,2, \ldots, m, \\
x(0)=x(\sigma(T)) .
\end{array}\right.
$$

It follows from Lemma 2.1 that the problem (2.1) has a unique solution:

$$
x(t)=\int_{0}^{\sigma(T)} G(t, s) h_{u}(s) \Delta s+\sum_{k=1}^{m} G\left(t, t_{k}\right) I_{k}\left(x\left(t_{k}\right)\right), \quad t \in[0, \sigma(T)]_{\mathrm{T}}
$$

where $h_{u}(s)=M u(\sigma(s))-f(s, u(\sigma(s))), s \in[0, T]_{\mathbf{T}}$.
We define an operator $\Phi: X \rightarrow X$ by

$$
\Phi(u)(t)=\int_{0}^{\sigma(T)} G(t, s) h_{u}(s) \Delta s+\sum_{k=1}^{m} G\left(t, t_{k}\right) I_{k}\left(u\left(t_{k}\right)\right), \quad t \in[0, \sigma(T)]_{\mathrm{T}} .
$$

It is obvious that fixed points of $\Phi$ are solutions of the problem (1.1).
Lemma 2.3. $Ф: X \rightarrow X$ is completely continuous.
Proof. The proof is divided into three steps.
Step 1: To show that $\Phi: X \rightarrow X$ is continuous.
Let $\left\{u_{n}\right\}_{n=1}^{\infty}$ be a sequence such that $u_{n} \rightarrow u(n \rightarrow \infty)$ in $X$. Since $f(t, u)$ and $I_{k}(u)$ are continuous in $x$, we have

$$
\begin{gathered}
\left|h_{u n}(t)-h_{u}(t)\right|=\left|M\left(u_{n}-u\right)-\left(f\left(t, u_{n}\right)-f(t, u)\right)\right| \rightarrow 0(n \rightarrow \infty), \\
\left|I_{k}\left(u_{n}\left(t_{k}\right)\right)-I_{k}\left(u\left(t_{k}\right)\right)\right| \rightarrow 0(n \rightarrow \infty) .
\end{gathered}
$$

So

$$
\begin{aligned}
& \left|\Phi\left(u_{n}\right)(t)-\Phi(u)(t)\right| \\
= & \left|\int_{0}^{\sigma(T)} G(t, s)\left[h_{u_{n}}(s)-h_{u}(s)\right] \Delta s+\sum_{k=1}^{m} G\left(t, t_{k}\right)\left[I_{k}\left(u_{n}\left(t_{k}\right)\right)-I_{k}\left(u\left(t_{k}\right)\right)\right]\right| \\
\leq & \frac{e_{M}(\sigma(T), 0)}{e_{M}(\sigma(T), 0)-1}\left[\int_{0}^{\sigma(T)}\left|h_{u_{n}}(s)-h_{u}(s)\right| \Delta s+\sum_{k=1}^{m}\left|I_{k}\left(u_{n}\left(t_{k}\right)\right)-I_{k}\left(u\left(t_{k}\right)\right)\right|\right] \rightarrow 0(n \rightarrow \infty),
\end{aligned}
$$

which leads to $\left\|\Phi u_{n}-\Phi u\right\| \rightarrow 0(n \rightarrow \infty)$. That is, $\Phi: X \rightarrow X$ is continuous.

Step 2: To show that $\Phi$ maps bounded sets into bounded sets in $X$.
Let $B \subset X$ be a bounded set, that is, $\exists r>0$ such that $\forall u \in B$ we have $\|u\| \leq r$. Then, for any $u \in B$, in virtue of the continuities of $f(t, u)$ and $I_{k}(u)$, there exist $c>0$, $c_{k}>0$ such that

$$
|f(t, u)| \leq c, \quad\left|I_{k}(u)\right| \leq c_{k}, \quad k=1,2, \ldots, m
$$

We get

$$
\begin{aligned}
|\Phi(u)(t)| & =\left|\int_{0}^{\sigma(T)} G(t, s) h_{u}(s) \Delta s+\sum_{k=1}^{m} G\left(t, t_{k}\right) I_{k}\left(u\left(t_{k}\right)\right)\right| \\
& \leq \int_{0}^{\sigma(T)} G(t, s)\left|h_{u}(s)\right| \Delta s+\sum_{k=1}^{m} G\left(t, t_{k}\right)\left|I_{k}\left(u\left(t_{k}\right)\right)\right| \\
& \leq \frac{e_{M}(\sigma(T), 0)}{e_{M}(\sigma(T), 0)-1}\left[\sigma(T)(M r+c)+\sum_{k=1}^{m} c_{k}\right] .
\end{aligned}
$$

Then we can conclude that $\Phi u$ is bounded uniformly, and so $\Phi(B)$ is a bounded set.
Step 3: To show that $\Phi$ maps bounded sets into equicontinuous sets of $X$.
Let $t_{1}, t_{2} \in\left(t_{k}, t_{k+1}\right]_{\mathbf{T}} \cap[0, \sigma(T)]_{\mathbf{T}}, u \in B$, then

$$
\begin{aligned}
& \left|\Phi(u)\left(t_{1}\right)-\Phi(u)\left(t_{2}\right)\right| \\
\leq & \int_{0}^{\sigma(T)}\left|G\left(t_{1}, s\right)-G\left(t_{2}, s\right)\right|\left|h_{u}(s)\right| \Delta s+\sum_{k=1}^{m}\left|G\left(t_{1}, t_{k}\right)-G\left(t_{2}, t_{k}\right)\right|\left|I_{k}\left(u\left(t_{k}\right)\right)\right| .
\end{aligned}
$$

The right-hand side tends to uniformly zero as $\left|t_{1}-t_{2}\right| \rightarrow 0$.
Consequently, Steps 1-3 together with the Arzela-Ascoli Theorem shows that $\Phi: X$ $\rightarrow X$ is completely continuous.
Let

$$
K=\left\{u \in X: u(t) \geq \delta\|u\|, \quad t \in[0, \sigma(T)]_{\mathrm{T}}\right\}
$$

where $\delta=\frac{1}{e_{M}(\sigma(T), 0)} \in(0,1)$. It is not difficult to verify that $K$ is a cone in $X$.
From condition $(\mathrm{H})$ and Lemma 2.2, it is easy to obtain following result:
Lemma 2.4. $\Phi$ maps $K$ into $K$.

## 3 Main results

For convenience, we denote

$$
\begin{aligned}
f^{0} & =\lim _{u \rightarrow 0^{+}} \sup \max _{t \in[0, T]_{\mathrm{T}}} \frac{f(t, u)}{u}, \quad f^{\infty}=\lim _{u \rightarrow \infty} \sup \max _{t \in[0, T]_{\mathrm{T}}} \frac{f(t, u)}{u}, \\
f_{0} & =\lim _{u \rightarrow 0^{+}} \inf \min _{t \in[0, T]_{\mathrm{T}}} \frac{f(t, u)}{u}, \quad f_{\infty}=\lim _{u \rightarrow \infty} \inf \min _{t \in[0, T]_{\mathrm{T}}} \frac{f(t, u)}{u} .
\end{aligned}
$$

and

$$
I_{0}=\lim _{u \rightarrow 0^{+}} \frac{I_{k}(u)}{u}, \quad I_{\infty}=\lim _{u \rightarrow \infty} \frac{I_{k}(u)}{u} .
$$

Now we state our main results.
Theorem 3.1. Suppose that
$\left(\mathrm{H}_{1}\right) f_{0}>0, f^{\circ}<0, I_{0}=0$ for any $k$; or
$\left(\mathrm{H}_{2}\right) f_{\infty}>0, f^{\theta}<0, I_{\infty}=0$ for any $k$.
Then the problem (1.1) has at least one positive solutions.
Proof. Firstly, we assume $\left(\mathrm{H}_{1}\right)$ holds. Then there exist $\varepsilon>0$ and $\beta>\alpha>0$ such that

$$
\begin{align*}
& f(t, u) \geq \varepsilon u, \quad t \in[0, T]_{\mathrm{T}}, \quad u \in(0, \alpha],  \tag{3.1}\\
& I_{k}(u) \leq \frac{\left[e_{m}(\sigma(T), 0)-1\right] \varepsilon}{2 M m e_{M}(\sigma(T), 0)} u, u \in(0, \alpha], \quad \text { for any } k, \tag{3.2}
\end{align*}
$$

and

$$
\begin{equation*}
f(t, u) \leq-\varepsilon u, \quad t \in[0, T]_{\mathrm{T}}, \quad u \in[\beta, \infty) . \tag{3.3}
\end{equation*}
$$

Let $\Omega_{1}=\left\{u \in X:\|u\|<r_{1}\right\}$, where $r_{1}=\alpha$. Then $u \in K \cap \partial \Omega_{1}, 0<\delta \alpha=\delta\|u\| \leq u(t)$ $\leq \alpha$, in view of (3.1) and (3.2) we have

$$
\begin{aligned}
\Phi(u)(t) & =\int_{0}^{\sigma(T)} G(t, s) h_{u}(s) \Delta s+\sum_{k=1}^{m} G\left(t, t_{k}\right) I_{k}\left(u\left(t_{k}\right)\right) \\
& \leq \int_{0}^{\sigma(T)} G(t, s)(M-\varepsilon) u(\sigma(s)) \Delta s+\sum_{k=1}^{m} G\left(t, t_{k}\right) \frac{\left[e_{M}(\sigma(T), 0)-1\right] \varepsilon}{2 M m e_{M}(\sigma(T), 0)} u\left(t_{k}\right) \\
& \leq \frac{(M-\varepsilon)}{M}\|u\|+\frac{e_{M}(\sigma(T), 0)}{e_{M}(\sigma(T), 0)-1} \sum_{k=1}^{m} \frac{\left[e_{M}(\sigma(T), 0)-1\right] \varepsilon}{2 M m e_{M}(\sigma(T), 0)}\|u\| \\
& =\frac{\left(M-\frac{\varepsilon}{2}\right)}{M}\|u\| \\
& <\|u\|, t \in[0, \sigma(T)]_{\mathrm{T}},
\end{aligned}
$$

which yields $\|\Phi(u)\|<\|u\|$.
Therefore

$$
\begin{equation*}
\Phi u \neq \tau u, \quad u \in K \cap \partial \Omega_{1}, \quad \tau \geq 1 \tag{3.4}
\end{equation*}
$$

On the other hand, let $\Omega_{2}=\left\{u \in X:\|u\|<r_{2}\right\}$, where $r_{2}=\frac{\beta}{\delta}$.
Choose $u_{0}=1$, then $u_{0} \in K \backslash\{0\}$. We assert that

$$
\begin{equation*}
u-\Phi u \neq \lambda u_{0}, \quad u \in K \cap \partial \Omega_{2}, \quad \lambda \geq 0 \tag{3.5}
\end{equation*}
$$

Suppose on the contrary that there exist $\bar{u} \in K \cap \partial \Omega_{2}$ and $\bar{\lambda} \geq 0$ such that

$$
\bar{u}-\Phi \bar{u}=\bar{\lambda} u_{0} .
$$

Let $\varsigma=\min _{t \in[0, \sigma(T)]_{\mathrm{T}}} \bar{u}(t)$, then $\varsigma \geq \delta\|\bar{u}\|=\delta r_{2}=\beta$, we have from (3.3) that

$$
\begin{aligned}
\bar{u}(t) & =\Phi(\bar{u})(t)+\bar{\lambda} \\
& =\int_{0}^{\sigma(T)} G(t, s) h_{\bar{u}}(s) \Delta s+\sum_{k=1}^{m} G\left(t, t_{k}\right) I_{k}\left(\bar{u}\left(t_{k}\right)\right)+\bar{\lambda} \\
& \geq \int_{0}^{\sigma(T)} G(t, s) h_{\bar{u}}(s) \Delta s+\bar{\lambda} \\
& \geq \frac{(M+\varepsilon)}{M} \varsigma+\bar{\lambda}, \quad t \in[0, \sigma(T)]_{\mathrm{T}} .
\end{aligned}
$$

Therefore,

$$
\varsigma=\min _{t \in[0, \sigma(T)]_{\mathrm{T}}} \bar{u}(t) \geq \frac{(M+\varepsilon)}{M} \varsigma+\bar{\lambda}>\varsigma
$$

which is a contradiction.
It follows from (3.4), (3.5) and Theorem 1.1 that $\Phi$ has a fixed point $u^{*} \in K \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right)$, and $u^{*}$ is a desired positive solution of the problem (1.1).

Next, suppose that $\left(\mathrm{H}_{2}\right)$ holds. Then we can choose $\varepsilon^{\prime}>0$ and $\beta^{\prime}>\alpha^{\prime}>0$ such that

$$
\begin{align*}
& f(t, u) \geq \varepsilon^{\prime} u, \quad t \in[0, T]_{\mathrm{T}}, \quad u \in\left[\beta^{\prime}, \infty\right)  \tag{3.6}\\
& I_{k}(u) \leq \frac{\left[e_{M}(\sigma(T), 0)-1\right] \varepsilon^{\prime}}{2 M m e_{M}(\sigma(T), 0)} u, \quad u \in\left[\beta^{\prime}, \infty\right) \text { for any } k, \tag{3.7}
\end{align*}
$$

and

$$
\begin{equation*}
f(t, u) \leq-\varepsilon^{\prime} u, \quad t \in[0, T]_{\mathrm{T}}, \quad u \in\left(0, \alpha^{\prime}\right] . \tag{3.8}
\end{equation*}
$$

Let $\Omega_{3}=\left\{u \in X:\|u\|<r_{3}\right\}$, where $r_{3}=\alpha^{\prime}$. Then for any $u \in K \cap \partial \Omega_{3}, 0<\delta\|u\| \leq u$ $(t) \leq\|u\|=\alpha^{\prime}$.

It is similar to the proof of (3.5), we have

$$
\begin{equation*}
u-\Phi u \neq \lambda u_{0}, \quad u \in K \cap \partial \Omega_{3}, \quad \lambda \geq 0 . \tag{3.9}
\end{equation*}
$$

Let $\Omega_{4}=\left\{u \in X:\|u\|<r_{4}\right\}$, where $r_{4}=\frac{\beta^{\prime}}{\delta}$. Then for any $u \in K \cap \partial \Omega_{4}, u(t) \geq \delta\|u\|$ $=\delta r_{4}=\beta^{\prime}$, by (3.6) and (3.7), it is easy to obtain

$$
\begin{equation*}
\Phi u \neq \tau u, \quad u \in K \cap \partial \Omega_{4}, \quad \tau \geq 1 \tag{3.10}
\end{equation*}
$$

It follows from (3.9), (3.10) and Theorem 1.1 that $\Phi$ has a fixed point $u^{*} \in K \cap\left(\bar{\Omega}_{4} \backslash \Omega_{3}\right)$, and $u^{*}$ is a desired positive solution of the problem (1.1).

Theorem 3.2. Suppose that
$\left(\mathrm{H}_{3}\right) f^{\rho}<0, f^{\circ}<0$;
$\left(\mathrm{H}_{4}\right)$ there exists $\rho>0$ such that

$$
\begin{align*}
& \min \left\{f(t, u)-u \mid t \in[0, T]_{\mathrm{T}}, \quad \delta \rho \leq u \leq \rho\right\}>0  \tag{3.11}\\
& I_{k}(u) \leq \frac{\left[e_{M}(\sigma(T), 0)-1\right]}{M m e_{M}(\sigma(T), 0)} u, \quad \delta \rho \leq u \leq \rho, \quad \text { for any } k \tag{3.12}
\end{align*}
$$

Then the problem (1.1) has at least two positive solutions.
Proof. By $\left(\mathrm{H}_{3}\right)$, from the proof of Theorem 3.1, we should know that there exist $\beta^{\prime \prime}$ $>\rho>\alpha ">0$ such that

$$
\begin{array}{ll}
u-\Phi u \neq \lambda u_{0}, & u \in K \cap \partial \Omega_{5}, \\
u \geq 0  \tag{3.14}\\
u-\Phi u \neq \lambda u_{0}, & u \in K \cap \partial \Omega_{6}, \\
\lambda \geq 0
\end{array}
$$

where $\Omega_{5}=\left\{u \in X:\|u\|<r_{5}\right\}, \Omega_{6}=\left\{u \in X:\|u\|<r_{6}\right\}, r_{5}=\alpha^{\prime \prime}, r_{6}=\frac{\beta^{\prime \prime}}{\delta}$.
By (3.11) of $\left(\mathrm{H}_{4}\right)$, we can choose $\varepsilon>0$ such that

$$
\begin{equation*}
f(t, u) \geq(1+\varepsilon) u, \quad t \in[0, T]_{\mathrm{T}}, \quad \delta \rho \leq u \leq \rho . \tag{3.15}
\end{equation*}
$$

Let $\Omega_{7}=\{u \in X:\|u\|<\rho\}$, for any $u \in K \cap \partial \Omega_{7}, \delta \rho=\delta\|u\| \leq u(t) \leq\|u\|=\rho$, from (3.12) and (3.15), it is similar to the proof of (3.4), we have

$$
\begin{equation*}
\Phi u \neq \tau u, \quad u \in K \cap \partial \Omega_{7}, \quad \tau \geq 1 . \tag{3.16}
\end{equation*}
$$

By Theorem 1.1, we conclude that $\Phi$ has two fixed points $u^{* *} \in K \cap\left(\bar{\Omega}_{6} \backslash \Omega_{7}\right)$ and $u^{* * *} \in K \cap\left(\bar{\Omega}_{7} \backslash \Omega_{5}\right)$, and $u^{* * *}$ and $u^{* * *}$ are two positive solution of the problem (1.1).

Similar to Theorem 3.2, we have:
Theorem 3.3. Suppose that
$\left(\mathrm{H}_{4}\right) f_{0}>0, f_{\infty}>0, I_{0}=0, I_{\infty}=0$;
$\left(\mathrm{H}_{5}\right)$ there exists $\rho>0$ such that

$$
\max \left\{f(t, u) \mid t \in[0, T]_{\mathrm{T}}, \quad \delta \rho \leq u \leq \rho\right\}<0 .
$$

Then the problem (1.1) has at least two positive solutions.

## 4 Examples

Example 4.1. Let $\mathbf{T}=[0,1] \cup[2,3]$. We consider the following problem on $\mathbf{T}$

$$
\left\{\begin{array}{l}
x^{\Delta}(t)+f(t, x(\sigma(t)))=0, \quad t \in[0,3]_{\mathrm{T}^{\prime}} \quad t \neq \frac{1}{2}  \tag{4.1}\\
x\left(\frac{1}{2}^{+}\right)-x\left(\frac{1}{2}^{-}\right)=I\left(x\left(\frac{1}{2}\right)\right), \\
x(0)=x(3),
\end{array}\right.
$$

where $T=3, f(t, x)=x-(t+1) x^{2}$, and $I(x)=x^{2}$
Let $M=1$, then, it is easy to see that

$$
M x-f(t, x)=(t+1) x^{2} \geq 0 \text { for } x \in[0, \infty), \quad t \in[0,3]_{\mathrm{T}}
$$

and

$$
f_{0} \geq 1, \quad f^{\infty}=-\infty, \quad \text { and } I_{0}=0
$$

Therefore, by Theorem 3.1, it follows that the problem (4.1) has at least one positive solution.

Example 4.2. Let $\mathbf{T}=[0,1] \cup[2,3]$. We consider the following problem on $\mathbf{T}$

$$
\left\{\begin{array}{l}
x^{\Delta}(t)+f(t, x(\sigma(t)))=0, \quad t \in[0,3]_{\mathrm{T}^{\prime}} \quad t \neq \frac{1}{2},  \tag{4.2}\\
x\left(\frac{1}{2}^{+}\right)-x\left(\frac{1}{2}^{-}\right)=I\left(x\left(\frac{1}{2}\right)\right), \\
x(0)=x(3),
\end{array}\right.
$$

where $T=3, f(t, x)=4 e^{1-4 e^{2}} x-(t+1) x^{2} e^{-x}$, and $I(x)=x^{2} e^{-x}$.
Choose $M=1, \rho=4 e^{2}$, then $\delta=\frac{1}{2 e^{2}}$, it is easy to see that

$$
\begin{aligned}
M x-f(t, x) & =x\left(1-4 e^{1-4 e^{2}}\right)+(t+1) x^{2} e^{-x} \geq 0 \text { for } x \in[0, \infty), \quad t \in[0,3]_{\mathrm{T}} \\
f_{0} & \geq 4 e^{1-4 e^{2}}>0, \quad f_{\infty} \geq 4 e^{1-4 e^{2}}>0, \quad I_{0}=0 \quad, I_{\infty}=0
\end{aligned}
$$

and

$$
\max \left(f(t, u) \mid t \in[0, T]_{\mathrm{T}}, \delta \rho \leq u \leq \rho\right\}=\max \left\{f(t, u) \mid t \in[0,3]_{\mathrm{T}}, 2 \leq u \leq 4 e^{2}\right\}=16 e^{3-4 e^{2}}(1-e)<0 .
$$

Therefore, together with Theorem 3.3, it follows that the problem (4.2) has at least two positive solutions.

## Acknowledgements

The author thankful to the anonymous referee for his/her helpful suggestions for the improvement of this article. This work is supported by the Excellent Young Teacher Training Program of Lanzhou University of Technology (Q200907)

## Competing interests

The author declares that they have no competing interests
Received: 23 August 2011 Accepted: 15 February 2012 Published: 15 February 2012

## References

1. Bainov, DD, Simeonov, PS: Impulsive Differential Equations: Periodic Solutions and Applications. Longman Scientific and Technical, Harlow (1993)
2. Benchohra, M, Henderson, J, Ntouyas, SK: Impulsive Differential Equations and Inclusions. Hindawi Publishing Corporation, New York2 (2006)
3. Samoilenko, AM, Perestyuk, NA: Impulsive Differential Equations. World Scientific, Singapore (1995)
4. Agarwal, RP, O'Regan, D: Multiple nonnegative solutions for second order impulsive differential equations. Appl Math Comput. 114, 51-59 (2000). doi:10.1016/50096-3003(99)00074-0
5. Feng, M, Du, B, Ge, W: Impulsive boundary value problems with integral boundary conditions and one-dimensional pLaplacian. Nonlinear Anal. 70, 3119-3126 (2009). doi:10.1016/j.na.2008.04.015
6. Feng, M, Xie, D: Multiple positive solutions of multi-point boundary value problem for second-order impulsive differential equations. J Comput Appl Math. 223, 438-448 (2009). doi:10.1016/j.cam.2008.01.024
7. He, Z, Zhang, X: Monotone iteative technique for first order impulsive differential equations with peroidic boundary conditions. Appl Math Comput. 156, 605-620 (2004). doi:10.1016/j.amc.2003.08.013
8. Li, JL, Nieto, JJ, Shen, J: Impulsive periodic boundary value problems of first-order differential equastions. J Math Anal Appl. 325, 226-236 (2007). doi:10.1016/j.jmaa.2005.04.005
9. Li, JL, Shen, JH: Positive solutions for first-order difference equation with impulses. Int J Diff Equ. 2, 225-239 (2006)
10. Nieto, JJ: Periodic boundary value problems for first-order impulsive ordinary diffeer-ential equations. Nonlinear Anal. 51, 1223-1232 (2002). doi:10.1016/50362-546X(01)00889-6
11. Nieto, JJ, O'Regan, D: Variational approach to impulsive differential equations. Nonlinear Anal Real World Appl. 10, 680-690 (2009). doi:10.1016/j.nonrwa.2007.10.022
12. Nieto, JJ, Rodriguez-Lopez, R: Periodic boundary value problem for non-Lipschitzian impulsive functional differential equations. J Math Anal Appl. 318, 593-610 (2006). doi:10.1016/j.jmaa.2005.06.014
13. Sun, J, Chen, H, Nieto, JJ, Otero-Novoa, M: The multiplicity of solutions for perturbed second-order Hamiltonian systems with impulsive effects. Nonlinear Anal. 72, 4575-4586 (2010). doi:10.1016/j.na.2010.02.034
14. Tian, Y, Ge, W: Applications of variational methods to boundary-value problem for impulsive differential equations. Proceedings of the Edinburgh Mathematical Society. 51, 509-527 (2008)
15. Xiao, J, Nieto, JJ: Variational approach to some damped Dirichlet nonlinear impulsive differential equations. J Frankl Inst. 348, 369-377 (2011). doi:10.1016/j.jfranklin.2010.12.003
16. Zhou, J, Li, Y: Existence and multiplicity of solutions for some Dirichlet problems with impulsive effects. Nonlinear Anal. 71, 2856-2865 (2009). doi:10.1016/j.na.2009.01.140
17. Zhang, H, Li, Z: Variational approach to impulsive differential equations with periodic boundary conditions. Nonlinear Anal Real World Appl. 11, 67-78 (2010). doi:10.1016/j.nonrwa.2008.10.016
18. Zhang, Z, Yuan, R: An application of variational methods to Dirichlet boundary value problem with impulses. Nonlinear Anal Real World Appl. 11, 155-162 (2010). doi:10.1016/j.nonrwa.2008.10.044
19. Bohner, M, Peterson, A: Dynamic Equations on Time Scales: An Introduction with Applications. Birkhauser, Boston. (2001)
20. Bohner, M, Peterson, A: Advances in Dynamic Equations on Time Scales. Birkhauser, Boston (2003)
21. Hilger, S: Analysis on measure chains-a unified approach to continuous and discrete calculus. Results Math. 18, 18-56 (1990)
22. Benchohra, M, Henderson, J, Ntouyas, SK, Ouahab, A: On first order impulsive dynamic equations on time scales. J Diff Equ Appl. 6, 541-548 (2004)
23. Benchohra, M, Ntouyas, SK, Ouahab, A: Existence results for second-order bounary value problem of impulsive dynamic equations on time scales. J Math Anal Appl. 296, 65-73 (2004). doi:10.1016/j.jmaa.2004.02.057
24. Benchohra, M, Ntouyas, SK, Ouahab, A: Extremal solutions of second order impulsive dynamic equations on time scales. J Math Anal Appl. 324, 425-434 (2006). doi:10.1016/j.jmaa.2005.12.028
25. Chen, HB , Wang, HH : Triple positive solutions of boundary value problems for $p$-Laplacian impulsive dynamic equations on time scales. Math Comput Model. 47, 917-924 (2008). doi:10.1016/j.mcm.2007.06.012
26. Geng, F, Zhu, D, Lu, Q: A new existence result for impulsive dynamic equations on time scales. Appl Math Lett. 20 206-212 (2007). doi:10.1016/j.aml.2006.03.013
27. Geng, F, Xu, Y, Zhu, D: Periodic boundary value problems for first-order impulsive dynamic equations on time scales. Nonlinear Anal. 69, 4074-4087 (2008). doi:10.1016/j.na.2007.10.038
28. Graef, JR, Ouahab, A: Extremal solutions for nonresonance impulsive functional dynamic equations on time scales. Appl Math Comput. 196, 333-339 (2008). doi:10.1016/j.amc.2007.05.056
29. Henderson, J: Double solutions of impulsive dynamic boundary value problems on time scale. J Diff Equ Appl. 8, 345-356 (2002). doi:10.1080/1026190290017405
30. Li, JL, Shen, JH: Existence results for second-order impulsive boundary value problems on time scales. Nonlinear Anal. 70, 1648-1655 (2009). doi:10.1016/j.na.2008.02.047
31. Li, YK, Shu, JY: Multiple positive solutions for first-order impulsive integral boundary value problems on time scales. Boundary Value Probl. 2011, 12 (2011). doi:10.1186/1687-2770-2011-12
32. Liu, HB, Xiang, X: A class of the first order impulsive dynamic equations on time scales. Nonlinear Anal. 69, 2803-2811 (2008). doi:10.1016/j.na.2007.08.052
33. Wang, C, Li, YK, Fei, Y: Three positive periodic solutions to nonlinear neutral functional differential equations with impulses and parameters on time scales. Math Com-put Model. 52, 1451-1462 (2010). doi:10.1016/j.mcm.2010.06.009
34. Wang, DB: Positive solutions for nonlinear first-order periodic boundary value problems of impulsive dynamic equations on time scales. Comput Math Appl. 56, 1496-1504 (2008). doi:10.1016/j.camwa.2008.02.038
35. Wang, ZY, Weng, PX: Existence of solutions for first order PBVPs with impulses on time scales. Comput Math Appl. 56, 2010-2018 (2008). doi:10.1016/j.camwa.2008.04.012
36. Zhang, HT, Li, YK: Existence of positive periodic solutions for functional differential equations with impulse effects on time scales. Commun Nonlinear Sci Numer Simul. 14, 19-26 (2009). doi:10.1016/j.cnsns.2007.08.006
37. Guo, D, Lakshmikantham, V: Nonlinear Problems in Abstract Cones. Academic Press, New York (1988)
38. Peng, S: Positive solutions for first order periodic boundary value problem. Appl Math Comput. 158, 345-351 (2004). doi:10.1016/j.amc.2003.08.090
39. Sun, JP, Li, WT: Positive solution for system of nonlinear first-order PBVPs on time scales. Nonlinear Anal. 62, 131-139 (2005). doi:10.1016/j.na.2005.03.016

## doi:10.1186/1687-1847-2012-12

Cite this article as: Wang: Periodic boundary value problems for nonlinear first-order impulsive dynamic equations on time scales. Advances in Difference Equations 2012 2012:12.

## Submit your manuscript to a SpringerOpen ${ }^{\ominus}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at $>$ springeropen.com

