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Abstract

By using the classical fixed point theorem for operators on cone, in this article, some
results of one and two positive solutions to a class of nonlinear first-order periodic
boundary value problems of impulsive dynamic equations on time scales are
obtained. Two examples are given to illustrate the main results in this article.
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1 Introduction
Let T be a time scale, i.e., T is a nonempty closed subset of R. Let 0, T be points in T,

an interval (0, T)T denoting time scales interval, that is, (0, T)T: = (0, T) ⋂ T. Other

types of intervals are defined similarly.

The theory of impulsive differential equations is emerging as an important area of

investigation, since it is a lot richer than the corresponding theory of differential equa-

tions without impulse effects. Moreover, such equations may exhibit several real world

phenomena in physics, biology, engineering, etc. (see [1-3]). At the same time, the

boundary value problems for impulsive differential equations and impulsive difference

equations have received much attention [4-18]. On the other hand, recently, the theory

of dynamic equations on time scales has become a new important branch (see, for

example, [19-21]). Naturally, some authors have focused their attention on the bound-

ary value problems of impulsive dynamic equations on time scales [22-36]. However,

to the best of our knowledge, few papers concerning PBVPs of impulsive dynamic

equations on time scales with semi-position condition.

In this article, we are concerned with the existence of positive solutions for the fol-

lowing PBVPs of impulsive dynamic equations on time scales with semi-position con-

dition⎧⎨
⎩
x�(t) + f (t, x(σ (t))) = 0, t ∈ J := [0,T]T, t �= tk, k = 1, 2, . . . ,m,
x(t+k ) − x(t−k ) = Ik(x(t

−
k )), k = 1, 2, . . . ,m,

x(0) = x(σ (T)),
(1:1)
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where T is an arbitrary time scale, T > 0 is fixed, 0, T Î T, f Î C (J × [0, ∞), (-∞,

∞)), Ik Î C([0, ∞), [0, ∞)), tk Î (0, T)T, 0 <t1 < ... <tm <T, and for each k = 1, 2,..., m,

x(t+k ) = limh→0+x(tk + h) and x(t−k ) = limh→0−x(tk + h) represent the right and left limits

of x(t) at t = tk. We always assume the following hypothesis holds (semi-position

condition):

(H) There exists a positive number M such that

Mx − f (t, x) ≥ 0 for x ∈ [0,∞), t ∈ [0,T]T.

By using a fixed point theorem for operators on cone [37], some existence criteria of

positive solution to the problem (1.1) are established. We note that for the case T = R

and Ik(x) ≡ 0, k = 1, 2,..., m, the problem (1.1) reduces to the problem studied by [38]

and for the case Ik(x) ≡ 0, k = 1, 2,..., m, the problem (1.1) reduces to the problem (in

the one-dimension case) studied by [39].

In the remainder of this section, we state the following fixed point theorem [37].

Theorem 1.1. Let X be a Banach space and K ⊂ X be a cone in X. Assume Ω1, Ω2

are bounded open subsets of X with 0 ∈ �1 ⊂ �̄1 ⊂ �2 and F: K ∩ (�̄2\�1) → K is a

completely continuous operator. If

(i) There exists u0 Î K\{0} such that u - Fu ≠ lu0, u Î K ⋂ ∂ Ω2, l≥ 0; Fu ≠ τu, u

Î K ⋂ ∂Ω1, τ ≥ 1, or

(ii) There exists u0 Î K\{0} such that u - Fu ≠ lu0, u Î K ⋂ ∂Ω1, l≥ 0; Fu ≠ τu, u Î
K ⋂ ∂Ω2, τ ≥ 1.

Then F has at least one fixed point in K ∩ (�̄2\�1).

2 Preliminaries
Throughout the rest of this article, we always assume that the points of impulse tk are

right-dense for each k = 1, 2,...,m.

We define

PC = {x ∈ [0, σ (T)]T → R : xk ∈ C(Jk,R), k = 0, 1, 2, . . . ,m and there exist

x(t+k ) and x(t−k ) with x(t−k ) = x(tk), k = 1, 2, . . . ,m},

where xk is the restriction of x to Jk = (tk, tk+1]T ⊂ (0, s(T)]T, k = 1, 2,..., m and J0 =

[0, t1]T, tm +1 = s(T).
Let

X = {x : x ∈ PC, x(0) = x(σ (T))}

with the norm ‖x‖ = supt∈[0,σ (T)]T
∣∣x(t)∣∣, then X is a Banach space.

Lemma 2.1. Suppose M > 0 and h: [0, T]T ® R is rd-continuous, then x is a solution

of

x(t) =

σ (T)∫
0

G(t, s)h(s)�s +
m∑
k=1

G(t, tk)Ik(x(tk)), t ∈ [0, σ (T)]T,

where G(t, s) =

⎧⎪⎪⎨
⎪⎪⎩

eM(s, t)eM(σ (T), 0)
eM(σ (T), 0) − 1

, 0 ≤ s ≤ t ≤ σ (T),

eM(s, t)
eM(σ (T), 0) − 1

, 0 ≤ t < s ≤ σ (T),
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if and only if x is a solution of the boundary value problem⎧⎨
⎩
x�(t) +Mx(σ (t)) = h(t), t ∈ J := [0,T]T, t �= tk, k = 1, 2, . . . ,m,
x(t+k ) − x(t−k ) = Ik(x(t

−
k )), k = 1, 2, . . . ,m,

x(0) = x(σ (T)).

Proof. Since the proof similar to that of [34, Lemma 3.1], we omit it here.

Lemma 2.2. Let G(t, s) be defined as in Lemma 2.1, then

1
eM(σ (T), 0) − 1

≤ G(t, s) ≤ eM(σ (T), 0)
eM(σ (T), 0) − 1

for all t, s ∈ [0, σ (T)]T.

Proof. It is obviously, so we omit it here.

Remark 2.1. Let G(t, s) be defined as in Lemma 2.1, then
∫ σ (T)
0 G(t, s)�s =

1
M
.

For u Î X, we consider the following problem:⎧⎨
⎩
x�(t) +Mx(σ (t)) = Mu(σ (t)) − f (t, u(σ (t)), t ∈ [0,T]T, t �= tk, k = 1, 2, . . . ,m,
x(t+k ) − x(t−k ) = Ik(x(t

−
k )), k = 1, 2, . . . ,m,

x(0) = x(σ (T)).
(2:1)

It follows from Lemma 2.1 that the problem (2.1) has a unique solution:

x(t) =

σ (T)∫
0

G(t, s)hu(s)�s +
m∑
k=1

G(t, tk)Ik(x(tk)), t ∈ [0, σ (T)]T,

where hu(s) = Mu(s(s)) - f(s, u(s(s))), s Î [0, T]T.

We define an operator F: X ® X by

�(u)(t) =

σ (T)∫
0

G(t, s)hu(s)�s +
m∑
k=1

G(t, tk)Ik(u(tk)), t ∈ [0, σ (T)]T.

It is obvious that fixed points of F are solutions of the problem (1.1).

Lemma 2.3. F: X ® X is completely continuous.

Proof. The proof is divided into three steps.

Step 1: To show that F: X ® X is continuous.

Let {un}∞n=1 be a sequence such that un ® u (n ® ∞) in X. Since f(t, u) and Ik(u) are

continuous in x, we have∣∣hun(t) − hu(t)
∣∣ = ∣∣M(un − u) − (f (t, un) − f (t, u))

∣∣ → 0(n → ∞),∣∣Ik(un(tk)) − Ik(u(tk))
∣∣ → 0(n → ∞).

So ∣∣�(un)(t) − �(u)(t)
∣∣

=

∣∣∣∣∣∣∣
σ (T)∫
0

G(t, s)[hun(s) − hu(s)]�s +
m∑
k=1

G(t, tk)[Ik(un(tk)) − Ik(u(tk))]

∣∣∣∣∣∣∣
≤ eM(σ (T), 0)

eM(σ (T), 0) − 1

⎡
⎢⎣

σ (T)∫
0

∣∣hun(s) − hu(s)
∣∣ �s +

m∑
k=1

∣∣Ik(un(tk)) − Ik(u(tk))
∣∣
⎤
⎥⎦ → 0(n → ∞),

which leads to ||Fun - Fu|| ® 0 (n ® ∞). That is, F: X ® X is continuous.
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Step 2: To show that F maps bounded sets into bounded sets in X.

Let B ⊂ X be a bounded set, that is, ∃ r > 0 such that ∀ u Î B we have ||u|| ≤ r.

Then, for any u Î B, in virtue of the continuities of f(t, u) and Ik(u), there exist c > 0,

ck > 0 such that∣∣f (t, u)∣∣ ≤ c,
∣∣Ik(u)∣∣ ≤ ck, k = 1, 2, . . . ,m.

We get

∣∣�(u)(t)
∣∣ =

∣∣∣∣∣∣∣
σ (T)∫
0

G(t, s)hu(s)�s +
m∑
k=1

G(t, tk)Ik(u(tk))

∣∣∣∣∣∣∣
≤

σ (T)∫
0

G(t, s)
∣∣hu(s)∣∣ �s +

m∑
k=1

G(t, tk)
∣∣Ik(u(tk))∣∣

≤ eM(σ (T), 0)
eM(σ (T), 0) − 1

[
σ (T)(Mr + c) +

m∑
k=1

ck

]
.

Then we can conclude that Fu is bounded uniformly, and so F(B) is a bounded set.

Step 3: To show that F maps bounded sets into equicontinuous sets of X.

Let t1, t2 Î (tk, tk+1]T ⋂ [0, s(T)]T, u Î B, then∣∣�(u)(t1) − �(u)(t2)
∣∣

≤
σ (T)∫
0

∣∣G(t1, s) − G(t2, s)
∣∣ ∣∣hu(s)∣∣ �s +

m∑
k=1

∣∣G(t1, tk) − G(t2, tk)
∣∣ ∣∣Ik(u(tk))∣∣ .

The right-hand side tends to uniformly zero as |t1 - t2| ® 0.

Consequently, Steps 1-3 together with the Arzela-Ascoli Theorem shows that F: X

® X is completely continuous.

Let

K = {u ∈ X : u(t) ≥ δ ‖u‖ , t ∈ [0, σ (T)]T},

where δ =
1

eM(σ (T), 0)
∈ (0, 1). It is not difficult to verify that K is a cone in X.

From condition (H) and Lemma 2.2, it is easy to obtain following result:

Lemma 2.4. F maps K into K.

3 Main results
For convenience, we denote

f 0 = lim
u→0+

sup max
t∈[0,T]T

f (t, u)
u

, f∞ = lim
u→∞ sup max

t∈[0,T]T

f (t, u)
u

,

f0 = lim
u→0+

inf min
t∈[0,T]T

f (t, u)
u

, f∞ = lim
u→∞ inf min

t∈[0,T]T

f (t, u)
u

.

and

I0 = lim
u→0+

Ik(u)
u

, I∞ = lim
u→∞

Ik(u)
u

.
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Now we state our main results.

Theorem 3.1. Suppose that

(H1) f0 > 0, f∞ < 0, I0 = 0 for any k; or

(H2) f∞ > 0, f0 < 0, I∞ = 0 for any k.

Then the problem (1.1) has at least one positive solutions.

Proof. Firstly, we assume (H1) holds. Then there exist ε > 0 and b >a > 0 such that

f (t, u) ≥ εu, t ∈ [0,T]T, u ∈ (0,α], (3:1)

Ik(u) ≤ [em(σ (T), 0) − 1]ε
2MmeM(σ (T), 0)

u, u ∈ (0,α], for any k, (3:2)

and

f (t, u) ≤ −εu, t ∈ [0,T]T, u ∈ [β ,∞). (3:3)

Let Ω1 = {u Î X: ||u|| <r1}, where r1 = a. Then u Î K ⋂ ∂Ω1, 0 <δa = δ ||u|| ≤ u(t)

≤ a, in view of (3.1) and (3.2) we have

�(u)(t) =

σ (T)∫
0

G(t, s)hu(s)�s +
m∑
k=1

G(t, tk)Ik(u(tk))

≤
σ (T)∫
0

G(t, s)(M − ε)u(σ (s))�s +
m∑
k=1

G(t, tk)
[eM(σ (T), 0) − 1]ε
2MmeM(σ (T), 0)

u(tk)

≤ (M − ε)
M

‖u‖ +
eM(σ (T), 0)

eM(σ (T), 0) − 1

m∑
k=1

[eM(σ (T), 0) − 1]ε
2MmeM(σ (T), 0)

‖u‖

=

(
M − ε

2

)
M

‖u‖
< ‖u‖ , t ∈ [0, σ (T)]T,

which yields ||F(u)|| < ||u||.

Therefore

�u �= τu, u ∈ K ∩ ∂�1, τ ≥ 1. (3:4)

On the other hand, let Ω2 = {u Î X: ||u|| <r2}, where r2 =
β

δ
.

Choose u0 = 1, then u0 Î K\{0}. We assert that

u − �u �= λu0, u ∈ K ∩ ∂�2, λ ≥ 0. (3:5)

Suppose on the contrary that there exist ū ∈ K ∩ ∂�2 and λ̄ ≥ 0 such that

ū − �ū = λ̄u0.
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Let ς = mint∈[0,σ (T)]T ū(t), then ς ≥ δ ‖ū‖ = δr2 = β, we have from (3.3) that

ū(t) = �(ū)(t) + λ̄

=

σ (T)∫
0

G(t, s)hū(s)�s +
m∑
k=1

G(t, tk)Ik(ū(tk)) + λ̄

≥
σ (T)∫
0

G(t, s)hū(s)�s + λ̄

≥ (M + ε)
M

ς + λ̄, t ∈ [0, σ (T)]T.

Therefore,

ς = min
t∈[0,σ (T)]T

ū(t) ≥ (M + ε)
M

ς + λ̄ > ς ,

which is a contradiction.

It follows from (3.4), (3.5) and Theorem 1.1 that F has a fixed point

u∗ ∈ K ∩ (�̄2\�1), and u* is a desired positive solution of the problem (1.1).

Next, suppose that (H2) holds. Then we can choose ε’ > 0 and b’ >a’ > 0 such that

f (t, u) ≥ ε′u, t ∈ [0,T]T , u ∈ [β ′,∞), (3:6)

Ik(u) ≤ [eM(σ (T), 0) − 1]ε′

2MmeM(σ (T), 0)
u, u ∈ [β ′,∞) for any k, (3:7)

and

f (t, u) ≤ −ε′u, t ∈ [0,T]T, u ∈ (0,α′]. (3:8)

Let Ω3 = {u Î X: ||u|| <r3}, where r3 = a’. Then for any u Î K ⋂ ∂Ω3, 0 <δ ||u|| ≤ u

(t) ≤ ||u|| = a’.
It is similar to the proof of (3.5), we have

u − �u �= λu0, u ∈ K ∩ ∂�3, λ ≥ 0. (3:9)

Let Ω4 = {u Î X: ||u|| <r4}, where r4 =
β ′

δ
. Then for any u Î K ⋂ ∂Ω4, u(t) ≥ δ ||u||

= δr4 = b’, by (3.6) and (3.7), it is easy to obtain

�u �= τu, u ∈ K ∩ ∂�4, τ ≥ 1. (3:10)

It follows from (3.9), (3.10) and Theorem 1.1 that F has a fixed point

u∗ ∈ K ∩ (�̄4\�3), and u* is a desired positive solution of the problem (1.1).

Theorem 3.2. Suppose that

(H3) f
0 < 0, f∞ < 0;

(H4) there exists r > 0 such that

min{f (t, u) − u|t ∈ [0,T]T, δρ ≤ u ≤ ρ} > 0; (3:11)

Ik(u) ≤ [eM(σ (T), 0) − 1]
MmeM(σ (T), 0)

u, δρ ≤ u ≤ ρ, for any k. (3:12)

Wang Advances in Difference Equations 2012, 2012:12
http://www.advancesindifferenceequations.com/content/2012/1/12

Page 6 of 9



Then the problem (1.1) has at least two positive solutions.

Proof. By (H3), from the proof of Theorem 3.1, we should know that there exist b”
>r >a” > 0 such that

u − �u �= λu0, u ∈ K ∩ ∂�5, λ ≥ 0, (3:13)

u − �u �= λu0, u ∈ K ∩ ∂�6, λ ≥ 0, (3:14)

where Ω5 = {u Î X: ||u|| <r5}, Ω6 = {u Î X: ||u|| <r6}, r5 = α′′, r6 =
β ′′

δ
.

By (3.11) of (H4), we can choose ε > 0 such that

f (t, u) ≥ (1 + ε)u, t ∈ [0,T]T , δρ ≤ u ≤ ρ. (3:15)

Let Ω7 = {u Î X: ||u|| <r}, for any u Î K ⋂ ∂Ω7, δr = δ ||u|| ≤ u(t) ≤ ||u|| = r, from
(3.12) and (3.15), it is similar to the proof of (3.4), we have

�u �= τu, u ∈ K ∩ ∂�7, τ ≥ 1. (3:16)

By Theorem 1.1, we conclude that F has two fixed points u∗∗ ∈ K ∩ (�̄6\�7) and

u∗∗∗ ∈ K ∩ (�̄7\�5), and u** and u*** are two positive solution of the problem (1.1).

Similar to Theorem 3.2, we have:

Theorem 3.3. Suppose that

(H4) f0 > 0, f∞ > 0, I0 = 0, I∞ = 0;

(H5) there exists r > 0 such that

max{f (t, u)|t ∈ [0,T]T , δρ ≤ u ≤ ρ} < 0.

Then the problem (1.1) has at least two positive solutions.

4 Examples
Example 4.1. Let T = [0, 1] ∪ [2,3]. We consider the following problem on T⎧⎪⎪⎪⎨

⎪⎪⎪⎩
x�(t) + f (t, x(σ (t))) = 0, t ∈ [0, 3]T, t �= 1

2
,

x
(
1
2

+)
− x

(
1
2

−)
= I

(
x
(
1
2

))
,

x(0) = x(3),

(4:1)

where T = 3, f(t, x) = x - (t + 1)x2, and I(x) = x2

Let M = 1, then, it is easy to see that

Mx − f (t, x) = (t + 1)x2 ≥ 0 for x ∈ [0,∞), t ∈ [0, 3]T,

and

f0 ≥ 1, f∞ = −∞, and I0 = 0.

Therefore, by Theorem 3.1, it follows that the problem (4.1) has at least one positive

solution.
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Example 4.2. Let T = [0, 1] ∪ [2,3]. We consider the following problem on T⎧⎪⎪⎪⎨
⎪⎪⎪⎩
x�(t) + f (t, x(σ (t))) = 0, t ∈ [0, 3]T, t �= 1

2
,

x
(
1
2

+)
− x

(
1
2

−)
= I

(
x
(
1
2

))
,

x(0) = x(3),

(4:2)

where T = 3, f (t, x) = 4e1−4e2x − (t + 1)x2e−x, and I(x) = x2e-x.

Choose M = 1, r = 4e2, then δ =
1
2e2

, it is easy to see that

Mx − f (t, x) = x(1 − 4e1−4e2 ) + (t + 1)x2e−x ≥ 0 for x ∈ [0,∞), t ∈ [0, 3]T,

f0 ≥ 4e1−4e2 > 0, f∞ ≥ 4e1−4e2 > 0, I0 = 0 , I∞ = 0,

and

max(f (t, u)
∣∣t ∈ [0,T]T, δρ ≤ u ≤ ρ} = max{f (t, u)∣∣ t ∈ [0, 3]T, 2 ≤ u ≤ 4e2} = 16e3−4e2 (1−e) < 0.

Therefore, together with Theorem 3.3, it follows that the problem (4.2) has at least

two positive solutions.
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