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Abstract

We consider a nonautonomous predator-prey model with nonmonotonic functional
response in the periodic environment. Some new sufficient conditions are obtained
for the nonexistence of periodic solutions and the global existence of at least one or
two positive periodic solutions. Our method is based on Mawhin’s coincidence
degree and novel estimation techniques for the priori bounds of unknown solutions.
Some novel estimation techniques are employed for the priori bounds of unknown
solutions to Lz = lNz, which are much different from the arguments used in the
previous literature. Some applications are also presented to illustrate the feasibility
and effectiveness of our main results. A conclusion ends this article.
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1 Introduction
The dynamic relationship between predators and their preys has been and will con-

tinue to be one of the dominant themes in both ecology and mathematical ecology

due to its universal importance [1-4]. In modelling, the different predator-prey systems,

Holling [5] proposed three types of monotonic functional responses g(x) = x, x
m+x ,

x2

m+x2
.

Monotonic response functions are appropriate in many predator-prey models; however,

there are experiments that indicate nonmonotonic responses occur, for example, in the

cases of ‘inhibition’ in microbial dynamics and ‘group defence’ in population dynamics

[6-9]. Unlike the monotonic response, the nonmonotonic response is humped and

declines at high prey density x. Indeed, the so-called Holling type IV functional

response g(x) = x

a+x+ x
2

m
(which is not monotone) has been proposed and used to model

the inhibitory effect at high concentrations [7]. In [8], the author investigated the fol-

lowing autonomous ordinary differential equation of generalized Gause type as a pre-

dator-prey model with ‘group defense’.⎧⎪⎨
⎪⎩

dx
dt

= xg(x, K) − yp(x) := p(x)[F(x, K) − y]

dy(t)
dt

= y(t)[−d + q(x)].
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Taking the carrying capacity of the environment as a bifurcation parameter, they

showed that the model undergoes a sequence of bifurcations include homoclinic bifur-

cation as well as Hopf bifurcation. Then in [9], the authors have also considered a

special predator-prey model with type IV functional response.⎧⎪⎪⎨
⎪⎪⎩

dx(t)
dt

= rx
[
1 − x(t)

K

]
− m

x(t)y(t)
1 + bx(t) + ax2(t)

,

dy(t)
dt

= y(t)
[
−d +

cmx(t)
1 + bx(t) + ax2(t)

]
,

(1:1)

where the nonmonotonic functional response is x(t)y(t)
1+bx(t)+ax2(t) . They have investigated a

series of bifurcations that system (1.1) undergoes, including the saddle-node bifurca-

tion, the supercritical and subcritical Hopf bifurcations, as well as the homoclinic

bifurcation. It is interesting that they found that the unique equilibrium is a cusp of

codimension 3 (a degenerate Bogdanov-Takens bifurcation point). The investigation of

multiple bifurcations has also been carried out on the following predator-prey system

with ‘group defense’ using the nonmonotonic functional response g(x) = xe-bx (see [10])

⎧⎪⎨
⎪⎩

dx(t)
dt

= rx
[
1 − x(t)

K

]
− cx(t)y(t)e−βx(t),

dy(t)
dt

= y(t)[−d + αx(t)e−βx(t)].
(1:2)

As we know, the variation of the environment plays an important role in many biolo-

gical and ecological dynamic systems. To incorporate the periodicity of the environ-

ment (e.g. seasonal effects of weather, food supplies, mating habits, etc.), it is

reasonable to assume periodicity of the parameters in the system. For this reason,

Chen [11] has considered the following predator-prey system with Holling type IV

functional response in a periodic environment

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dx(t)
dt

= x(t)[b1(t) − a1(t)x(t − τ1(t))] − c(t)x(t)y(t)
x2(t)
m + x(t) + a

,

dy(t)
dt

= y(t)

[
−b2(t) +

a2(t)x(t − τ2(t))
x2(t−τ2(t))

m + x(t − τ2(t)) + a

]
,

(1:3)

where ai(t), bi(t) and τi(t) (i = 1, 2) are all positive periodic continuous functions with

period ω >0, and m, a are positive real constants. By applying the method of coinci-

dence degree and the bounds for solutions to an operator equation, some sufficient

conditions have been obtained for the global existence of at least two periodic solu-

tions of system (1.3). By employing the theory of coincidence degree and some novel

estimation techniques for the priori bounds of unknown solutions to Lz = lNz, Xia
et al. [12,13] obtained some sufficient conditions for the discrete model and the stage-

structured model with nonmonotonic functional response, respectively.

Recently, coincidence degree theory introduced by Gaines and Mawhin [14] has been

a powerful tool to investigate the periodic nonautonomous systems. It has gained

increasing interest in many applications to biological systems (see, e.g. [11-28]). Moti-

vated by aforementioned discussions, in this article, we propose the following more

general nonautonomous models with nonmonotonic functional response g:
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{
ẋ(t) = x(t)[a(t) − b(t)x(t)] − c(t)g(x(t))y(t),
ẏ(t) = y(t)[−d(t) + e(t)g(x(t))],

(E)

and {
ẋ(t) = x(t)[a(t) − b(t)x(t − τ1(t))] − c(t)g(x(t))y(t),
ẏ(t) = y(t)[−d(t) + e(t)g(x(t − τ2(t)))],

(F)

where x(t) and y(t) represent prey and predator densities, respectively, a(t), b(t), c(t),

d(t), e(t), τ1(t) and τ2(t) are nonnegative periodic continuous functions with period ω > 0.

We assume the functional response g: [0, ∞) ® [0, ∞) is continuous and satisfies the

(NM) (’nonmonotonic’) condition:

(i) g(0) = 0;

(ii) there exists a constant M > 0 such that (x - M)g’(x) < 0 for x ≠ M.

Clearly, g is increasing on [0, M), decreasing on (M, ∞), and g(x) ≤ g(M) for x ≥ 0.

Also, it is easy to see that the functions

g(x) =
x

m2 + x2
, g(x) = xe−βx and g(x) =

x
x2
m + x + a

appearing in (1.1)-(1.3) satisfy conditions (i)-(ii). Obviously, the systems (1.1)-(1.3) are

special cases of system (E) or (F).

Throughout, if f (t) is an ω-periodic function, we shall denote

f̄ =
1
ω

ω∫
0
f (t)dt.

Clearly, f̄ > 0 if f (t) > 0, a.e. t Î [0, ω]. We also set

D =
d
ē
.

From the point of view of mathematical biology, we choose

R2
+ = {(x, y)T ∈ R2 : x > 0, y > 0} as the state space for (E) and (F).

We shall study the global existence of ω-periodic solutions of (E) and (F) using

D = d̄
ē
as the bifurcation parameter. Some new and interesting sufficient conditions are

obtained for the nonexistence of periodic solutions, global existence of at least one

positive periodic solution and global existence of at least two positive periodic solu-

tions. When system (F) reduces to the particular case (1.3), our results generalize the

previous results in [11]. Our method is based on Mawhin’s coincidence degree and

novel estimation techniques for the a priori bounds of unknown solutions. We will

introduce some novel estimation techniques for the priori bounds of unknown solu-

tions to Lz = lNz, which are much different from the arguments used in the existing

literature [11-28].

The outline of the article is as follows. In Sect. 2, a sufficient condition is obtained

for the nonexistence of periodic solutions. In Sect. 3, we establish criteria for the exis-

tence of at least one positive periodic solution. Section 4 is devoted to obtaining exis-

tence criteria for at least two positive periodic solutions. Finally, to illustrate the
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generality and usefulness of the results obtained, we present some applications in

Sect. 5.

2 Nonexistence
We shall first give a necessary condition for the existence of periodic positive solutions

of the system (E).

Theorem 2.1 If the system (E) has a positive ω-periodic solution, then g(M) ≥ D.

Proof. We make the change of variables

x(t) = exp{u(t)} and y(t) = exp{v(t)}. (2:1)

Then, system (E) becomes{
u̇(t) = a(t) − b(t) exp{u(t)} − c(t)g(exp{u(t)}) exp{v(t) − u(t)},
v̇(t) = −d(t) + e(t)g(exp{u(t)}). (2:2)

Obviously, system (E) is equivalent to system (2.2) on R2
+ . Suppose the system (2.2)

has a ω-periodic solution (u(t), v(t))T, i.e., u(t + ω) = u(t) and v(t + ω) = v(t). An inte-

gration of the second equation of (2.2) over [0, ω] leads to

v(ω) − v(0) =

ω∫
0

[−d(t) + e(t)g(exp{u(t)})]dt,

or

0 = −d̄ω +

ω∫
0

e(t)g(exp{u(t)})dt. (2:3)

Since g(M) is the maximum of g(x), it follows from (2.3) that

d̄ω =

ω∫
0

e(t)g(exp{u(t)})dt ≤ g(M)ēω,

which implies

g(M) ≥ d
ē
= D.

This completes the proof of Theorem 2.1. □
The following is immediate from Theorem 2.1.

Theorem 2.2 If g(M) < D, then the system (E) has no positive ω-periodic solution.

3 Existence of one periodic solution
In this section, we shall apply the continuation theorem of Mawhin’s coincidence

degree theory to establish the global existence of at least one positive periodic solution.

We first summarize a few concepts from the book by Gaines and Mawhin [14].

Let X, Y be real normed vector spaces. Let L: DomL ⊂ X ® Y be a linear mapping, and

N: X ® Y be a continuous mapping. The mapping L is called a Fredholm mapping of

index zero if dim KerL = codim ImL <∞ and ImL is closed in Y. If L is a Fredholm map-

ping of index zero, there exist continuous projectors P: X ® X, and Q: Y ® Y such that
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ImP = KerL, KerQ = ImL = Im(I - Q). It follows that L|DomL ∩ KerP: (I - P)X ® ImL is

invertible. We denote the inverse of that map by Kp. If Ω is an open bounded subset

of X, the mapping N will be called L-compact on �̄ if QN(�̄) is bounded and

Kp(I − Q)N : �̄ → X is compact. Since ImQ is isomorphic to KerL, there exists an iso-

morphism J: ImQ ® KerL.

Lemma 3.1 (Continuation theorem [14]) Let L be a Fredholm mapping of index zero

and N be L-compact on �̄ . Suppose

(a) for each l Î (0, 1), every solution z of Lz = lNz is such that z ∉ ∂Ω;

(b) QNz ≠ 0 for each z Î ∂Ω ∩ KerL and deg{JQN, Ω ∩ KerL, 0} ≠ 0.

Then, the operator equation Lz = Nz has at least one solution lying in DomL ∩ �̄ .

Theorem 3.1 Assume

(H1) g(M) = D;

(H2) ā > b̄M exp{(|a| + ā)ω} .
Then, the system (E) has at least one positive ω-periodic solution.

Proof. We shall consider the system (2.2) (equivalent of (E)). Take

X = Y = {z = (u(t), v(t))T ∈ C(R, R2) : z(t + ω) = z(t)}

and define

||z|| = max
t∈[0,ω]

|u(t)| + max
t∈[0,ω]

|v(t)|, z = (u, v)T ∈ X or Y,

where | · | denotes the Euclidean norm. Then, X and Y are Banach spaces with the

norm || · ||. For any z = (u, v)T Î X, by means of the periodicity assumption, we can

easily check that

�1(z, t) := a(t) − b(t) exp{u(t)} − c(t)g(exp{u(t)}) exp{v(t) − u(t)},
�2(z, t) := −d(t) + e(t)g(exp{u(t)})

are ω-periodic. Define L on DomL ∩ X, where DomL = {(u(t), v(t))T Î C1(ℝ, ℝ2)}, by

L
(
u
v

)
=

⎛
⎜⎝

du(t)
dt

dv(t)
dt

⎞
⎟⎠ ,

and also define N: X ® X by

N
(
u
v

)
=

(
�1(z, t)
�2(z, t)

)
.

Further, define P and Q on X by

P
(
u
v

)
= Q

(
u
v

)
=

⎛
⎜⎜⎝

1
ω

ω∫
0
u(t)dt

1
ω

ω∫
0
v(t)dt

⎞
⎟⎟⎠ .
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It is not difficult to show that

KerL = {z ∈ X : z = C0, C0 ∈ R2},

ImL =

⎧⎨
⎩z ∈ Y :

ω∫
0

z(t)dt = 0

⎫⎬
⎭ is closed in Y,

dimKerL = codim ImL = 2,

and P and Q are continuous projectors such that

ImP = KerL, KerQ = ImL = Im(I − Q).

It follows that L is a Fredholm mapping of index zero. Furthermore, the generalized

inverse (to L) Kp: ImL ® DomL ∩ KerP exists, and is given by

Kp(z) =

t∫
0

z(s)ds − 1
ω

ω∫
0

t∫
0

z(s) dsdt.

Then, QN: X ® Y and Kp(I - Q)N: X ® X are defined by

QNz =

⎛
⎜⎜⎝

1
ω

ω∫
0

�1(z, t)dt

1
ω

ω∫
0

�2(z, t)dt

⎞
⎟⎟⎠

and

Kp(I − Q)Nz =
(

�1(z, t)
�2(z, t)

)
,

where

�i(z, t) =

t∫
0

�i(z, s)ds − 1
ω

ω∫
0

t∫
0

�i(z, s)dsdt −
(
t
ω

− 1
2

) ω∫
0

�i(z, s)ds, i = 1, 2.

Clearly, QN and Kp(I - Q)N are continuous. Using the Arzela-Ascoli Theorem, it is not

difficult to prove that Kp(I − Q)N(�̄) is compact for any open bounded set Ω ⊂ X.

Moreover, QN(�̄) is bounded. Therefore, N is L-compact on �̄ for any open bounded

set Ω ⊂ X.

Now we need to search for an appropriate open bounded subset Ω for the application

of Lemma 3.1. Corresponding to the operator equation Lz = lNz where l Î (0, 1), we

have {
u̇(t) = λ

[
a(t) − b(t) exp{u(t)} − c(t)g(exp{u(t)}) exp{v(t) − u(t)}] ,

v̇(t) = λ
[−d(t) + e(t)g(exp{u(t)})] . (3:1)

Suppose z = (u(t), v(t))T Î X is a solution of (3.1) for a certain l Î (0, 1). An integra-

tion of (3.1) over [0, ω] leads to
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⎧⎪⎪⎨
⎪⎪⎩

ω∫
0
[a(t) − b(t) exp{u(t)} − c(t)g(exp{u(t)}) exp{v(t) − u(t)}]dt = 0,

ω∫
0
[−d(t) + e(t)g(exp{u(t)})]dt = 0,

or

ω∫
0

b(t) exp{u(t)}dt +
ω∫

0

c(t)g(exp{u(t)}) exp{v(t) − u(t)}dt = āω, (3:2)

ω∫
0

e(t)g(exp{u(t)})dt = d̄ω. (3:3)

By mean value theorem, there exists ξ Î (0, ω) such that

ω∫
0
e(t)g(exp{u(t)})dt = g(exp{u(ξ)})

ω∫
0
e(t)dt.

Hence, noting g(M) = D = d̄/ē , it follows from (3.3) that

exp{u(ξ)} = M or u(ξ) = lnM. (3:4)

On the other hand, from the first equation of (3.1) and (3.2), we have

ω∫
0

|u̇(t)|dt = λ

ω∫
0

|a(t) − b(t) exp{u(t)}

− c(t)g(exp{u(t)}) exp{v(t) − u(t)}|dt

< |a|ω +

ω∫
0

b(t) exp{u(t)}dt

+

ω∫
0

c(t)g(exp{u(t)}) exp{v(t) − u(t)}dt

= (|a| + ā)ω.

(3:5)

Similarly, from the second equation of (3.1) and (3.3), it is not difficult to derive that

ω∫
0

|v̇(t)|dt < (|d| + d̄)ω. (3:6)

It follows from (3.4) and (3.5) that

u(t) ≤ u(ξ) +

ω∫
0

| u̇(t)|dt < lnM + (|a| + ā)ω := A1 (3:7)

and

u(t) ≥ u(ξ) −
ω∫

0

| u̇(t)|dt > lnM − (|a| + ā)ω := B1. (3:8)
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Since (u(t), v(t))T Î X, there exist δ, h Î [0, ω] such that

v(δ) = min
t∈[0,ω]

v(t) and v(η) = max
t∈[0,ω]

v(t). (3:9)

Note that g(M) = D is the maximum of g. Then, it follows from (3.2), (3.7)-(3.9) and

(H2) that

b̄ω exp{A1} + c̄Dω exp{v(η) − B1} ≥ āω,

or

v(η) ≥ ln
ā exp{B1} − b̄ exp{A1 + B1}

c̄D
= ln

(ā − b̄M exp{(|a| + ā)ω})M
c̄D exp{(|a| + ā)ω} . (3:10)

This, combined with (3.6), gives

v(t) ≥ v(η) −
ω∫

0

| v̇(t)|dt > ln
(ā − b̄M exp{(|a| + ā)ω})

c̄D exp{(|a| + ā)ω} − (|d| + d̄)ω := A2. (3:11)

Note that exp{B1} <M and exp{A1} >M. Since g is increasing on [0, M) and decreas-

ing on (M, ∞), we have

g(exp{u(t)}) ≥ min{g(exp{B1}), g(exp{A1})}, u(t) ∈ (B1, A1).

This, together with (3.2), (3.7)-(3.9), leads to

c̄ωmin{g(exp{B1}), g(exp{A1})} exp{v(δ) − A1} ≤ āω,

or

(δ) ≤ ln
ā exp{A1}

min{g(exp{B1}), g(exp{A1})}c̄ . (3:12)

Coupled with (3.6), we get

v(t) ≤ v(δ) +

ω∫
0

| v̇(t)|dt < ln
ā exp{A1}

min{g(exp{B1}), g(exp{A1})}c̄ + (|d| + d̄)ω := B2. (3:13)

Let

A = max{|A1|, |B1|} and B = max{|A2|, |B2|}.

Then, from (3.7), (3.8), (3.11) and (3.13), we have |u(t)| <A and |v(t)| < B. Clearly, Ai,

Bi (i = 1, 2) are independent of l.
Now, consider the equation QNz = 0 where z = (u, v)T Î ℝ2, i.e.,

QN
(
u
v

)
=

(
ā − b̄ exp{u} − c̄g(exp{u})exp{v − u}
−d̄ + ēg(exp{u})

)
=

(
0
0

)
. (3:14)

In view of (H2), we have ā − b̄M > 0 . Together with (H1), it is easy to show that the

above system has a unique solution

(u∗, v∗)T =

(
lnM, ln

Mē(ā − b̄M)

c̄d̄

)T

.
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Let C >0 be such that

||(u∗, v∗)T|| = |u∗| + |v∗| < C.

Define

� = {z ∈ X : ||z|| < A + B + C}.

It is clear that Ω satisfies condition (a) of Lemma 3.1. When z = (u, v)T Î ∂Ω ∩ KerL

= ∂Ω ∩ ℝ2, z is a constant vector in ℝ2 with || z || = A + B + C, it is clear that QNz ≠

0. Furthermore, let J: ImQ ® KerL be the identity mapping. In view of the assumptions

in Theorem 3.1, it is easy to see that

deg{JQN, � ∩ KerL, 0}

=sgndet
[

W −c̄g(exp{u})exp{v − u}
ēg′(exp{u})uexp{u} 0

]
= sgn

{−ceg′(exp{u})ug(exp{u}) exp{v}} 	= 0,

where deg(·) is the Brouwer degree and

W = −b̄ exp{u} − c̄g′(exp{u})u exp{v} + c̄g(exp{u}) exp{v − u}.

By now, we have proved that Ω satisfies all the requirements of Lemma 3.1. Thus, it

follows that Lz = Nz (i.e., system (2.2)) has at least one solution in DomL ∩ �̄ . The

proof is complete.

4 Existence of two periodic solutions
In this section, we shall study system (E) under the assumption g(M) >D. From the

(NM) condition, it is easy to see that if g(M) >D then the equation g(x) = D has two

positive solutions r1 and r2 such that

g(r1) = g(r2) = D and 0 < r1 < M < r2.

Theorem 4.1 Assume

(H3) g(M) > D;

(H4) ā > b̄r2 exp{(|a| + ā)ω} ;
(H5) r1 exp{(|a| + ā)ω} ≤ M and r2 ≥ M exp{(|a| + ā)ω}.
Then, the system (E) has at least two positive ω-periodic solutions.

Proof. In order to prove the existence of two periodic solutions, our most important

task is to search for at least two appropriate open bounded subsets Ω1 and Ω2 in X for

the application of Lemma 3.1. Let X, Y, L, N, P and Q be defined as in the proof of

Theorem 3.1, and let z = (u(t), v(t))T Î X be a solution of Lz = lNz for a certain l Î
(0, 1). As in the proof of Theorem 3.1, we have

ω∫
0

b(t) exp{u(t)}dt +
ω∫

0

c(t)g(exp{u(t)}) exp{v(t) − u(t)}dt = āω, (4:1)

ω∫
0

e(t)g(exp{u(t)})dt = d̄ω, (4:2)
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and

ω∫
0

|u̇(t)|dt < (|a| + ā)ω,

ω∫
0

|v̇(t)|dt < (|d| + d̄)ω. (4:3)

Since z = (u(t), v(t))T Î X, there exist ε, c Î [0, ω] such that

v(ε) = min
t∈[0,ω]

v(t) and v(χ) = max
t∈[0,ω]

v(t). (4:4)

Note that u(t) ≠ ln M for t Î [0, ω], otherwise it follows from (4.2) that d̄ = ēg(M),

which is a contradiction to (H3). Therefore, either u(t) Î (-∞, ln M) or u(t) Î (ln M,

∞).

Case 1: u(t) <ln M, t Î [0, ω]. From (4.2), (H3) and the (NM) condition, there exists

θ1 Î [0, ω] such that

d̄ω = ēωg(exp{u(θ1)}),

or

exp(u(θ1)) = g−1(D) ∈ (0, M)

= r1.

This, combined with (4.3) and (H5), gives

u(t) ≤ u(θ1) +

ω∫
0

| u̇(t)|dt < ln r1 + (|a| + ā)ω ≤ lnM (4:5)

and

u(t) ≥ u(θ1) −
ω∫

0

| u̇(t)|dt > ln r1 − (|a| + ā)ω := B∗
1. (4:6)

It follows from (4.5) and (4.6) that

u(t) ∈ (B∗
1, lnM). (4:7)

On the other hand, from (4.1), (4.4) and (4.7), we find

c̄ωg(exp{B∗
1}) exp{v(ε) − lnM} ≤ āω,

or

v(ε) ≤ ln
āM

g(exp{B∗
1})c̄

. (4:8)

This, together with (4.3), leads to

v(t) ≤ v(ε) +

ω∫
0

| v̇(t)|dt < ln
āM

g(exp{B∗
1})c̄

+ (|d| + d̄)ω := A∗
2. (4:9)

From (H4) and (H5), it is not difficult to show that ā − b̄M > 0 . It follows from (4.1),

(4.4) and (4.7) that
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b̄ω exp{lnM} + c̄ωg(M) exp{v(χ) − B∗
1} ≥ āω,

or

v(χ) ≥ ln
(ā − b̄M) exp{B∗

1}
c̄g(M)

= ln
(ā − b̄M)r1

c̄g(M) exp{(|a| + ā)ω} . (4:10)

Coupled with (4.3), we get

v(t) ≥ v(χ) −
ω∫

0

| v̇(t)|dt > ln
(ā − b̄M)r1

c̄g(M) exp{(|a| + ā)ω} − (|d| + d̄)ω := B∗
2. (4:11)

Therefore, from (4.9) and (4.11), we have

max
t∈[0,ω]

|v(t)| < max{|A∗
2|, |B∗

2|} := B∗, for u(t) ∈ (B∗
1, lnM). (4:12)

Case 2: u(t) >ln M, t Î [0, ω]. From (4.2), (H3) and the (NM) condition, there exists

θ2 Î [0, ω] such that

d̄ω = ēωg(exp{u(θ2)}),
or

exp(u(θ2)) = g−1(D) ∈ (M, ∞)

= r2.

This, combined with (4.3) and (H5), gives

u(t) ≤ u(θ2) +

ω∫
0

| u̇(t)|dt < ln r2 + (|a| + ā)ω := A+
1 (4:13)

and

u(t) ≥ u(θ2) −
ω∫

0

| u̇(t)|dt > ln r2 − (|a| + ā)ω ≥ lnM. (4:14)

It follows from (4.13) and (4.14) that

u(t) ∈ (lnM, A+
1). (4:15)

Noting that g(x) is decreasing for

x Î (M, ∞), it follows from (4.1), (4.4) and (4.15) that

c̄ωg(exp{A+
1}) exp{v(ε) − A+

1} ≤ āω,

or

v(ε) ≤ ln
ā exp{A+

1}
g(exp{A+

1})c̄
. (4:16)

Together with (4.3), we get

v(t) ≤ v(ε) +

ω∫
0

| v̇(t)|dt < ln
ā exp{A+

1}
g(exp{A+

1})c̄
+ (|d| + d̄)ω := A+

2. (4:17)
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On the other hand, it follows from (4.1), (4.4), (4.15) and condition (H4) that

b̄ω exp{A+
1} + c̄ωg(M) exp{v(χ) − lnM} ≥ āω,

or

v(χ) ≥ ln
(ā − b̄ exp{A+

1})M
c̄g(M)

= ln
(ā − b̄r2 exp{(|a| + ā)ω})M

c̄g(M)
. (4:18)

This, combined with (4.3), gives

v(t) ≥ v(χ) −
ω∫

0

| v̇(t)|dt > ln
(ā − b̄ exp{A+

1})M
c̄g(M)

− (|d| + d̄)ω := B+
2. (4:19)

Therefore, from (4.17) and (4.19), we get

max
t∈[0,ω]

|v(t)| < max{|A+
2|, |B+

2|} := B+, for u(t) ∈ (lnM, A+
1). (4:20)

Obviously, r1, r2, ln M, B∗
1, A

+
1 , B* and B+ are independent of l.

Now, let us consider the equation QNz = 0 where z = (u, v)T Î ℝ2, i.e., (3.14). Noting

the (NM) condition, (H3) and (H4), it is not difficult to show that (3.14) has two dis-

tinct solutions

(ũ, ṽ)T =

(
ln r1, ln

{
(ā − b̄r1)ēr1

c̄d̄

})

and

(û, v̂)T =

(
ln r2, ln

{
(ā − b̄r2)ēr2

c̄d̄

})
.

Choose C0 >0 such that

max

{∣∣∣∣∣ln
{
(ā − b̄r1)ēr1

c̄d̄

}∣∣∣∣∣ ,
∣∣∣∣∣ln

{
(ā − b̄r2)ēr2

c̄d̄

}∣∣∣∣∣
}

< C0. (4:21)

Define

�1 =
{
z = (u, v)T ∈ X : u(t) ∈ (B∗

1, lnM), max
t∈[0,ω]

|v(t)| < B∗ + C0

}

and

�2 =
{
x = (u, v)T ∈ X : u(t) ∈ (lnM, A+

1), max
t∈[0,ω]

|v(t)| < B+ + C0

}
.

Both Ω1 Ω2 are bounded open subsets of X. It follows from the (NM) condition,

(4.12) and (4.20) that (ũ, ṽ)T ∈ �1 and (û, v̂)T ∈ �2 . In view of (4.12) and (4.20), it is

easy to see that Ω1 ∩ Ω2 = Ø and Ωi satisfies condition (a) of Lemma 3.1 for i = 1, 2.

Moreover, QNz ≠ 0 for z Î ∂Ωi ∩ KerL = ∂Ωi ∩ ℝ2. A direct computation gives
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deg{JQN, �i ∩ KerL, 0} = sgn {−c̄ēg′(exp{u})ug(exp{u}) exp{v}}
= (−1)i+1 	= 0.

Here, J is taken as the identity mapping since ImQ = KerL. We have proved that Ωi

satisfies all the conditions in Lemma 3.1. Hence, Lz = Nz (i.e., system (2.2)) has at

least two ω-periodic solutions z* = (u*, v*)T and z+ = (u+, v+)T with

z∗ ∈ DomL ∩ �̄1 and z+ ∈ DomL ∩ �̄2 .

Obviously, z* and z+ are different. Using (2.1),

(exp{u∗(t)}, exp{v∗(t)})T and (exp{u+(t)}, exp{v+(t)})T

are two different positive ω-periodic solutions of (E). This ends the proof. Box

We are now ready to tackle the system (F). With the change of variables in (2.1), the

system (F) becomes

{
u̇(t) = a(t) − b(t) exp{u(t − τ1(t))} − c(t)g(exp{u(t)}) exp{v(t) − u(t)},
v̇(t) = −d(t) + e(t)g(exp{u(t − τ2(t))}). (2:2a)

The arguments used in the proof of Theorem 2.1 will still be valid. As for the analog

of Theorem 3.1, corresponding to (3.3) we have

ω∫
0
e(t)g(exp{u(t − τ2(t))})dt = d̄ω. (3:3a)

By mean value theorem, there exists ξ0 Î (0, ω) such that

ω∫
0

e(t)g(exp{u(t − τ2(t))})dt = g(exp{u(ξ0 − τ2(ξ0))})
ω∫

0

e(t)dt.

Since u is ω-periodic, there exists ξ Î [0, ω] such that

u(ξ0 − τ2(ξ0)) = u(ξ).

Thus, we have

ω∫
0
e(t)g(exp{u(t − τ2(t))})dt = g(exp{u(ξ)})

ω∫
0
e(t)dt

and the rest of the arguments in the proof of Theorem 3.1 follows. We have the fol-

lowing result for the system (F).

Theorem 4.2 Theorems 2.1, 2.2, 3.1, 4.1 are also valid for the delayed system (F).

Remark 4.1 We have introduced some novel estimation techniques for the priori

bounds of unknown solutions to Lz = lNz, which are much different from the arguments

used in [11-27]. In addition, we study the diversity of the periodic solutions including

nonexistence of periodic solutions, at least one periodic solutions and at least two peri-

odic solutions. However, the existing literature only gave some sufficient conditions for

one of the three cases.

5 Applications
In this section, we shall list some applications of Theorems 2.1, 2.2, 3.1, 4.1 and 4.2.
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Application 5.1

Consider the following nonautonomous periodic system [11]⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dx(t)
dt

= x(t)[b1(t) − a1(t)x(t − τ1(t))] − c(t)x(t)y(t)
x2(t)
m + x(t) + a

,

dy(t)
dt

= y(t)

[
−b2(t) +

a2(t)x(t − τ2(t))
x2(t−τ2(t))

m + x(t − τ2(t)) + a

]
,

(5:1)

where

g(x) =
x

x2

m + x + a
.

Note that g satisfies the (NM) condition. It is easy to show that

g′(x) =
a − x2

m

( x
2

m + x + a)
2 .

Thus, g’(M) = 0 provides M =
√
am , and

g(M) = g(
√
am) =

√
am

2a +
√
am

.

Corresponding to the system (F), we have

ā = b1, b̄ = a1, c̄ = c̄, d̄ = b2, ē = a2.

Solving g(x) = D = d̄
ē
yields

r1 =
m(a2 − b2) − m

√
�

2b2
and r2 =

m(a2 − b2) +m
√

�

2b2
(5:2)

where

� = (a2 − b2)2 − 4b2
2 a

m
.

Applying Theorem 4.2 to the system (5.1), we obtain the following results.

Theorem 5.1 If a2 < b2
(
1 + 2

√
a
m

)
, then the system (5.1) has no positive ω-periodic

solution.

Theorem 5.2 Assume

(I1) a2 = b2
(
1 + 2

√
a
m

)
;

(I2) b1 > a1
√
am exp{(|b1| + b1)ω} .

Then, the system (5.1) has at least one positive ω-periodic solution.

Theorem 5.3 Assume

(I3) a2 > b2
(
1 + 2

√
a
m

)
;

(I4) b1 > a1 r2 exp{(|b1| + b1)ω} ;
(I5) r1 exp{(|b1| + b1)ω} ≤ √

am and r2 ≥ √
am exp{(|b1| + b1)ω} ;
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where r1 and r2 are given in (5.2). Then, the system (5.1) has at least two positive ω-

periodic solutions.

Remark 5.1 In [11], the author has studied the system (5.1) and obtained the follow-

ing theorem:

Theorem A. Assume

(i) a2 > b2
(
1 + 2

√
a
m

)
exp{(|b1| + b1)ω} ;

(ii) b1 > a1 l+ exp{(|b1| + b1)ω} , where

l+ =
m[ā2 exp{(|b1| + b1)ω} − b2] +m

√
[a2 exp{(|b1| + b1)ω} − b2]

2 − 4b2
2
a/m

2b2
.

Then, the system (5.1) has at least two positive ω-periodic solutions.

Obviously, the conditions (I3) and (I4) in Theorem 5.3 are much weaker than the

conditions (i) and (ii) in Theorem A. Certainly, we also need the condition (I5). Note

that our novel estimation techniques for the a priori bounds of unknown solutions to

Lz = lNz are much different from those used in [11]. Moreover, there are no similar

results to Theorems 5.1 and 5.2 in [11].

Application 5.2

Consider the following nonautonomous periodic system⎧⎪⎪⎨
⎪⎪⎩

dx(t)
dt

= r(t)x(t)
[
1 − x(t)

K(t)

]
− x(t)y(t)

m2 + x2(t)
,

dy(t)
dt

= y(t)
[
−d(t) +

μ(t)x(t)
m2 + x2(t)

]
,

(5:3)

where

g(x) =
x

m2 + x2
.

When r(t) ≡ r, μ(t) ≡ μ and d(t) ≡ d a(t) ≡ a, the system (5.3) reduces to one which

has been studied by Chen and Zhou [29]. Note that g satisfies the (NM) condition. Sol-

ving g’(M) = 0 gives M = m, and g(M) = g(m) = 1
2m . Corresponding to the system (E),

we have

ā = r̄, b̄ =
( r
K

)
, c = 1, d̄ = d̄, ē = μ̄.

Solving g(x) = D = d̄
ē
yields

r1 =
μ̄ −

√
μ̄2 − 4d̄2m2

2d̄
and r2 =

μ̄ +
√

μ̄2 − 4d̄2m2

2d̄
. (5:4)

Applying our results to the system (5.3), we have the following theorems.

Theorem 5.4 If 1
2m < d̄

μ̄
, then the system (5.3) has no positive ω-periodic solution.

Theorem 5.5 Assume

(J1) 1
2m = d̄

μ̄
;
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(J2) r̄ >
( r
K

)
m exp{(|r| + r̄)ω} .

Then, the system (5.3) has at least one positive ω-periodic solution.

Theorem 5.6 Assume

(J3) 1
2m > d̄

μ̄
;

(J4) 2d̄r̄ >
( r
K

)
(μ̄ +

√
μ̄2 − 4d̄2m2) exp{(|r| + r̄)ω};

(J5) (μ̄ −
√

μ̄2 − 4d̄2m2) exp{(|r| + r̄)ω} ≤ 2md̄ and

(μ̄ +
√

μ̄2 − 4d̄2m2) ≥ 2md̄ exp{(|r| + r̄)ω} .
Then, the system (5.3) has at least two positive ω-periodic solutions.

Application 5.3

Consider the following nonautonomous periodic system

⎧⎪⎨
⎪⎩

dx(t)
dt

= r(t)x(t)
[
1 − x(t)

K(t)

]
− c(t)x(t)y(t)e−βx(t),

dy(t)
dt

= y(t)[−d(t) + α(t)x(t)e−βx(t)],
(5:5)

where

g(x) = xe−βx.

Note that g satisfies the (NM) condition. When r(t) ≡ r, c(t) ≡ c, d(t) ≡ d and a(t) =
a, the system (5.5) reduces to one which has been studied by [10].

Obviously, g’(M) = 0 gives M = 1
β , and g(M) = 1

βe . Corresponding to the system (E),

we have

ā = r̄, b̄ =
( r

K

)
, c̄ = c̄, d̄ = d̄, ē = ᾱ.

The equation g(x) = D = d̄
ē
is equivalent to

F(x) = xe−βx − d̄

ᾱ
= 0.

If g(M) > d̄
ᾱ
, then it is easy to show that F(0) <0, F(M) >0 and F(∞) <0. Thus, there

exist r1 Î (0, M) and r2 Î (M, ∞) such that

F (r1) = 0 and F(r2) = 0. (5:6)

Applying our results to the system (5.5), we have the following theorems.

Theorem 5.7 If 1
βe < d̄

ᾱ
, then the system (5.5) has no positive ω-periodic solution.

Theorem 5.8 Assume

(K1) 1
βe =

d̄
ᾱ
;

(K2) r̄ >
( r

K

)1
β
exp{(|r| + r̄)ω} .

Then, the system (5.5) has at least one positive ω-periodic solution.

Xing and Xia Advances in Difference Equations 2012, 2012:108
http://www.advancesindifferenceequations.com/content/2012/1/108

Page 16 of 18



Theorem 5.9 Assume

(K3) 1
βe > d̄

ᾱ
;

(K4) 2r̄ >
( r
K

)
r2 exp{(|r| + r̄)ω} ;

(K5) r1 exp{(|r| + r̄)ω} ≤ 1
β and r2 ≥ 1

β
exp{(|r| + r̄)ω} ;

where r1 and r2 are given in (5.6). Then, the system (5.5) has at least two positive ω-

periodic solutions.

6 Conclusion
A class of nonautonomous predator-prey model with nonmonotonic functional

response in this paper. Some new sufficient conditions are obtained for the nonexis-

tence of periodic solutions and the global existence of at least one or two positive peri-

odic solutions. Our method is based on Mawhin’s coincidence degree and novel

estimation techniques for the priori bounds of unknown solutions. Some novel estima-

tion techniques are employed for the priori bounds of unknown solutions to Lz = lNz,
which are much different from the arguments used in the previous literature. Some

applications are also presented to illustrate the feasibility and effectiveness of our main

results.
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