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Introduction andmain results
Consider the following second-order damped vibration problems

ü(t) + Bu̇(t) – L(t)u(t) +Wu
(
t,u(t)

)
= , t ∈ R, (VS)

where u = (u,u, . . . ,uN ) ∈ R
N , B is an antisymmetric N × N constant matrix, L ∈

C(R,RN×N ) is a symmetric matrix valued function and W ∈ C(R×R
N ,R). As usual we

say that a solution u of (VS) is homoclinic (to ) if u ∈ C(R,RN ), u �≡ , u(t) → , and
u̇(t)→  as |t| → ∞.
When B is a zero matrix, (VS) is just the following second-order Hamiltonian systems

(HSs)

ü(t) – L(t)u(t) +Wu
(
t,u(t)

)
= , t ∈R. (HS)

Inspired by the excellent monographs and works [–], by now, the existence and mul-
tiplicity of periodic and homoclinic solutions for HSs have extensively been investigated
in many articles via variational methods, see [–]. Also second-order HSs with im-
pulses via variational methods have recently been considered in [–]. More precisely,
in , Rabinowitz [] established the existence result on homoclinic orbit for the peri-
odic second-order HS. It is well known that the periodicity is used to control the lack of
compactness due to the fact that HS is set on all R.
For the nonperiodic case, the problem is quite different from the one described in nature.

Rabinowitz and Tanaka [] introduced a type of coercive condition on the matrix L:

(L) l(t) := inf|x|= L(t)x · x → +∞, as |t| → ∞.
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They established a compactness lemma under the nonperiodic case and obtained the ex-
istence of homoclinic orbit for the nonperiodic system (HS) under the usual Ambrosetti-
Rabinowitz (AR) growth condition

 < μW (t,u)≤ Wu
(
t,u(t)

)
u, ∀t ∈ R and u ∈R

N \ {},

where μ >  is a constant. Later, Ding [] strengthened condition (L) by

(L) there exists a constant α >  such that

l(t)|t|–α → +∞ as |t| → ∞.

Under the condition (L) and some subquadratic conditions on W (t,u), Ding proved the
existence and multiplicity of homoclinic orbits for the system (HS). From then on, the
condition (L) or (L) are extensively used in many articles.
Compared with the case where B is a zeromatrix, the case where B �= , i.e., the nonperi-

odic system (VS), has been considered only by a few authors, see [–]. Zhang and Yuan
[] studied the existence of homoclinic orbits for the nonperiodic system (VS) when W
satisfies the subquadratic condition at infinity. Soon after, Wu and Zhang [] obtained
the existence and multiplicity of homoclinic orbits for the nonperiodic system (VS) when
W satisfies the local (AR) growth condition

 < μW (t,u)≤ Wu(t,u)u, ∀t ∈ R and |u| ≥ r, ()

where μ >  and r >  are two constants. It is worth noticing that the matrix L is required
to satisfy the condition (L) in the above two articles.
Inspired by [, ], in this article we shall replace the condition (L) on L by the follow-

ing conditions:

(L) there exists a constant β >  such that

meas
{
t ∈R : |t|–βL(t) < bIN

}
< +∞, ∀b > ,

and

(L) there exists a constant γ ≥  such that

l(t) := inf|x|=L(t)x · x ≥ –γ , ∀t ∈R,

which are first used in []. By using a recent critical point theorem, we prove that the
nonperiodic system (VS) has at least one homoclinic orbit when W satisfies weak su-
perquadratic at the infinity, which improve and extend the results of [, ].

Remark  In fact, there are some matrix-valued functions L(t) satisfying (L) and (L),
but not satisfying (L) or (L). For example,

L(t) =
(
t sin t + 

)
IN .
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We consider the following conditions:

(W) W ∈ C(R×R
N ,R), and there exist positive constants c and ν >  such that

c|u|ν ≤ Wu(t,u)u, ∀(t,u) ∈R×R
N .

(W) Wu(t,u) = o(|u|) as |u| →  uniformly in t.
(W) W̃ (t,u) := 

Wu(t,u)u –W (t,u) >  if u �= , and

inf

{
W̃ (t,u)

|u| : t ∈ R with a ≤ |u| < b
}
> ,

for any a,b > .
(W) There exist r >  and σ >  such that |Wu(t,u)|σ ≤ cW̃ (t,u)|u|σ if |u| ≥ r.

Theorem  Assume that (L)-(L) and (W)-(W) hold. Then the system (VS) has at least
one homoclinic orbit.

Remark  To see that our result generalizes [] we present the following examples.
These functions satisfy the weak superquadratic conditions (W)-(W), but not verify the
growth condition ().
Example:

W (t,u) = a(t)
(

|u|p + (p – )|u|p–ε sin
( |u|ε

ε

))
,

where inft∈R a(t) > , and p > ,  < ε < p – .
In fact it is easy to verify that (W)-(W) are satisfied. However, similar to the discussion

of Remark . in [], let un = (ε(nπ + π
 )) ε e, where e = (, , . . . , ). Then for any μ > ,

one has

Wu(t,un)un –μW (t,un) = a(t)
[
(p –μ)|un|p

+ (p – )(p – ε –μ)|un|p–ε sin
(|un|ε/ε)

+ (p – )|un|p sin
(|un|ε/ε)]

= a(t)|un|p
[
 –μ +

(p – )(p – ε –μ) sin(|un|ε/ε)
|un|ε

]

→ –∞ as n → ∞.

That is, the condition () is not satisfied for any μ > .

This article is organized as follows. In the following section, we formulate the varia-
tional setting and recall a critical point theorem required. In section ‘Linking structure’,
we discuss linking structure of the functional. In section ‘The (C)c-sequence’, we study the
Cerami condition of the functional and give the proof of Theorem .

Notation Throughout the article, we shall denote by c >  various positive constants
which may vary from line to line and are not essential to the problem.
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Variational setting
In this section, we establish a variational setting for the system (VS). Let H be H(R,RN )
which is a Hilbert space with the inner product and norm given by

〈u, v〉H =
∫
R

[(
u̇(t), v̇(t)

)
+

(
u(t), v(t)

)]
dt

and

‖u‖H =
(∫

R

[∣∣u̇(t)∣∣ + ∣∣u(t)∣∣]dt
) 



for u, v ∈ H , where (·, ·) denotes the inner product in R
N . It is well known that H is con-

tinuously embedded in Lp(R,RN ) for p ∈ [,∞). Define an operator J :H →H by

〈Ju, v〉 =
∫
R

(Bu, v̇)dt ()

for all u, v ∈H . Since B is an antisymmetric N ×N constant matrix, J is self-adjoint onH .
Moreover, we denote by A the self-adjoint extension of the operator – d

dt + L(t) + J with
the domainD(A) ⊂ L(R,RN ). Let | · |p be the usual Lp-norm, and 〈·, ·〉 the usual L-inner
product. Set E :=D(|A|  ), the domain of |A|  . Define on E the inner product

〈u, v〉E :=
〈|A|  u, |A|  v〉 + 〈u, v〉

and the norm

‖u‖E = 〈u,u〉 

E .

Then E is a Hilbert space and it is easy to verify that E is continuously embedded in
H(R,RN ). Using a similar proof of Lemma . in [], we can prove the following lemma.

Lemma  Suppose that L(t) satisfies (L) and (L), then E is compactly embedded into
Lp(R,RN ) for p ∈ [, +∞].

By Lemma , it is easy to prove that the spectrum σ (A) has a sequence of eigenvalues
(counted with their multiplicities)

λ ≤ λ ≤ · · · ≤ λk ≤ · · ·

with λk → +∞ as k → +∞, and corresponding eigenfunctions {ek}k∈N, Aek = λkek , form
an orthogonal basis in L(R,RN ). Assume λ,λ, . . . ,λ
– < , λ
–+ = · · · = λ
 =  and let
E– := span{e, . . . , e
–}, E := span{e
–+, . . . , e
}, and E+ := clE(span{e
+, . . .}). Then

E = E– ⊕ E ⊕ E+

is an orthogonal decomposition of E. We introduce on E the following product

〈u, v〉 := 〈|A|  u, |A|  v〉 + 〈
u, v

〉
,
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and the norm

‖u‖ = 〈u,u〉 
 ,

where u = u– +u +u+, v = v– + v + v+ ∈ E– ⊕E ⊕E+. Then ‖ · ‖ and ‖ · ‖E are equivalent
(see []). So by Lemma , we see that there exists a constant ηp >  such that

|u|p ≤ ηp‖u‖, ∀u ∈ E,∀p ∈ [, +∞].

Define the functional � on E by

�(u) =
∫
R

[


∣∣u̇(t)∣∣ + 


(
Bu(t), u̇(t)

)
+


(
L(t)u(t),u(t)

)
–W

(
t,u(t)

)]
dt.

Then

�(u) =


(‖u+‖ – ‖u–‖) –

∫
R

W
(
t,u(t)

)
dt, ()

where u = u– + u + u+ ∈ E. Furthermore, define

(u) :=
∫
R

W (t,u)dt.

From the assumptions it follows that � is defined on the Banach space E and belongs to
C(E,R). A standard argument shows that critical points of � are solutions of the system
(VS). Moreover, it is easy to verify that if u �≡  is a solution of (VS), then u(t) →  and
u̇(t) → , as |t| → ∞ (see Lemma . in []).
In order to study the critical points of�, we now recall a critical point theorem, see [].
Let E be a Banach space. A sequence {un} ⊂ E is said to be a (C)c-sequence if

�(un) → c and
(
 + ‖un‖

)
�′(un) → .

� is said to satisfy the (C)c-condition if any (C)c-sequence has a convergent subsequence.

Theorem  ([]) Suppose � ∈ C(E,R), E = X ⊕ Y , where dimX <∞, there exist R > ρ >
, κ >  and e ∈ Y \ {} such that inf�(Y ∩ Sρ) ≥ κ and sup�(∂Q) ≤ , where Sρ := Sρ()
is the sphere of radius ρ and center , and

Q =
{
u = x + se : s≥ ,x ∈ X,‖u‖ ≤ R

}
.

Moreover, if � satisfies the (C)c-condition for all c ∈ [κ , sup�(Q)], then � has a critical
value in [κ , sup�(Q)].

Linking structure
First we discuss the linking structure of �. By condition (W), one has

W (t,u)≥ c|u|ν ≥ , ()

http://www.advancesindifferenceequations.com/content/2012/1/102
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for all (t,u) ∈ R × R
N . Observe that if (W) holds, and together with (), then if |u| > r,

one has

∣∣Wu(t,u)
∣∣σ ≤ c

(


Wu(t,u)u –W (t,u)

)
|u|σ

≤ c

Wu(t,u)u|u|σ

≤ c

∣∣Wu(t,u)

∣∣|u|σ+,

and hence

∣∣Wu(t,u)
∣∣ ≤

(
c


) 
σ– |u| σ+

σ– , if |u| ≥ r.

Let p = σ /(σ – ) > . Then we have

∣∣Wu(t,u)
∣∣ ≤

(
c


) 
σ– |u|p–, if |u| ≥ r. ()

Remark that (W) and () imply that, for any ε > , there is Cε >  such that

∣∣Wu(t,u)
∣∣ ≤ ε|u| +Cε|u|p–, ()

and

∣∣W (t,u)
∣∣ ≤ ε|u| +Cε|u|p, ()

for all (t,u) ∈R×R
N .

Lemma  Let (W)-(W) be satisfied, and assume further that (W) holds. Then there ex-
ists ρ >  such that κ := inf�(S+ρ ) > , where S+ρ = ∂Bρ ∩ E+.

Proof By () we have

(u) ≤ ε|u| +Cε|u|pp ≤ c
(
ε‖u‖ +Cε‖u‖p)

for all u ∈ E, the lemma follows from the form of � (see ()). �

Denote

H :=Re
+, EH = E– ⊕ E ⊕H.

Then EH is a finite subspace.

Lemma  Under the assumptions of Theorem , there exists REH >  such that �(u) ≤ 
for all u ∈ EH with ‖u‖ ≥ REH .

http://www.advancesindifferenceequations.com/content/2012/1/102
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Proof It suffices to show that �(u) → –∞ in EH as ‖u‖ → ∞. For any u ∈ EH, let u =
u+ + u– + u, where u+ ∈H, u– ∈ E–, u ∈ E. Since dimH = , then

∣∣u+ ∣∣ = 〈
u+ ,u

〉
 ≤ ∣∣u+ ∣∣ν′ |u|ν ≤ c

∣∣u+ ∣∣|u|ν ,

where 
ν′ + 

ν
= . Thus |u+ |ν ≤ c|u+ | ≤ c|u|ν , and together with (), we obtain

�(u) =


∥∥u+∥∥ –



∥∥u–∥∥ –

∫
R

W
(
t,u(t)

)
dt

≤ c
∣∣u+ ∣∣ν – 


∥∥u–∥∥ – c

∣∣u+ + u– + u
∣∣ν
ν

≤ c
∣∣u+ + u– + u

∣∣
ν
–


∥∥u–∥∥ – c

∣∣u+ + u– + u
∣∣ν
ν
,

which shows that �(u) → –∞ as ‖u‖ → ∞. �

As a special case we have

Lemma  Assume that the assumptions of Theorem  are satisfied. Then, letting e ∈ H
with ‖e‖ = , there is r > ρ >  such that sup�(∂M) ≤ κ where M := {u = u– + u + se :
u– + u ∈ E– ⊕ E, s≥ ,‖u‖ ≤ r} and κ is given by Lemma .

The (C)c-sequence
In this section, we discuss the (C)c-sequence of �.

Lemma  Let (L)-(L) and (W)-(W) hold. Then any (C)c-sequence is bounded.

Proof Let {uj} ⊂ E be such that

�(uj) → c and
(
 + ‖uj‖

)
�′(uj) → .

Then, for C > ,

C ≥ �(uj) –


�′(uj)uj =

∫
R

W̃ (t,uj)dt. ()

Suppose to the contrary that {uj} is unbounded. Setting yj = uj/‖uj‖, then ‖yj‖ = , |yj|p ≤
c‖yj‖ = c for all p ≥ . Passing to subsequence, yj ⇀ y in E, and yj → y in Lp for p≥ .
Note that

o() = �′(uj)
(
u+j – u–j

)

= ‖uj‖ –
∫
R

Wu(t,uj)
(
u+j – u–j

)
dt

= ‖uj‖ – ‖uj‖
∫
R

Wu(t,uj)(y+j – y–j )
‖uj‖ dt

= ‖uj‖
(
 –

∫
R

Wu(t,uj)(y+j – y–j )
‖uj‖ dt

)
. ()

http://www.advancesindifferenceequations.com/content/2012/1/102
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From (), we obtain

∫
R

Wu(t,uj)(y+j – y–j )
‖uj‖ dt → . ()

Set for s≥ ,

h(s) := inf
{
W̃ (t,u) : t ∈R and u ∈R

N with |u| ≥ s
}
. ()

By (W) and (W), h(s) >  for all s > , and h(s)→ ∞ as s → ∞.
For  ≤ l <m, let

Cm
l = inf

{
W̃ (t,u)

|u| : t ∈R with l ≤ ∣∣u(t)∣∣ <m
}
,

and

�j(l,m) =
{
t ∈R : l ≤ ∣∣uj(t)∣∣ <m

}
. ()

Then by (W) one has Cm
l >  and

W̃ (t,uj) ≥ Cm
l |uj| for all t ∈ �j(l,m).

It follows from () and () that

C ≥
∫

�j(,l)
W̃ (t,uj)dt +

∫
�j(l,m)

W̃ (t,uj)dt +
∫

�j(m,∞)
W̃ (t,uj)dt

≥
∫

�j(,l)
W̃ (t,uj)dt +Cm

l

∫
�j(l,m)

|uj| dt + h(m)
∣∣�j(m,∞)

∣∣. ()

Using () we obtain

∣∣�j(m,∞)
∣∣ ≤ C

h(m)
→ , ()

asm → ∞ uniformly in j, and for any fixed  < l <m,

∫
�j(l,m)

|yj| dt = 
‖uj‖

∫
�j(l,m)

|uj| dt ≤ C

Cm
l ‖uj‖ → , ()

as j → ∞. It follows from () that, for any s ∈ [, +∞),

∫
�j(m,∞)

|yj|s dt ≤
(∫

�j(m,∞)
|yj|s dt

)/

· ∣∣�j(m,∞)
∣∣/ ≤ c

∣∣�j(m,∞)
∣∣/ → , ()

asm → ∞ uniformly in j.
Let  < ε < 

 . By (W) there is lε >  such that

∣∣Wu(t,u)
∣∣ < ε

c
|u|

http://www.advancesindifferenceequations.com/content/2012/1/102
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for all |u| ≤ lε . Consequently,

∫
�j(,lε )

Wu(t,uj)(y+j – y–j )|yj|
|uj| dt ≤

∫
�j(,lε )

ε

c
∣∣y+j – y–j

∣∣|yj|dt

≤ ε

c
|yj| < ε ()

for all j.
Set σ ′ := p/. By (W), () and Hölder inequality, we can takemε ≥ r large enough such

that

∫
�j(mε ,∞)

Wu(t,uj)(y+j – y–j )|yj|
|uj| dt

≤
(∫

�j(mε ,∞)

|Wu(t,uj)|σ
|uj|σ dt

)/σ(∫
�j(mε ,∞)

(∣∣y+j – y–j
∣∣|yj|)σ ′

dt
)/σ ′

≤
(∫

�j(mε ,∞)
cW̃ (t,uj)dt

)/σ(∫
RN

(∣∣y+j – y–j
∣∣)p dt

)/p(∫
�j(mε ,∞)

|yj|p dt
)/p

≤ ε ()

for all j. Note that there is C = C(ε) >  independent of j such that |Wu(t,uj)| ≤ C|uj| for
t ∈ �j(lε ,mε). By () there is j such that

∫
�j(lε ,mε )

Wu(t,uj)(y+j – y–j )|yj|
|uj| dt ≤ C

∫
�j(lε ,mε )

∣∣y+j – y–j
∣∣|yj|dt

≤ C|yj|
(∫

�j(lε ,mε )
|yj| dt

)/

≤ ε ()

for all j ≥ j. By ()-(), one has

lim sup
j→∞

∫
R

Wu(t,uj)(y+j – y–j )
‖uj‖ dt ≤ ε < , ()

which contradicts with (). The proof is complete. �

Lemma  Under the assumptions of Theorem ,  is nonnegative, weakly sequentially
lower semi-continuous, and ′ is weakly sequentially continuous.Moreover, ′ is compact.

Proof We follow the idea of []. Clearly, by assumptions, (u) ≥ . Let uj ⇀ u in E. By
Lemma , uj → u in Lp(R) for p ≥ , and uj(t) → u(t) a.e. t ∈ R. HenceW (t,uj)→W (t,u)
for a.e. t ∈R. Thus, it follows from Fatou’s lemma that

(u) =
∫
R

W (t,u)dt =
∫
R

lim
j→∞W (t,uj)dt ≤ lim inf

j→∞

∫
R

W (t,uj)dt = lim inf
j→∞ (uj),

which shows that the function  is weakly sequentially lower semi-continuous.

http://www.advancesindifferenceequations.com/content/2012/1/102
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Now we show that  ′ is compact. It is clear that, for any ϕ ∈ C∞
 (R),

 ′(uj)ϕ =
∫
R

Wu(t,uj)ϕ dt →
∫
R

Wu(t,u)ϕ dt =  ′(u)ϕ. ()

Since C∞
 (R) is dense in E, for any v ∈ E, we take ϕn ∈ C∞

 (R) such that

‖ϕn – v‖ →  as j → ∞.

By (), one has

∣∣ ′(uj)v – ′(u)v
∣∣ ≤ ∣∣( ′(uj) – ′(u)

)
ϕn

∣∣ + ∣∣( ′(uj) – ′(u)
)
(v – ϕn)

∣∣
≤ ∣∣( ′(uj) – ′(u)

)
ϕn

∣∣
+ c

∫
R

(|u| + |uj| + |u|p– + |uj|p–
)|v – ϕn|

≤ ∣∣( ′(uj) – ′(u)
)
ϕn

∣∣ + c‖v – ϕn‖.

For any ε > , fix n so that ‖v – ϕn‖ < ε/c. By () there exists j such that

∣∣( ′(uj) – ′(u)
)
ϕn

∣∣ < ε/ for all j ≥ j.

Then |( ′(uj)– ′(u))ϕn| < ε for all j ≥ j, which proves the weakly sequentially continuity.
Therefore,  ′ is compact by the weakly continuity of  ′ since E is a Hilbert space. �

Lemma  implies that �′ is weakly sequentially continuous, i.e., if uj ⇀ u in E, then
�′(uj) → �′(u). Let {uj} be an arbitrary (C)c-sequence, by Lemma , it is bounded, up to
a subsequence, we may assume uj ⇀ u in E. Plainly, u is a critical point of �.

Lemma  Under the assumptions of Lemma , � satisfies (C)c-condition.

Proof Let {uj} be any (C)c-sequence. By Lemmas , , and , one has

∣∣∣∣
∫
R

(
Wu(t,uj) –Wu(t,u)

)(
u+j – u+

)
dt

∣∣∣∣

≤
(∫

R

∣∣Wu(t,uj) –Wu(t,u)
∣∣ dt

) 

(∫

R

∣∣u+j – u+
∣∣ dt

) 


≤ c
(∫

R

∣∣u+j – u+
∣∣dt

) 
 → 

and

o() =
(
�′(uj) –�′(u),u+j – u+

)

=
∥∥u+j – u+

∥∥ +
∫
R

(
Wu(t,uj) –Wu(t,u)

)(
u+j – u+

)
dt

=
∥∥u+j – u+

∥∥ + o().

http://www.advancesindifferenceequations.com/content/2012/1/102
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So u+j → u+ as j → ∞. Since dim(E– ⊕ E) <∞, we have u–j + uj → u– + u, and therefore
uj → u as j → ∞ in E. �

Proof of the theorem

Proof of Theorem  Lemma  shows that � possesses the linking structure of Theorem ,
and Lemma  implies that � satisfies the (C)c-condition. Therefore, by Theorem  � has
at least one critical point u. �
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