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Abstract
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1 Introduction
In this article, we investigate the existence and uniqueness of square-mean almost

automorphic solutions to the class of stochastic differential equations in the abstract

form:

d[x(t) − f
(
t,B1x(t)

)
] = [Ax(t) + g(t,B2x(t))]dt + h(t,B3x(t))dW(t), t ∈ R, (1:1)

where A : D(A) ⊂ L2(P, H) → L2(P, H) is the infinitesimal generator of an analytic

semigroup of linear operators {T(t)}t≥0 on L2(P, H), Bi, i = 1, 2, 3, are bounded linear

operators that can be viewed as control terms, and W(t) is a two-sided standard one-

dimensional Brownian motion defined on the filtered probability space (�, F , P, Ft) ,

where Ft = σ {W(u) − W(v); u, v ≤ t}. Here, f, g, and h are appropriate functions to be

specified later.

The concept of almost automorphy is an important generalization of the classical

almost periodicity. They were introduced by Bochner [1,2]; for more details about this

topic, we refer the reader to [3,4]. In recent years, the existence of almost periodic and

almost automorphic solutions on different kinds of deterministic differential equations

have been considerably investigated in lots of publications [5-15] because of its signifi-

cance and applications in physics, mechanics, and mathematical biology.

Recently, the existence of almost periodic or pseudo almost periodic solutions to

some stochastic differential equations have been considered in many publications, such

Chang et al. Advances in Difference Equations 2011, 2011:9
http://www.advancesindifferenceequations.com/content/2011/1/9

© 2011 Chang et al; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

mailto:lzchangyk@163.com
mailto:lzchangyk@163.com
http://creativecommons.org/licenses/by/2.0


as [16-22] and references therein. In a very recent article [23], the authors introduced a

new concept of square-mean almost automorphic stochastic process. This paper gener-

alizes the concept of quadratic mean almost periodic processes introduced by Bezandry

and Diagana [18]. The authors established the existence and uniqueness of square-

mean almost automorphic mild solutions to the following stochastic differential equa-

tions:

dx(t) = Ax(t)dt + f (t)dt +W(t)dW(t), t ∈ R,

dx(t) = Ax(t)dt + f (t, x(t))dt + g(t, x(t)) dW(t), t ∈ R,

in a Hilbert space L2(P, H), where A is an infinitesimal generator of a C0-semigroup

{T(t)}t ≥ 0, and W(t) is a two-sided standard one-dimensional Brown motion defined on

the filtered probability space (�, F , P, Ft) , where Ft = σ {W(u) − W(v); u, v ≤ t}.
Motivated by the above mentioned studies [18,23], the main purpose of this article is

to investigate the existence and uniqueness of square-mean almost automorphic solu-

tions to the problem (1.1). Note that (1.1) is more general than the problem studied in

[23]. We first use a sharper definition (Definition 2.1) of square-mean almost auto-

morphic process than the Definition 2.5 in [23]. We then present some additional

properties of square-mean almost automorphic processes (see Lemmas 2.4-2.5). Our

main result is established by using fractional powers of linear operators and Banach

contraction principle. The obtained result can be seen as a contribution to this emer-

ging field since it improves and generalizes the results in [23].

The rest of this article is organized as follows. In section 2, we recall and prove some

basic definitions, lemmas, and preliminary facts which will be used throughout this

article. We also prove some additional properties of square-mean almost automorphic

functions. In Section 3, we prove the existence and uniqueness of square-mean almost

automorphic mild solutions to (1.1).

2 Preliminaries
In this section, we introduce some basic definitions, notations, lemmas, and technical

results which are used in the sequel. For more details on this section, we refer the

reader to [23,24].

Throughout the article, we assume that (H, || · ||〈·, ·〉) and (K, || · ||K, 〈·, ·〉K) are two

REAL separable Hilbert spaces. Let (�,F ,P) be a complete probability space. The

notation L2(P, H) stands for the space of all H-valued random variables x such that

E‖x‖2 =
∫

�

‖x‖2dP < ∞.

For x ∈ L2(P,H), let

|| x ||2 =
(∫

�

|| x ||2dP
)1

2
.

Then, it is routine to check that L2(P, H) is a Hilbert space equipped with the norm

||·||2. We let L(K,H) denote the space of all the linear-bounded operators from K into

H, equipped with the usual operator norm || · ||L(K,H). In addition, W(t) is a two-sided

standard one-dimensional Brownian motion defined on the filtered probability space

(�, F , P, Ft) , where Ft = σ {W(u) − W(v); u, v ≤ t}.
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Let 0 Î r(A) where r(A) is the resolvent set of A; then, it is possible to define the

fractional power (-A)a, for 0 <a ≤ 1, as a closed linear invertible operator on its

domain D((-A)a). Furthermore, the subspace D((-A)a) is dense in L2(P, H) and the

expression

|| x ||α = || (−A)αx ||2, x ∈ D((−A)α),

defines a norm on D((-A)a). Hereafter, we denote by L2(P, Hα) the Banach space D

((-A)a) with norm ||x||a.

The following properties hold by Pazy [25].

Lemma 2.1 Let 0 <g ≤ μ ≤ 1. Then, the following properties hold:

(i) L2(P,Hμ)is a Banach space and L2(P,Hμ) ↪→ L2(P,Hγ )is continuous.

(ii) The function s ® (-A)μT(s) is continuous in the uniform operator topology on (0,

∞), and there exists Mμ > 0 such that ||(-A)μT(t)|| ≤ Mμe
-δtt-μ for each t > 0.

(iii) For each x Î D((-A)μ) and t ≥ 0, (-A)μT(t)x = T(t)(-A)μx.

(iv) (-A)-μ is a bounded linear operator in L2(P, H)with D((-A)μ) = Im((-A)-μ).

Definition 2.1 ([23]) A stochastic process x : R → L2(P,H)is said to be stochastically

continuous if

lim
t→s

E || x(t) − x(s) ||2 = 0.

Definition 2.2 (compare with [23]) A stochastically continuous stochastic process

x : R → L2(P,H)is said to be square-mean almost automorphic if for every sequence of

real numbers {s′n}n∈N, there exist a subsequence {sn}nÎN and a stochastic process

lim
n→∞ E || x(t + sn) − y(t) ||2 = 0 and lim

n→∞ E || y(t − sn) − x(t) ||2 = 0

hold for each t Î ℝ.

The collection of all square-mean almost automorphic stochastic processes

x : R → L2(P,H) is denoted by AA(R; L2(P,H)).

Lemma 2.2 ([23]) If x, x1 and x2 are all square-mean almost automorphic stochastic

processes, then the following hold true:

(i) x1 + x2 is square-mean almost automorphic.

(ii) lx is square-mean almost automorphic for every scalar l.
(iii) There exists a constant M > 0 such that supt Î ℝ||x(t)||2 ≤ M. That is, x is

bounded in L2(P, H).

Lemma 2.3 ([23]) (AA(R; L2(P, H)) , || · ||∞)is a Banach space when it is equipped

with the norm:

|| x ||∞ : = sup
t∈R

|| x(t) ||2 = sup
t∈R

(E || x(t) ||2) 12 ,

for x ∈ AA(R; L2(P,H)).
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Let L2(P, H̃) be defined as L2(P, H) and note that L2(P, H), L2(P, H̃) are Banach

spaces; then, we state the following lemmas (cf. [3,13]):

Lemma 2.4 Let f ∈ AA(R; L2(P,H)). Then, we have

(I) h(t) : = f (−t) ∈ AA(R; L2(P,H)).

(II) fa(t) : = f (t + a) ∈ AA(R; L2(P,H)).

Lemma 2.5 Let L ∈ L(L2(P, H̃), L2(P,H))and assume that f ∈ AA(R; L2(P, H̃)).

Then, Lf ∈ AA(R; L2(P,H)).

Definition 2.3 ([23]) A function f : R × L2(P,H) → L2(P,H), (t,x) ® f(t,x), which is

jointly continuous, is said to be square-mean almost automorphic in t Î ℝ for each

x ∈ L2(P,H)if for every sequence of real numbers {s′n}n∈N, there exist a subsequence {sn}

nÎN and a stochastic process f̃ : R × L2(P,H) → L2(P,H)such that

lim
n→∞ E || f (t + sn, x) − f̃ (t, x) ||2 = 0 and lim

n→∞ E || f̃ (t + sn, x) − f (t, x) ||2 = 0

for each t Î ℝ and each x ∈ L2(P,H).

Theorem 2.1 ([23]) Let f : R × L2(P,H) → L2(P,H), (t, x) ® f(t, x) be square-mean

almost automorphic in t Î ℝ for each x ∈ L2(P,H), and assume that f satisfies Lipschitz

condition in the following sense:

E || f (t, x) − f (t, y) ||2 ≤ M̃E || x − y ||2

for all x, y ∈ L2(P,H)and for each t Î ℝ, where M̃ > 0is independent of t. Then, for

any square-mean almost automorphic process x : R → L2(P,H), the stochastic process

F : R → L2(P,H)given by F(t) = f (t, x(t)) is square-mean almost automorphic.

Definition 2.4 An Ft-progressively measurable stochastic process {x(t)}t Î ℝ is called a

mild solution of problem (1.1) on R if the function s ® AT(t - s)f (s, B1x(s)) is integrable

on (-∞, t) for each t Î ℝ, and x(t) satisfies the corresponding stochastic integral equation

x(t) =T(t − a)[x(a) − f (a,B1x(a))] + f (t,B1x(t)) +
∫ t

a
AT(t − s)f (s,B1x(s)) ds

+
∫ t

a
T(t − s)g(s,B2x(s)) ds +

∫ t

a
T(t − s)h (s,B3x(s)) dW(s)

for all t ≥ a and for each a Î ℝ.

3 Main results
In this section, we investigate the existence of a square-mean almost automorphic

solution for the problem (1.1). We first list the following basic assumptions:

(H1) The operator A : D(A) ⊂ L2(P,H) → L2(P,H) is the infinitesimal generator of

an analytic semigroup of linear operators {T(t)}t≥0 on L2(P, H) and M, δ are positive

numbers such that ||T(t)||≤ Me-δt for t ≥ 0.

(H2) The operators Bi : L2(P,Hα) → L2(P,H) for i = 1, 2, 3, are bounded linear

operators and � : = maxi=1,2,3{||Bi ||L(L2(P,Hα),L2(P,H))}.
(H3) There exists a positive number b Î (0, 1) such that f : R × L2(P,H) → L2(P,Hβ)

is square-mean almost automorphic in t Î ℝ for each ϕ ∈ L2(P,H). Let Lf > 0 be such

that for each (t,ϕ), (t,ψ) ∈ R × L2(P,H)
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E || (−A)β f (t, ϕ) − (−A)β f (t, ψ) ||2 ≤ Lf E ||ϕ − ψ ||2.

(H4) The functions g : R × L2(P,H) → L2(P,H) and h : R × L2(P,H) → L2(P,H) are

square-mean almost automorphic in t Î ℝ for each ϕ ∈ L2(P,H). Moreover, g and h

satisfy Lipschitz conditions in � uniformly for t, that is, there exist positive numbers

Lg, and Lh such that

E || g(t, ϕ) − g(t, ψ) ||2 ≤ LgE ||ϕ − ψ ||2

and

E || h(t, ϕ) − h(t, ψ) ||2 ≤ LgE ||ϕ − ψ ||2

for all t Î ℝ and each �, ψ ∈ L2(P,H).

Theorem 3.1 Let α ∈ (0, 12)and a <b < 1. If the conditions (H1)-(H4) are satisfied,

then the problem (1.1) has a unique square-mean almost automorphic mild solution

x(·) ∈ AA(R; L2(P,Hα))provided that

L0 = 4� 2
{
|| (−A)α−β ||2Lf +M2

1−β+αδ2(α−β)[�(β − α)]2Lf +M2
αδ2(α−1)[�(1 − α)]2Lg

+M2
αLh(2δ)2α−1�(1 − 2α)} < 1,

(3.1)

where Γ(·) is the gamma function.

Proof: Let 
 : AA(R; L2(P,Hα)) → AA(R; L2(P,Hα)) be the operator defined by


x(t) =f (t,B1x(t)) +
∫ t

−∞
AT(t − s)f (s,B1x(s)) ds

+
∫ t

−∞
T(t − s)g(s,B2x(s))ds +

∫ t

−∞
T(t − s)h (s,B3x(s)) dW(s), t ∈ R.

First, we prove that Λx is well defined. Indeed, let x ∈ AA(R; L2(P,Hα)), then s ®
Bix(s) is in AA(R; L2(P,H)) as Bi ∈ L(L2(P,Hα), L2(P, H), i = 1, 2, 3 in virtue of

Lemma 2.5, and hence, by Theorem 2.1, the function s ® (-A)bf (s, B1x(s)) belongs to

AA(R; L2(P,H)) whenever B1x ∈ AA(R; L2(P,H)). Thus, using Lemma 2.2 (iii), it fol-

lows that there exists a constant Nf > 0 such that suptÎℝ E||(-A)bf(t,B1x(t))||
2 ≤ Nf.

Moreover, from the continuity of s ® AT(t - s) and s ® T(t - s) in the uniform opera-

tor topology on (-∞, t) for each t Î ℝ and the estimate

E

∥∥∥∥
∫ t

−∞
AT(t − s)f (s,B1x(s))ds

∥∥∥∥2

α

≤ E
(∫ t

−∞
||(−A)1−β+αT(t − s)(−A)β f (s,B1x(s))|| ds

)2

≤ M2
1−β+αE

(∫ t

−∞
e−δ(t−s)(t − s)β−α−1||(−A)β f (s,B1x(s))|| ds

)2

≤ M2
1−β+α

(∫ t

−∞
e−δ(t−s)(t − s)β−α−1ds

)

×
(∫ t

−∞
e−δ(t−s)(t − s)β−α−1E||(−A)β f (s,B1x(s))||2ds

)

≤ M2
1−β+α

(∫ t

−∞
e−δ(t−s)(t − s)β−α−1ds

)2

sup
t∈R

E||(−A)β f (t,B1x(t))||2

≤ M2
1−β+αNf δ

2(α−β)[�(β − α)]2,
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it follows that s ® AT(t - s)f (s, B1x(s)), s ® T(t - s)g(s, B2x(s)) and s ® T(t - s)h(s,

B3x(s)) are integrable on (-∞, t) for every t Î ℝ, therefore, Λx is well defined.

Next, we show that 
x(t) ∈ AA(R; L2(P,Hα)). Let us consider the nonlinear operator

Λ1x, Λ2x, and Λ3x acting on the Banach space AA(R; L2(P,Hα)) defined by


1x(t) =
∫ t

−∞
AT(t − s)f (s,B1x(s)) ds,


2x(t) =
∫ t

−∞
T(t − s)g(s,B2x(s)) ds

and


3x(t) =
∫ t

−∞
T(t − s)h (s,B2x(s)) dW(s),

respectively. Now, let us prove that 
1x(t) ∈ AA(R; L2(P,Hα)). Let {s′n}n∈N be an

arbitrary sequence of real numbers. Since F(·) = (−A)β f (·,B1x(·)) ∈ AA(R; L2(P,H)),

there exists a subsequence {sn}nÎN of {s′n}n∈N such that for certain stochastic process F̃

lim
n→∞E || F(t + sn) − F̃(t) ||2 = 0 and lim

n→∞ E || F̃(t + sn) − F(t) ||2 = 0 (3:2)

hold for each t Î ℝ. Moreover, if we let 
̃1x(t) =
∫ t
−∞ (−A)1−βT(t − s)F̃(s)ds, then

by using Cauchy-Schwarz inequality, we have

E ||
1x(t + sn) − 
̃1x(t) ||2α
= E

∥∥∥∥
∫ t+sn

−∞
AT(t + sn − s)f (s,B1x(s))ds −

∫ t

−∞
(−A)1−βT(t − s)F̃(s)ds

∥∥∥∥
2

α

= E

∥∥∥∥
∫ t

−∞
(−A)1−βT(t − s)F(s + sn)ds −

∫ t

−∞
(−A)1−βT(t − s)F̃(s)ds

∥∥∥∥
2

α

≤ E
(∫ t

−∞
||(−A)1−β+αT(t − s) || || F(s + sn) − F̃(s) || ds

)2

≤ M2
1−β+αE

(∫ t

−∞
e−δ(t−s)(t − s)β−α−1|| F(s + sn) − F̃(s) || ds

)2

≤ M2
1−β+α

(∫ t

−∞
e−δ(t−s)(t − s)β−α−1ds

)

×
(∫ t

−∞
e−δ(t−s)(t − s)β−α−1E || F(s + sn) − F̃(s) ||2 ds

)

≤ M2
1−β+α

(∫ t

−∞
e−δ(t−s)(t − s)β−α−1ds

)2

sup
t∈R

E || F(t + sn) − F̃(t) ||2

≤ M2
1−β+αδ2(α−β)[�(β − α)]2 sup

t∈R
E || F(t + sn) − F̃(t) ||2.

Thus, by (3.2), we immediately obtain that

lim
n→∞ E ||
1x(t + sn) − 
̃1x(t) ||2α = 0,

for each t Î ℝ, and we can show in a similar way that

lim
n→∞ E || 
̃1x(t − sn) − 
1x(t) ||2α = 0,
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for each t Î ℝ. Thus, we conclude that 
1x(t) ∈ AA(R; L2(P,Hα)).

Similarly, by using Theorem 2.1, one easily sees that s ® g (s, B2x(s)) belongs to

AA(R; L2(P,H)) whenever B2x ∈ AA(R; L2(P,H)). Since G(·) = g(·,B2x(·)) ∈ AA(R; L2(P,H))

for every sequence of real numbers {s′n}n∈N, there exists a subsequence {sn}n∈N ⊂ {s′n}n∈N
such that for certain stochastic process G̃

lim
n→∞ E ||G(t + sn) − G̃(t) ||2 = 0 and lim

n→∞ E || G̃(t + sn) − G(t) ||2 = 0 (3:3)

hold for each t Î ℝ. Moreover, if we let 
̃2x(t) =
∫ t
−∞ T(t − s)G̃(s)ds, then by using

Cauchy-Schwarz inequality, we get

E ||
2x(t + sn) − 
̃2x(t) ||2α
= E

∥∥∥∥
∫ t+sn

−∞
T(t + sn − s)g(s,B2x(s))ds −

∫ t

−∞
T(t − s)G̃(s)ds

∥∥∥∥
2

α

≤ E
(∫ t

−∞
||(−A)αT(t − s)[G(s + sn) − G̃(s)] || ds

)2

≤ M2
αE

(∫ t

−∞
e−δ(t−s)(t − s)−α||G(s + sn) − G̃(s) || ds

)2

≤ M2
α

(∫ t

−∞
e−δ(t−s)(t − s)−αds

)(∫ t

−∞
e−δ(t−s)(t − s)−αE ||G(s + sn) − G̃(s) ||2ds

)

≤ M2
α

(∫ t

−∞
e−δ(t−s)(t − s)−αds

)2

sup
t∈R

E ||G(t + sn) − G̃(t) ||2

≤ M2
αδ2(α−1)[�(1 − α)]2 sup

t∈R
E ||G(t + sn) − G̃(t) ||2.

Thus, by (3.3), we immediately obtain that

lim
n→∞ E ||
2x(t + sn) − 
̃2x(t) ||2α = 0,

for each t Î ℝ, and we can show in a similar way that

lim
n→∞ E || 
̃2x(t + sn) − 
2x(t) ||2α = 0,

for each t Î ℝ. Thus, we conclude that 
2x(t) ∈ AA(R; L2(P,Hα)).

Now, by using Theorem 2.1, one easily sees that s ® h (s, B3x(s)) is in

AA(R; L2(P,H)) whenever B3x(t) ∈ AA(RP; L2(P,H)). Since

H(·) = h(·,B2x(·)) ∈ AA(R; L2(P,H)), for every sequence of real numbers {s′n}n∈N, there
exists a subsequence {sn}n∈N ⊂ {s′n}n∈N such that for certain stochastic process H̃

lim
n→∞ E ||H(t + sn) − H̃(t) ||2 = 0 and lim

n→∞ E || H̃(t + sn) − H(t) ||2 = 0 (3:4)

hold for each t Î ℝ. The next step consists of showing that 
3x(t) ∈ AA(R; L2(P,Hα)).

Let W̃(σ ) : = W(σ + sn) − W(sn) for each s Î ℝ. Note that W̃ is also a Brownian motion

and has the same distribution as W. Moreover, if we let 
̃3x(t) =
∫ t
−∞ T(t − s)H̃(s)dW(s),

then by making a change of variables s = s - sn we get

E||
3x(t + sn) − 
̃3x(t) ||2α
= E

∥∥∥∥
∫ t+sn

−∞
T(t + sn − s)H(s)dW(s) −

∫ t

−∞
T(t − s)H̃(s)dW(s)

∥∥∥∥
2

α

= E

∥∥∥∥
∫ t

−∞
T(t − σ )[H(σ + sn) − H̃(σ )]dW̃(σ )

∥∥∥∥
2

α
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Thus, using an estimate on Ito integral established in Ichikawa [26], we obtain that

E||
3x(t + sn) − 
̃3x(t) ||2α
≤ E

(∫ t

−∞
||(−A)αT(t − σ )[H(σ + sn) − H̃(σ )] ||2ds

)

≤ M2
α

∫ t

−∞
e−2δ(t−s)(t − s)−2αE ||H(σ + sn) − H̃(σ ) ||2ds

≤ M2
α(2δ)2α−1�(1 − 2α) sup

t∈R
E ||H(t + sn) − H̃(t) ||2.

Thus, by (3.4), we immediately obtain that

lim
n→∞ E ||
3x(t + sn) − 
̃3x(t) ||2α = 0,

for each t Î ℝ. Arguing in a similar way, we infer that

lim
n→∞ E || 
̃3x(t + sn) − 
3x(t) ||2α = 0,

for each t Î ℝ. Thus, we conclude that 
3x(t) ∈ AA(R; L2(P,Hα)). Since

f (·,B1x(·)) ∈ AA(R; L2(P,Hβ)) ⊂ AA(R; L2(P,Hα)), and in view of the above, it is clear

that Λ maps AA(R; L2(P,Hα)) into itself.

Now the remaining task is to prove that is a contraction mapping on

AA(R; L2(P,Hα)). Indeed, for each t Î ℝ, x, y ∈ AA(R; L2(P,Hα)), we see that

E||(
x)(t) − (
y)(t)||2α
= E

∥∥∥∥f (t,B1x(t)) − f (t,B1y(t)) +
∫ t

−∞
AT(t − s)[f (s,B1x(s)) − f (s,B1y(s))]ds

+
∫ t

−∞
T(t − s)[g(s,B2x(s)) − g(s,B2y(s))]ds

+
∫ t

−∞
T(t − s)[h(s,B3x(s)) − h(s,B3y(s))]dW(s)

∥∥∥∥
2

α

≤ 4E||f (t, B1x(t)) − f (t,B1y(t))||2α
+ 4E

∥∥∥∥
∫ t

−∞
AT(t − s)[f (s, B1x(s)) − f (s, B1y(s))]ds

∥∥∥∥
2

α

+ 4E

∥∥∥∥
∫ t

−∞
T(t − s)[g(s, B2x(s)) − g(s, B2y(s))]ds

∥∥∥∥
2

α

+ 4E

∥∥∥∥
∫ t

−∞
T(t − s)[h(s, B3x(s)) − h(s, B3y(s))]dW(s)

∥∥∥∥
2

α

≤ 4||(−A)α−β ||2E||(−A)β f (t, B1x(t)) − (−A)β f (t, B1y(t))||2

+ 4E
(∫ t

−∞
||(−A)1−β+αT(t − s)[(−A)β f (s, B1x(s)) − (−A)β f (s, B1y(s))]|| ds

)2

+ 4E
(∫ t

−∞
||(−A)αT(t − s)[g(s, B2x(s)) − g(s, B2y(s))]|| ds

)2

+ 4E

∥∥∥∥
∫ t

−∞
T(t − s)[h(s, B3x(s)) − h(s, B3y(s))]dW(s)

∥∥∥∥
2

α

.

We first evaluate the first term of the right-hand side as follows:

4||(−A)α−β ||2E||(−A)β f (t, B1x(t)) − (−A)β f (t, B1y(t))||2
≤ 4||(−A)α−β ||2Lf E||B1x(t) − B1y(t)||2
≤ 4||(−A)α−β ||2Lf� 2 sup

t∈R
E||x(t) − y(t)||2α .
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As regards the second term, by Cauchy-Schwarz inequality, we have

4E
(∫ t

−∞
||(−A)1−β+αT(t − s)[(−A)β f (s, B1x(s)) − (−A)β f (s, B1y(s))] || ds

)2

≤ 4M2
1−β+αE

(
e−δ(t−s)(t − s)β−α−1|| (−A)β f (s, B1x(s)) − (−A)β f (s, B1y(s)) || ds

)2

≤ 4M2
1−β+αE

[(∫ t

−∞
e−δ(t−s)(t − s)β−α−1ds

)

×
(∫ t

−∞
e−δ(t−s)(t − s)β−α−1|| (−A)β f (s, B1x(s)) − (−A)β f (s, B1y(s)) ||2ds

)]

≤ 4M2
1−β+α

(∫ t

−∞
e−δ(t−s)(t − s)β−α−1ds

)

×
(∫ t

−∞
e−δ(t−s)(t − s)β−α−1E || (−A)β f (s, B1x(s)) − (−A)β f (s, B1y(s)) ||2ds

)

≤ 4M2
1−β+αLf

(∫ t

−∞
e−δ(t−s)(t − s)β−α−1ds

)

×
(∫ t

−∞
e−δ(t−s)(t − s)β−α−1E ||B1x(s) − B1y(s) ||2ds

)

≤ 4M2
1−β+αLf�

2
(∫ t

−∞
e−δ(t−s)(t − s)β−α−1ds

)2

sup
t∈R

E || x(t) − y(t) ||2α
≤ 4M2

1−β+αLf�
2δ2(α−β)[�(β − α)]2 sup

t∈R
E || x(t) − y(t) ||2α .

As regards the third term, we use again Cauchy-Schwarz inequality and obtain

4E
(∫ t

−∞
||(−A)αT(t − s)[g(s, B2x(s)) − g(s, B2y(s))] || ds

)2

≤ 4M2
αE

(∫ t

−∞
e−δ(t−s)(t − s)−α|| g(s, B2x(s)) − g(s, B2y(s)) || ds

)2

≤ 4M2
αE

[(∫ t

−∞
e−δ(t−s)(t − s)−αds

)

×
(∫ t

−∞
e−δ(t−s)(t − s)−α|| g(s, B2x(s)) − g(s, B2y(s)) ||2ds

)]

≤ 4M2
α

(∫ t

−∞
e−δ(t−s)(t − s)−αds

)

×
(∫ t

−∞
e−δ(t−s)(t − s)−αE || g(s, B2x(s)) − g(s, B2y(s)) ||2ds

)

≤ 4M2
αLg

(∫ t

−∞
e−δ(t−s)(t − s)−αds

)

×
(∫ t

−∞
e−δ(t−s)(t − s)−αE ||B2x(s) − B2y(s) ||2ds

)

≤ 4M2
αLg�

2
(∫ t

−∞
e−δ(t−s)(t − s)−αds

)2

sup
t∈R

E || x(t) − y(t) ||2α
≤ 4M2

αLg�
2δ2(α−1)[�(1 − α)]2 sup

t∈R
E || x(t) − y(t) ||2α .

As far as the last term is concerned, by the Ito integral, we get

4E

∥∥∥∥
∫ t

−∞
T(t − s)[h(s, B3x(s)) − h(s, B3y(s))]dW(s)

∥∥∥∥2
α

≤ 4E
(∫ t

−∞
||(−A)αT(t − s)[h(s, B3x(s)) − h(s, B3y(s))] ||2ds

)

≤ 4M2
α

∫ t

−∞
e−2δ(t−s)(t − s)−2αE || h(s, B3x(s)) − h(s, B3y(s)) ||2ds

≤ 4M2
αLh

∫ t

−∞
e−2δ(t−s)(t − s)−2αE ||B3x(s) − B3y(s) ||2ds

≤ 4M2
αLh�

2
(∫ t

−∞
e−2δ(t−s)(t − s)−2αds

)
sup
t∈R

E || x(t) − y(t) ||2α
≤ 4M2

αLh�
2(2δ)2α−1�(1 − 2α) sup

t∈R
E || x(t) − y(t) ||2α .
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Thus, by combining, it follows that, for each t Î ℝ,

E||(
x)(t) − (
y)(t) ||2α
≤ 4� 2

{
|| (−A)α−β ||2Lf +M2

1−β+αδ2(α−β)[�(β − α)]2Lf +M2
αδ2(α−1)[�(1 − α)]2Lg

+M2
αLh(2δ)2α−1�(1 − 2α)} sup

t∈R
E || x(t) − y(t) ||2α ,

that is,

|| (
x)(t) − (
y)(t) ||22,α ≤ L0 sup
t∈R

|| x(t) − y(t) ||22,α . (3:5)

Note that

sup
t∈R

|| x(t) − y(t) ||22,α ≤
(
sup
t∈R

|| x(t) − y(t) ||2,α
)2

, (3:6)

and (3.5) together with (3.6) gives, for each t Î ℝ,

|| (
x)(t) − (
y)(t) ||2,α ≤
√
L0|| x − y ||∞,α .

Hence, we obtain

||
x − 
y ||∞,α = sup
t∈R

|| (
x)(t) − (
y)(t) ||2,α ≤
√
L0|| x − y ||∞,α .

which implies that Λ is a contraction by (3.1). Therefore, by the Banach contraction

principle, we conclude that there exists a unique fixed point x(·) for Λ in

AA(R; L2(P,Hα)), such that Λx = x, that is

x(t) =f (t, B1x(t)) +
∫ t

−∞
AT(t − s)f (s, B1x(s)) ds

+
∫ t

− ∞
T(t − s)g(s, B2x(s))ds +

∫ t

− ∞
T(t − s)h(s, B3x(s)) dW(s)

for all t Î ℝ. If we let x(a) = f (a, B1x(a))+
∫ a

−∞
AT(a−s)f (s,B1x(s))ds+

∫ a

−∞
T(a−s)g(s,B2x(s))ds+

∫ a

− ∞
T(a−s)h(s,B3x(s)) dW(s), then

T(t − a)x(a) =T(t − a)f (a, B1x(a)) +
∫ a

−∞
AT(t − s)f (s, B1x(s)) ds

+
∫ a

− ∞
T(t − s)g(s,B2x(s))ds +

∫ a

− ∞
T(t − s)h(s,B3x(s)) dW(s).

However, for t ≥ a,∫ t

a
T(t − s)h(s, B3x(s)) dW(s)

=
∫ t

−∞
T(t − s)h(s, B3x(s)) dW(s) −

∫ t

−∞
T(t − s)h(s, B3x(s)) dW(s)

= x(t) − f (t, B1x(t)) −
∫ t

−∞
AT(t − s)f (s, B1x(s)) ds −

∫ t

−∞
T(t − s)g (s, B2x(s)) ds

− T(t − a)[x(a) − f (a, B1x(a))]

+
∫ a

−∞
AT(t − s)f (s, B1x(s)) ds +

∫ a

−∞
T(t − s)g(s, B2x(s)) ds

= x(t) − T(t − a)[x(a) − f (a, B1x(a))] − f (t, B1x(t))

−
∫ t

−∞
AT(t − s)f (s, B1x(s)) ds −

∫ t

−∞
T(t − s)g(s, B2x(s)) ds.
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In conclusion, x(t) = T(t−a)[x(a)−f
(
a,B1x(a)

)
]+f

(
t,B1x(t)

)
+
∫ t

a
AT(t−s)f

(
s,B1x(s)

)
ds+

∫ t

a
T(t−s)g

(
s,B2x(s)

)
ds+

∫ t

a
T(t−s)h

(
s,B3x(s)

)
dW(s) is a mild

solution of equation (1.1) and x(·) ∈ AA(R; L2(P,Hα)). The proof is completed.

Remark 3.1 The results of Theorem 3.1 can be used to study the existence and

uniqueness of square-mean almost automorphic mild solutions to the example in [18].
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