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Abstract

In this article, fuzzy bi-directional associative memory neural networks with
distributed delays and impulses are considered. Some sufficient conditions for the
existence and globally exponential stability of unique equilibrium point are
established using fixed point theorem and differential inequality techniques. The
results obtained are easily checked to guarantee the existence, uniqueness, and
globally exponential stability of equilibrium point.
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Introduction
The bidirectional associative memory neural networks (BAM) models were first intro-

duced by Kosko [1,2]. It is a special class of recurrent neural networks that can store

bipolar vector pairs. The BAM neural network is composed of neurons arranged in

two layers, the X-layer and Y-layer. The neurons in one layer are fully interconnected

to the neurons in the other layer, while there are no interconnections among neurons

in the same layer. Through iterations of forward and backward information flows

between the two layers, it performs two-way associative search for stored bipolar vec-

tor pairs and generalize the single-layer autoassociative Hebbian correlation to two-

layer pattern-matched heteroassociative circuits. Therefore, this class of networks pos-

sesses a good applications prospects in the areas of pattern recognition, signal and

image process, automatic control. Recently, they have been the object of intensive ana-

lysis by numerous authors. In particular, many researchers have studied the dynamics

of BAM neural networks with or without delays [1-23] including stability and periodic

solutions. In Refs. [1-9], the authors discussed the problem of the stability of the BAM

neural networks with or without delays, and obtained some sufficient conditions to

ensure the stability of equilibrium point. Recently, some authors, see [10], [14,15]

investigated another dynamical behaviors-periodic oscillatory, some sufficient condi-

tions are obtained to ensure other solution converging the periodic solution. In this

article, we would like to integrate fuzzy operations into BAM neural networks and

maintain local connectedness among cells. Speaking of fuzzy operations, Yang et al.
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[24-26] first combined those operations with cellular neural networks and investigated

the stability of fuzzy cellular neural networks (FCNNs). Studies have shown that

FCNNs has its potential in image processing and pattern recognition, and some results

have been reported on stability and periodicity of FCNNs [24-30]. On the other hand,

time delays inevitably occurs in electronic neural networks owing to the unavoidable

finite switching speed of amplifiers. It is desirable to study the fuzzy BAM neural net-

works which has a potential significance in the design and applications of stable neural

circuits for neural networks with delays.

Though the non-impulsive systems have been well studied in theory and in practice

(e.g., see [1-3,5-30] and references cited therein), the theory of impulsive differential

equations is now being recognized to be not only richer than the corresponding theory

of differential equations without impulse, but also represents a more natural frame-

work for mathematical modelling of many real-world phenomena, such as population

dynamic and the neural networks. In recent years, the impulsive differential equations

have been extensively studied (see the monographs and the works [4,31-35]). Up to

now, to the best of our knowledge, dynamical behaviors of fuzzy BAM neural networks

with delays and impulses are seldom considered. Motivated by the above discussion, in

this article, we investigate the fuzzy BAM neural networks with distributed delays and

impulses by the following system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x′
i(t) = −aixi(t) +

∑m
j=1

τ∫
0
cji(s)fj(yj(t − s)) ds + ∧m

j=1

τ∫
0

αji(s)fj(yj(t − s))ds + Ai

+∨m
j=1

τ∫
0

βji(s)fj(yj(t − s))ds + ∧m
j=1 Tjiuj + ∨m

j=1 Hjiuj, t > 0, t �= tk.

�xi(tk) = Ik(xi(tk)), i = 1, 2, . . . ,n. k = 1, 2, . . . ,

y′j(t) = −bjyj(t) +
∑n

i=1

σ∫
0
dij(s)gi(xi(t − s))ds + ∧n

i=1

σ∫
0
pij(s)gi(xi(t − s)) ds + Bj

+∨n
i=1

σ∫
0
qij(s)gi(xi(t − s))ds + ∧n

i=1 Kijui + ∨n
i=1 Lijui, t > 0, t �= tk.

�yj(tk) = Jk(yj(tk)), j = 1, 2, . . . ,m. k = 1, 2, . . . ,

(1)

where n and m correspond to the number of neurons in X-layer and Y -layer, respec-

tively. xi(t) and yj(t) are the activations of the ith neuron and the jth neurons, respec-

tively, ai > 0, bj > 0 denote the rate with which the ith neuron and jth neuron will

reset its potential to the resting state in isolation when disconnected from the network

and external inputs; aji, bji, Tji, and Hji are elements of fuzzy feedback MIN template

and fuzzy feedback MAX template, fuzzy feed-forward MIN template, and fuzzy feed-

forward MAX template in X-layer, respectively; pij, qij, Kij, and Lij are elements of

fuzzy feedback MIN template and fuzzy feedback MAX template, fuzzy feed-forward

MIN template, and fuzzy feed-forward MAX template in Y -layer, respectively; ∧ and ∨
denote the fuzzy AND and fuzzy OR operation, respectively; uj and ui denote external

input of the ith neurons in X-layer and external input of the jth neurons in Y -layer,

respectively; Ai and Bj represent bias of the ith neurons in X-layer and bias of the jth

neurons in Y -layer,respectively; cji(t) and dij(t) are the delayed feedback.

�xi(tk) = xi(t+k ) − xi(t−k ), �yj(tk) = yj(t+k ) − yj(t−k ) are the impulses at moments tk and t1
<t2 < ... is a strictly increasing sequences such that limk® ∞ tk = +∞. τ > 0 and s > 0

are constants and correspond to the transmission delays, and fj(·), gi(·) are signal trans-

mission functions.
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The main purpose of this article is, employing fixed point theorem and differential

inequality techniques, to give some sufficient conditions for the existence, uniqueness,

and global exponential stability of equilibrium point of system (1). Our results extend

and improve the corresponding works in the earlier publications.

The initial conditions associated with system (1) are of the form

xi(s) = φi(s), s ∈ (−σ , 0], i = 1, 2, . . . ,n.

yi(s) = ψj(s), s ∈ (−τ , 0], j = 1, 2, . . . ,m.

where ji(·) and ψj(·) are continuous bounded functions defined on [-s, 0] and [-τ; 0],

respectively.

Throughout this article, we always make the following assumptions.

(A1) The signal transmission functions fj(·), gi(·)(i = 1, 2, ..., n, j = 1, 2, ..., m) are

Lipschitz continuous on R with Lipschitz constants μj and νi, namely, for x, y Î R

|fj(x) − fj(y)| ≤ μj|x − y|, |gi(x) − gi(y)| ≤ νi|x − y| (2)

(A2) For i = 1,2, ..., n, j = 1,2, ..., m, there exist nonnegative constants

c+ji, d
+
ij ,α

+
ji ,β

+
ji , p

+
ij , q

+
ij such that

τ∫
0

|cji(s)| ds ≤ c+ji,

τ∫
0

|αji(s)|ds ≤ α+
ji ,

τ∫
0

|βji(s)|ds ≤ β+
ji , (3)

σ∫
0

|dij(s)| ds ≤ d+ij,

σ∫
0

|pij(s)|ds ≤ p+ij,

σ∫
0

|qij(s)|ds ≤ q+ij, (4)

As usual in the theory of impulsive differential equations, at the points of discontinu-

ity tk of the solution t a (x1(t), ..., xn(t), y1(t), ..., ym(t))
T. We assume that (x1(t), ..., xn(t),

y1(t), ..., ym(t))
T = (x1(t - 0), ..., xn(t - 0), y1(t - 0), ..., ym(t - 0))

T . It is clear that, in gen-

eral, the derivatives x′
i(tk) and y′j(tk) do not exist. On the other hand, according to sys-

tem (1), there exist the limits x′
i(tk ∓ 0) and y′j(tk ∓ 0). In view of the above

convention, we assume that x′
i(tk) = x′

i(tk − 0) and y′j(tk) = y′j(tk − 0).

To be convenience, we introduce some notations. x = (x1, x2, ..., xl)
T Î Rl denotes a

column vector, in which the symbol (T) denotes the transpose of vector. For matrix D

= (dij)l×l, D
T denotes the transpose of D, and El denotes the identity matrix of size l. A

matrix or vector D ≥ 0 means that all entries of D are greater than or equal to zero. D

> 0 can be defined similarly. For matrices or vectors D and E, D ≥ E (respectively D

>E) means that D - E ≥ 0 (respectively D - E > 0). Let us define that for any ω Î Rn

+m, ||ω|| = max1≤k≤n+m |ωk|.

Definition 1.1. Let z∗ = (x∗
1, x

∗
2, . . . , x

∗
n, y

∗
1, y

∗
2, . . . , y

∗
m)

T be an equilibrium point of sys-

tem (1) with x∗ = (x∗
1, x

∗
2, . . . , x

∗
n)

T, y∗ = (y∗1, y
∗
2, . . . , y

∗
m)

T. If there exist positive constants

M, l such that for any solution z(t) = (x1(t), x2(t), ..., xn(t), y1(t), y2(t), ..., ym(t))
T of sys-

tem (1) with initial value (j,ψ) and j = (j1(t), j2(t), ..., jn(t))
T Î C([-s, 0], Rn), ψ = (ψ1

(t), ψ2(t), ..., ψm(t))
T Î C([-τ, 0], Rm),

|xi(t) − x∗
i | ≤ M||(φ,ψ) − (x∗, y∗)||e−λt ,

|yj(t) − y∗j | ≤ M||(φ,ψ) − (x∗, y∗)||e−λt
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where i = 1, 2, ..., n, j = 1, 2, ..., m

||(φ,ψ) − (x∗, y∗)||max
{
max
1≤i≤n

sup
−σ≤t≤0

|φi(t) − x∗
i |, max

1≤j≤m
sup

−τ≤t≤0
|ψj(t) − y∗j |

}
Then z* is said to be globally exponentially stable.

Definition 1.2. If f(t): R ® R is a continuous function, then the upper left derivative

of f(t) is defined as

D−f (t) = lim
h→0−

sup
1
h
(f (t + h) − f (t))

Definition 1.3 . A real matrix A = (aij)l × l is said to be an M-matrix if aij ≤ 0, i, j =

1,2, ..., l, i ≠ j, and all successive principal minors of A are positive.

Lemma 1.1. Let A = (aij) be an l × l matrix with non-positive off-diagonal elements.

Then the

following statements are equivalent:

(i) A is an M-matrix;

(ii) the real parts of all eigenvalues of A are positive;

(iii) there exists a vector h > 0 such that Ah > 0;

(iv) there exists a vector ξ > 0 such that ξ TA > 0;

(v) there exists a positive definite l × l diagonal matrix D such that AD + DAT > 0.

Lemma 1.2 [24]. Suppose × and y are two states of system (1), then we have∣∣∣∣ n∧
j=1

αijgj(x) − n∧
j=1

αijgj(y)

∣∣∣∣∣∣≤
n∑
j=1

|αij||gj(x) − gj(y)|,

and ∣∣∣∣ n∨
j=1

βijgj(x) − n∨
j=1

βijgj(y)

∣∣∣∣∣∣≤
n∑
j=1

|βij||gj(x) − gj(y)|

Lemma 1.3 Let A ≥ 0 be an l × l matrix and r(A) < 1, then (El - A)
-1 ≥ 0, where r

(A) denotes the spectral radius of A.

The remainder of this article is organized as follows. In next section, we shall give

some sufficient conditions for checking the existence and uniqueness of equilibrium

point, followed by some sufficient conditions for global exponential stability of the

unique equilibrium point of (1). Then, an example will be given to illustrate effective-

ness of our results obtained. Finally, general conclusion is drawn.

Existence and uniqueness of equilibrium point
In this section, we will derive some sufficient conditions for the existence and unique-

ness of equilibrium point for fuzzy BAM neural networks model (1).

Theorem 2.1. Suppose that (A1) and (A2) hold and r(D-1EU) < 1, where D = diag

(a1, ..., an, b1, ..., bm), U = diag(μ1, ..., μn, ν1, ..., νm)

E =
(
0n×n PT

QT 0m×m

)
, P = (c+ji + α+

ji + β+
ji )m×n, Q = (d+ij + p+ij + q+ij)n×m

Then there exists a unique equilibrium point of system (1).
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Proof. An equilibrium point z∗ = (x∗
1, x

∗
2, . . . , x

∗
n, y

∗
1, y

∗
2, . . . , y

∗
m)

T ∈ Rn+mis a constant

vector satisfying system (1), i.e.,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x∗
i = a−1

i

[∑m
j=1

τ∫
0
cji(s)fj(y∗j )ds

]
+ a−1

i

[
∧m
j=1

τ∫
0

αji(s)fj(y∗j )ds
]

+a−1
i

[
∨m
j=1

τ∫
0

βji(s)fj(y∗j )ds
]
+ a−1

i

[
∧m
j=1 Tjiuj + ∨m

j=1 Hjiuj + Ai

]
y∗j = b−1

j

[∑n
i=1

τ∫
0
dij(s)gi(x∗

i )ds
]
+ b−1

j

[
∧n
i=1

σ∫
0
pij(s)gi(x∗

i )ds
]

+b−1
j

[
∨n
i=1

σ∫
0
qij(s)gi(x∗

i )ds
]
+ b−1

j [∧n
i=1 Kijui + ∨n

i=1 Lijui + Bj]

(5)

To finish the proof, it suffices to prove that (5) has a unique solution. Consider a

mapping F = (Fi, Ψj)
T : Rn+m ® Rn+m defined by

�i(hi) = a−1
i

⎡⎣ m∑
j=1

τ∫
0

cji(s)fj(vj)ds

⎤⎦ + a−1
i

⎡⎣ m∧
j=1

τ∫
0

αji(s)fj(vj)ds

⎤⎦ + a−1
i

⎡⎣ m∨
j=1

τ∫
0

βji(s)fj(vj)ds

⎤⎦
+ a−1

i

[
m∧
j=1

Tjiuj +
m∨
j=1

Hjiuj + Ai

]
, i = 1, 2, . . . ,n.

(6)

�j(vj) = b−1
j

⎡⎣ n∑
i=1

σ∫
0

dij(s)gi(hi)ds

⎤⎦ + b−1
j

⎡⎣ n∧
i=1

σ∫
0

pij(s)gi(hi)

⎤⎦ + b−1
j

⎡⎣ n∨
i=1

σ∫
0

qij(s)gi(hi)ds

⎤⎦
+ b−1

j

[
n∧
i=1

Kijui +
n∨
i=1

Lijui + Bj

]
, j = 1, 2, . . . ,m.

(7)

We show that F: Rn+m ® Rn+m is global contraction mapping on Rn+m. In fact, for h

= (h1, h2, ..., hn, v1, v2, ..., vm)
T, h̄ = (h̄1, h̄2, . . . , h̄n, v̄1, v̄1, . . . , v̄m)T ∈ Rn+m. Using (A1),

(A2), and Lemma 1.2, we have

|�i(hi) − �i(h̄i)| =
∣∣∣∣∣∣a−1

i

⎡⎣ m∑
j=1

τ∫
0

cji(s)(fj(vj) − fj(v̄j))ds

⎤⎦ + a−1
i

⎡⎣ m∧
j=1

τ∫
0

αji(s)fj(vj)ds

− m∧
j=1

τ∫
0

αji(s)fj(v̄j)ds

⎤⎦ + a−1
i

⎡⎣ m∨
j=1

τ∫
0

βji(s)fj(vj)ds − m∨
j=1

τ∫
0

βji(s)fj(v̄j)ds

⎤⎦ ∣∣∣∣∣∣
≤ a−1

i

m∑
j=1

(c+ji + α+
ji + β+

ji )μj|vj − v̄j|, i = 1, 2, . . . ,n.

(8)

|�j(vj) − �j(v̄j)| =
∣∣∣∣∣∣b−1

j

⎡⎣ n∑
i=1

σ∫
0

dij(s)(gi(hi) − gi(h̄i))ds

⎤⎦ + b−1
j

⎡⎣ n∧
i=1

σ∫
0

pij(s)gi(hi)ds

− n∧
i=1

σ∫
0

pij(s)gi(h̄j)ds

⎤⎦ + b−1
j

⎡⎣ n∨
i=1

σ∫
0

qij(s)gi(hi)ds − n∨
i=1

σ∫
0

qij(s)gi(h̄i)ds

⎤⎦ ∣∣∣∣∣∣
≤ b−1

j

n∑
i=1

(d+ij + p+ij + q+ij)νi|hi − h̄i|, j = 1, 2, . . . ,m

(9)

In view of (8)-(9), it follows that

|�(h1, h2, . . . , hn, v1, v2, . . . , vm)−�(h̄1, h̄2, . . . , h̄n, v̄1, v̄2, . . . , v̄m)| ≤ F

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

|h1 − h̄1|
...

|hn − h̄n|
|v1 − v̄1|

...
|vm − v̄m|

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(10)
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where F = D-1 EU = (wij)(n+m) × (n+m). Let ξ be a positive integer. Then from (10) it

follows that

|�ξ (s) − �ξ (s̄)| ≤ Fξ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

|h1 − h̄1|
...

|hn − h̄n|
|v1 − v̄1|

...
|vm − v̄m|

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(11)

Since r(F) < 1, we obtain limξ®+∞ Fξ = 0, which implies that there exist a positive

integer N and a positive constant r < 1 such that

FN = (D−1EU)N = (lij)(n+m) × (n+m),
n+m∑
j=1

lij ≤ r, i = 1, 2, . . . ,n +m. (12)

Nothing that (11) and (12), it follows that

|�N(h) − �N(h̄)| ≤ FN

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

|h1 − h̄1|
...

|hn − h̄n|
|v1 − v̄1|

...
|vm − v̄m|

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
≤ FN

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

||h − h̄||
...

||h − h̄||
||h − h̄||

...
||h − h̄||

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= ||h − h̄||

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n+m∑
j=1

l1j

...
n+m∑
j=1

lnj

n+m∑
j=1

l(n+1)j

...
n+m∑
j=1

l(n+m)j

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(13)

which implies that ||�N(h) − �N(h̄)|| ≤ r||h − h̄||. Since r < 1, it is obvious that the

mapping FN : Rn+m ® Rn+m is a contraction mapping. By the fixed point theorem of

Banach space, F possesses a unique fixed point in Rn+m which is unique solution of

the system (5), namely, there exist a unique equilibrium point of system (1). The proof

of theorem 2.1 is completed.

Global exponential stability of equilibrium point
In this section, we shall give some sufficient conditions to guarantee global exponential

stability of equilibrium point of system (1).

Theorem 3.1 Suppose that (A1), (A2), and r(D-1EU) < 1. Let

z∗ = (x∗
1, . . . , x

∗
n, y

∗
1, . . . , y

∗
m)

Tbe a unique equilibrium point of system (1). Furthermore,

assume that the impulsive operators Ik(·) and Jk(·) satisfy

(A3)
{
Ik(xi(tk)) = −γik(xi(tk) − x∗

i ), 0 ≤ γik ≤ 2, i = 1, 2, . . . ,n, k = 1, 2, . . .
Jk(yj(tk)) = −γ̄jk(yj(tk) − y∗j ), 0 ≤ γ̄ik ≤ 2, j = 1, 2, . . . ,m, k = 1, 2, . . .

Then the unique equilibrium point z* of system (1) is globally exponentially stable.

Proof. Let z(t) = (x1(t), x2(t), ..., xn(t), y1(t), y2(t), ...,ym(t))
T be an arbitrary solution of

system (1) with initial value (j,ψ) and j = (j1(t), j2(t), ..., jn(t))
T Î C([-s, 0]; Rn), ψ =

(ψ1 (t), ψ2(t), ..., ψn(t))
T Î C([-τ, 0]; Rm). Set x̄i(t) = xi(t) − x∗

i , ȳj(t) = yj(t) − y∗j , i = 1, 2,

..., n, j = 1, 2, ..., m.
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From (1) and (5), for t > 0, t ≠ tk, k = 1, 2, ..., we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̄′
i(t) = −aix̄i(t) +

∑m
j=1

τ∫
0
cji(s)(fj(yj(t − s))−fj(y∗j )) ds +

[
∧m
j=1

τ∫
0

αji(s)fj(yj(t − s)) ds

−∧m
j=1

τ∫
0

αji(s)fj(y∗j ) ds
]
+
[
∨m
j=1

τ∫
0

βji(s)fj(yj(t − s)) ds − ∨m
j=1

τ∫
0

βji(s)fj(y∗j ) ds
]

ȳ′j(t) = −bjȳj(t) +
∑n

i=1

σ∫
0
dij(s)(gi(xi(t − s)) − gi(x∗

i )) ds +
[
∧n
i=1

σ∫
0
pij(s)gi(xi(t − s)) ds

−∧n
i=1

σ∫
0
pij(s)gi(x∗

i ) ds
]
+
[
∨n
i=1

σ∫
0
qij(s)gi(xi(t − s)) ds − ∨n

i=1

σ∫
0
qij(s)gi(x∗

i ) ds
]

(14)

According to (A3), we get

xi(tk + 0) − x∗
i = xi(tk) + Ii(xi(tk)) − x∗

i
= (1 − γik)(xi(tk) − x∗

i ), i = 1, 2, . . . n, k ∈ Z+

yj(tk + 0) − y∗j = yj(tk) + Jj(yj(tk)) − y∗j
= (1 − γ̄jk)(yj(tk) − y∗j ), j = 1, 2, . . . ,m, k ∈ Z+.

(15)

Using (A1), (A2), (A3), Definition 1.2, and Lemma 1.2, from (14) and (15), we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D−|x̄i(t)| ≤ −ai|x̄i(t)| +
∑m

j=1

τ∫
0

|cji(s)|μj|yj(t − s) − y∗j |ds

+
∑m

j=1

τ∫
0
(|αji(s)| + |βji(s)|)μj|yj(t − s) − y∗j |ds

≤ −ai|x̄i(t)| +
∑m

j=1 (c
+
ji + α+

ji + β+
ji )μjyj̃(t)

D−|ȳj(t)| ≤ −bj|ȳj(t)| +
∑n

i=1

σ∫
0

|dij(s)|νi|xi(t − s) − x∗
i |ds

+
∑n

i=1

σ∫
0
(|pij(s)| + |qij(s)|)νi|xi(t − s) − x∗

i |ds
≤ −bj|ȳj(t)| +

∑n
i=1 (d

+
ij + p+ij + q+ij)νix̃i(t)

(16)

Where x̃i(t) = supt−σ≤s≤t|x̄i(s)|, ỹj(t) = supt−τ≤s≤t|ȳj(s)|, t > 0, t ≠ tk, k Î Z+, i = 1,2,

..., n; j = 1,2, ..., m. and{ |xi(tk + 0) − x∗
i | = |1 − γik||xi(tk) − x∗

i | ≤ |xi(tk) − x∗
i |, i = 1, 2, . . . ,n, k ∈ Z+

|yj(tk + 0) − y∗j | = |1 − γ̄jk||yj(tk) − y∗j | ≤ |yj(tk) − y∗j |, j = 1, 2, . . . ,m, k ∈ Z+.

which implies that{ |x̄i(tk + 0)| = |xi(tk + 0) − x∗
i | ≤ |xi(tk) − x∗

i | = |x̄i(tk − 0)|, i = 1, 2, . . . ,n, k ∈ Z+

|ȳj(tk + 0)| = |yj(tk + 0) − y∗j | ≤ |yj(tk) − y∗j | = |ȳj(tk − 0)|, j = 1, 2, . . . ,m, k ∈ Z+. (17)

Since r(D-1EU) = r (F) < 1, it follows from Lemmas 1.1 and 1.3 that En+m - D-1 EU

is an M- matrix, therefore there exists a vector h = (h1, h2, ..., hn, ζ1, ζ2, ..., ζm)
T > (0,

0, ...,0, 0, 0, ..., 0)T such that

(En+m − D−1EU)η > (0, 0, . . . , 0, 0, 0, . . . , 0)T .

Hence

ηi−
m∑
j=1

a−1
i (c+ji + α+

ji + β+
ji )μjςj > 0, ςj−

n∑
i=1

b−1
j (d+ij + p+ij + q+ij)νiηi > 0, i = 1, 2, . . . ,n; j = 1, 2, . . . ,m,

which implies that

−aiηi +
m∑
j=1

(c+ji + α+
ji + β+

ji )μjζj < 0, −bjζj +
n∑
i=1

(d+ij + p+ij + q+ij)νiηi < 0. (18)
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We can choose a positive constant l < 1 such that, for i = 1, 2, ...n; j = 1, 2, ..., m

ληi+

⎡⎣−aiηi +
m∑
j=1

(c+ji + α+
ji + β+

ji )μjζje
λτ

⎤⎦ < 0,λζj+

[
−bjζj +

n∑
i=1

(d+ij + p+ij + q+ij)νiηie
λσ

]
< 0. (19)

For all t Î [- s - τ, 0], we can choose a constant g > 1 such that

γ ηie
−λt > 1, γ ζje

−λt > 1. (20)

For ∀ε > 0, set

� =
n∑
i=1

˜xi(0) +
m∑
j=1

ỹj(0) ; Vi(t) = γ ηi(� + ε) e−λt,Wj(t) = γ ζj(� + ε) e−λt (21)

Caculating the upper left derivative of Vi (t) and Wj (t), respecively, and noting that

(19)

D−Vi(t) = −λγ ηi(� + ε)e−λt

>

⎡⎣−aiηi +
m∑
j=1

(c+ji + α+
ji + β+

ji )μjζjeλτ

⎤⎦ γ (� + ε)e−λt

= −aiγ ηi(� + ε)e−λt +
m∑
j=1

(c+ji + α+
ji + β+

ji )μjζjγ (� + ε)e−λteλτ

= −aiVi(t) +
m∑
j=1

(c+ji + α+
ji + β+

ji )μjWj(t)

(22)

and

D−Wj(t) = −λγ ζj(� + ε)e−λt

>

[
−bjζj +

n∑
i=1

(d+ij + p+ij + q+ij)νiηie
λτ

]
γ (� + ε)e−λt

= −bjγ ζj(� + ε)e−λt +
n∑
i=1

(d+ij + p+ij + q+ij)νiηiγ (� + ε)e−λteλτ

= −bjWj(t) +
n∑
i=1

(d+ij + p+ij + q+ij)νiVi(t)

(23)

where Wj(t) = supt−τ≤s≤tWj(s),Vi(t) = supt−τ≤s≤tVj(s). i = 1, 2, ..., n; 2, ..., m. from

(20) and (21), we have

Vi(t) = γ ηi(�+ε)e−λt > |x̄i(t)|, t ∈ [−σ , 0] ; Wj(t) = γ ζj(�+ε)e−λt > |ȳj(t)|, t ∈ [−τ , 0]. (24)

On the other hand, we claim that for all t > 0, t ≠ tk, k Î Z+, i = 1, 2,..., n; j = 1, 2,...,

m.

Vi(t) = γ ηi(� + ε)e−λt > |x̄i(t)| ; Wj(t) = γ ζj(� + ε)e−λt > |ȳj(t)|, . (25)

By contrary, from (17) one of the following two cases must occur

(i) there must exist i Î {1, 2,..., n} and t∗i > 0(t∗i �= tk, k ∈ Z+) such that for l = 1, 2,...,

n, k = 1, 2,..., m.

|x̄i(t∗i )| = Vi(t∗i ); |x̄l(t)| < Vl(t), ∀t ∈ [−σ , t∗i ]; |ȳk(t)| < Wk(t), ∀t ∈ [−τ , t∗i ]. (26)
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(ii) there must exist j Î {1, 2,..., m} and t∗j > 0(t∗j �= tk, k ∈ Z+) such that for l = 1, 2,...,

n, k = 1, 2,..., m.

|ȳj(t∗i )| = Wj(t∗j ); |x̄l(t)| < Vl(t), ∀t ∈ [−σ , t∗j ]; |ȳk(t)| < Wk(t), ∀t ∈ [−τ , t∗j ]. (27)

Suppose case (i) occurs, we obtain

0 ≤ D−(|x̄i(t∗i )| − Vi(t∗i ))

= lim
h→ 0−

sup
[|x̄i(t∗i + h)| − Vi(t∗i + h)] − [|x̄i(t∗i )| − Vi(t∗i )]

h

≤ lim
h→ 0−

sup
|x̄i(t∗i + h)| − |x̄i(t∗i )|

h
− lim

h→ 0−
inf

Vi(t∗i + h) − Vi(t∗i )
h

= D−|x̄i(t∗i )| − D−Vi(t∗i ).

(28)

In view of (16), (22) and (25), we have

D−|x̄i(t∗i )| ≤ −ai|x̄i(t∗i )| +
m∑
j=1

(c+ji + α+
ji + β+

ji)μjyj(̃t∗i )

= −aiVi(t∗i ) +
m∑
j=1

(c+ji + α+
ji + β+

ji )μjyj(̃t∗i )

≤ −aiVi(t∗i ) +
m∑
j=1

(c+ji + α+
ji + β+

ji )μjWj(t∗i )

< D−Vi(t∗i )

(29)

which contradicts (28).

Suppose case (ii) occurs, we obtain

0 ≤ D−(|ȳj(t∗j )| − Wj(t∗j ))

= lim
h→0−

sup
[|ȳj(t∗j + h)| − Wj(t∗j + h)] − [|ȳj(t∗j )| − Wj(t∗j )]

h

≤ lim
h→0−

sup
|ȳj(t∗j + h)| − ȳj(t∗j )|

h
− lim

h→0−
inf

Wj(t∗j + h) − Wj(t∗j )

h
= D−|ȳj(t∗j )| − D−Wj(t∗j ).

(30)

In view of (16), (23) and (27), we have

D−|ȳj(t∗j )| ≤ −bj|ȳj(t∗j )|
n∑
i=1

(d+ji + p+ij + q+ij)νixi(̃t
∗
j )

= −bi Wj(t∗j ) +
n∑
i=1

(d+ji + p+ij + q+ij)νixi(̃t
∗
j )

≤ −bj Wj(t∗j ) +
m∑
i=1

(d+ji + p+ij + q+ij)νiVi(t∗j )

< D−Wj(t∗j )

(31)

which contradicts (30). Therefore (25) holds.

Furthermore, together with (17) and (25), we have{ |xi(tk + 0) − x∗
i | ≤ |xi(tk) − x∗

i | = |xi(tk − 0) − x∗
i | ≤ Vi(tk)

|yj(tk + 0) − y∗j | ≤ |yj(tk) − y∗j | = |yj(tk − 0) − y∗j | ≤ Wj(tk)
(32)
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where i = 1, 2, ..., n, j = 1, 2,..., m, k Î Z+.

Let ε ® 0+, M = (n + m) max {max1 ≤ i ≤ n {gh i}, max1 ≤ i ≤ m {gζ j}} + 1, we have

from (25) and (32) that{
|xi(t) − x∗

i | ≤ γ ηi[� + ε] e−λt ≤ M||(φ,ψ) − (x∗, y∗)||e−λt

|yj(t) − y∗j | ≤ γ ζj[� + ε] e−λt ≤ M||(φ,ψ) − (x∗, y∗)||e−λt (33)

for all t > 0, i = 1, 2, ..., n; j = 1, 2, ..., m. The proof of theorem 3.1 is completed.

Corollary 3.1 Suppose (A1), (A2) and (A3) hold, and if there exist some constants hi

> 0(i = 1, 2, ..., n); ζj > 0(j = 1, 2, ..., m), such that

−aiηi +
m∑
j=1

(c+ji + α+
ji + β+

ji )μjζj < 0, −bjζj +
n∑
i=1

(d+ij + p+ij + q+ij)νiηi < 0. (34)

Then system (1) has a unique equilibrium point z* which is globally exponentially stable.

Corollary 3.2 Let (A1), (A2) and (A3) hold, and suppose that E n+m -D-1EU is an M-

matrix. Then system (1) has a unique equilibrium point z* which is globally exponen-

tially stable.

An illustrative example
In this section, we give an example to illustrate the results obtained.

Example 4.1. Considering the following fuzzy BAM neural networks with constant

delays.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x′
i(t) = −aixi(t) +

∑2
j=1

1∫
0
cji(s)fj(yj(t − s)ds + ∧2

j=1

1∫
0

αji(s)fj(yj(t − s)ds + Ai

+∨2
j=1

1∫
0

βji(s)fj(yj(t − s))ds + ∧2
j=1 Tjiuj + ∨2

j=1 Hjiuj, t > 0, t �= tk.

�xi(tk) = −γik(xi(tk) − 1, k = 1, 2, ....

y′i(t) = −bjyj(t) +
∑2

j=1

1∫
0
dij(s) gi(xi(t − s) ds + ∧2

j=1

1∫
0
pij(s)gi(xi(t − s) ds + Bj

+∨2
i=1

1∫
0
qij(s) gi(xi(t − s) ds + ∧2

i=1 Kijui + ∨2
i=1 Lijui, t > 0, t �= tk

�yi(tk) = −γ̄jk(yj(tk) − 1), k = 1, 2, ....

(35)

where i, j = 1, 2.fi(x) = gi(x) = 1
2(|x + 1| − |x − 1|), and t1 <t2 < ... is strictly increasing

sequences such that limk®∞ tk = +∞,
γik = 1 − 1

3 sin(2 + k), γ̄jk = 1 + 2
3 cos(3k). ai = bj = 1, c11(s) = c12(s) = 1

2 s, c21(s) = c22(s) = 1
3 s, d11(s) = d12(s) = 1

2 s, d21(s) =

d22(s) = 1
3 s,α11(s) = α12(s) = 1

3 s,α21(s) = α22(s) 1
4 s,β11(s) = β12(s) = 1

5 s,β21(s) =

β22(s) = 1
6 s, p11(s) = p12(s) = 1

4 s, p21(s) = p22(s) = 1
5 s, q11(s) = q12(s) = 1

6 s, q21(s) =

q22(s) = 1
5 s,Tij = Hji = Kij = Lij = 1, ui = uj = 1, (i, j = 1, 2), Ai = Bj = 1, (i, j = 1, 2)

.

So, by easy computation, we can see that system (35) satisfy the conditions (A1),

(A2), (A3), and r(D-1EU) = 0.8917 < 1. Therefore, from Theorem 3.1, system (35) has

an unique equilibrium point which is globally exponentially stable.

Conclusion
In this article, fuzzy BAM neural networks with distributed delays and impulse have

been studied. Some sufficient conditions for the existence, uniqueness, and global

exponential stability of equilibrium point have been obtained. The criteria of stability is

simple and independent of time delay. It is only associated with the templates of
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system (1). Moreover, an example is given to illustrate the effectiveness of our results

obtained.
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