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1. Introduction
Carlitz [1,2] introduced q-analogues of the Bernoulli numbers and polynomials. From

that time on these and other related subjects have been studied by various authors

(see, e.g., [3-10]). Many recent studies on q-analogue of the Bernoulli, Euler numbers,

and polynomials can be found in Choi et al. [11], Kamano [3], Kim [5,6,12], Luo [7],

Satoh [9], Simsek [13,14] and Tsumura [10].

For a fixed prime p, ℤp, ℚp, and ℂp denote the ring of p-adic integers, the field of p-

adic numbers, and the completion of the algebraic closure of ℚp, respectively. Let | · |p
be the p-adic norm on ℚ with |p|p = p-1. For convenience, | · |p will also be used to

denote the extended valuation on ℂp.

The Bernoulli polynomials, denoted by Bn(x), are defined as

Bn(x) =
n∑

k=0

(
n
k

)
Bkxn−k, n ≥ 0, (1:1)

where Bk are the Bernoulli numbers given by the coefficients in the power series

t
et − 1

=
∞∑
k=0

Bk
tk

k!
. (1:2)

From the above definition, we see Bk’s are all rational numbers. Since t
et−1 − 1 + t

2 is

an even function (i.e., invariant under x ↦ - x), we see that Bk = 0 for any odd integer

k not smaller than 3. It is well known that the Bernoulli numbers can also be

expressed as follows
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Bk = lim
N→∞

1
pN

pN−1∑
a=0

ak (1:3)

(see [15,16]). Notice that, from the definition Bk Î ℚ, and these integrals are inde-

pendent of the prime p which used to compute them. The examples of (1.3) are:

lim
N→∞

1
pN

pN−1∑
a=0

a = lim
N→∞

1
pN

pN(pN − 1)
2

= −1
2
= B1,

lim
N→∞

1
pN

pN−1∑
a=0

a2 = lim
N→∞

1
pN

pN(pN − 1)(2pN − 1)
6

=
1
6
= B2.

(1:4)

Euler numbers Ek, k ≥ 0 are integers given by (cf. [17-19])

E0 = 1, Ek = −
k−1∑
i=0
2|k−i

(
k
i

)
Ei for k = 1, 2, . . . . (1:5)

The Euler polynomial Ek(x) is defined by (see [[20], p. 25]):

Ek(x) =
k∑
i=0

(
k
i

)
Ei
2i

(
x − 1

2

)k−i

, (1:6)

which holds for all nonnegative integers k and all real x, and which was obtained by

Raabe [21] in 1851. Setting x = 1/2 and normalizing by 2k gives the Euler numbers

Ek = 2kEk

(
1
2

)
, (1:7)

where E0 = 1, E2 = -1, E4 = 5, E6 = -61,.... Therefore, Ek ≠ Ek(0), in fact ([[19], p. 374

(2.1)])

Ek(0) =
2

k + 1
(1 − 2k+1)Bk+1, (1:8)

where Bk are Bernoulli numbers. The Euler numbers and polynomials (so-named by

Scherk in 1825) appear in Euler’s famous book, Institutiones Calculi Differentialis

(1755, pp. 487-491 and p. 522).

In this article, we derive q-analogues of many well known formulas by using several

results of q-Bernoulli, q-Euler numbers, and polynomials. By using generating functions

of q-Bernoulli, q-Euler numbers, and polynomials, we also present the q-analogues of

ζ-type functions. Finally, we compute their values at non-positive integers.

This article is organized as follows.

In Section 2, we recall definitions and some properties for the q-Bernoulli, Euler num-

bers, and polynomials related to the bosonic and the fermionic p-adic integral on ℤp.

In Section 3, we obtain the generating functions of the q-Bernoulli, q-Euler numbers,

and polynomials. We shall provide some basic formulas for the q-Bernoulli and q-

Euler polynomials which will be used to prove the main results of this article.

In Section 4, we construct the q-analogue of the Riemann’s ζ-functions, the Hurwitz

ζ-functions, and the Dirichlet’s L-functions. We prove that the value of their functions
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at non-positive integers can be represented by the q-Bernoulli, q-Euler numbers, and

polynomials.

2. q-Bernoulli, q-Euler numbers and polynomials related to the Bosonic and
the Fermionic p-adic integral on ℤp

In this section, we provide some basic formulas for p-adic q-Bernoulli, p-adic q-Euler

numbers and polynomials which will be used to prove the main results of this article.

Let UD(ℤp, ℂp) denote the space of all uniformly (or strictly) differentiable ℂp-valued

functions on ℤp. The p-adic q-integral of a function f Î UD(ℤp) on ℤp is defined by

Iq(f ) = lim
N→∞

1
[pN]q

pN−1∑
a=0

f (a)qa =
∫
�p

f (z)dμq(z), (2:1)

where [x]q = (1 - qx)/(1 - q), and the limit taken in the p-adic sense. Note that

lim
q→1

[x]q = x (2:2)

for x Î ℤp, where q tends to 1 in the region 0 <|q - 1|p <1 (cf. [22,5,12]). The boso-

nic p-adic integral on ℤp is considered as the limit q ® 1, i.e.,

I1(f ) = lim
N→∞

1
pN

pN−1∑
a=0

f (a) =
∫
�p

f (z)dμ1(z). (2:3)

From (2.1), we have the fermionic p-adic integral on ℤp as follows:

I−1(f ) = lim
q→−1

Iq(f ) = lim
N→∞

pN−1∑
a=0

f (a)(−1)a =
∫
�p

f (z)dμ−1(z). (2:4)

In particular, setting f (z) = [z]kq in (2.3) and f (z) = [z + 1
2 ]

k
q in (2.4), respectively, we

get the following formulas for the p-adic q-Bernoulli and p-adic q-Euler numbers,

respectively, if q Î ℂp with 0 <|q - 1|p <1 as follows

Bk(q) =
∫
�p

[z]kqdμ1(z) = lim
N→∞

1
pN

pN−1∑
a=0

[a]kq, (2:5)

Ek(q) = 2k
∫
�p

[
z +

1
2

]k

q
dμ−1(z) = 2k lim

N→∞

pN−1∑
a=0

[
a +

1
2

]k

q
(−1)a. (2:6)

Remark 2.1. The q-Bernoulli numbers (2.5) are first defined by Kamano [3]. In (2.5)

and (2.6), take q ® 1. Form (2.2), it is easy to that (see [[17], Theorem 2.5])

Bk(q) → Bk =
∫
�p

zkdμ1(z), Ek(q) → Ek =
∫
�p

(2z + 1)kdμ−1(z).

For |q - 1|p <1 and z Î ℤp, we have

qiz =
∞∑
n=0

(qi − 1)
n
(
z
n

)
and |qi − 1|p ≤ |q − 1|p < 1, (2:7)
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where i Î ℤ. We easily see that if |q - 1|p <1, then qx = 1 for x ≠ 0 if and only if q is

a root of unity of order pN and x Î pNℤp (see [16]).

By (2.3) and (2.7), we obtain

I1(qiz) =
1

qi − 1
lim
N→∞

(qi)
pN − 1
pN

=
1

qi − 1
lim
N→∞

1
pN

{ ∞∑
m=0

(
pN

m

)
(qi − 1)

m − 1

}

=
1

qi − 1
lim
N→∞

1
pN

∞∑
m=1

(
pN

m

)
(qi − 1)m

=
1

qi − 1
lim
N→∞

∞∑
m=1

1
m

(
pN − 1
m − 1

)
(qi − 1)m

=
1

qi − 1

∞∑
m=1

1
m

( −1
m − 1

)
(qi − 1)m

=
1

qi − 1

∞∑
m=1

(−1)m−1 (q
i − 1)

m

m

=
i log q
qi − 1

(2:8)

since the series log log(1 + x) =
∑∞

m=1 (−1)m−1xm/m converges at |x|p <1. Similarly,

by (2.4), we obtain (see [[4], p. 4, (2.10)])

I−1(qiz) = lim
N→∞

pN−1∑
a=0

(qi)
a
(−1)a =

2
qi + 1

. (2:9)

From (2.5), (2.6), (2.8) and (2.9), we obtain the following explicit formulas of Bk(q)

and Ek(q):

Bk(q) =
log q

(1 − q)k

k∑
i=0

(
k
i

)
(−1)i

i
qi − 1

, (2:10)

Ek(q) =
2k+1

(1 − q)k

k∑
i=0

(
k
i

)
(−1)iq

1
2 i

1
qi + 1

, (2:11)

where k ≥ 0 and log is the p-adic logarithm. Note that in (2.10), the term with i = 0

is understood to be 1/log q (the limiting value of the summand in the limit i ® 0).

We now move on to the p-adic q-Bernoulli and p-adic q-Euler polynomials. The p-

adic q-Bernoulli and p-adic q-Euler polynomials in qx are defined by means of the

bosonic and the fermionic p-adic integral on ℤp :

Bk(x, q) =
∫
�p

[x + z]kqdμ1(z) and Ek(x, q) =
∫
�p

[x + z]kqdμ−1(z), (2:12)

where q Î ℂp with 0 <|q - 1|p <1 and x Î ℤp, respectively. We will rewrite the above

equations in a slightly different way. By (2.5), (2.6), and (2.12), after some elementary

calculations, we get
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Bk(x, q) =
k∑
i=0

(
k
i

)
[x]k−i

q qixBi(q) = (qxB(q) + [x]q)
k (2:13)

and

Ek(x, q) =
k∑
i=0

(
k
i

)
Ei(q)
2i

[
x − 1

2

]k−i

q
qi(x−

1
2 ) =

⎛
⎝qx−

1
2

2
E(q) +

[
x − 1

2

]
q

⎞
⎠

k

, (2:14)

where the symbol Bk(q) and Ek(q) are interpreted to mean that (B(q))k and (E(q))k

must be replaced by Bk(q) and Ek(q) when we expanded the one on the right, respec-

tively, since [x + y]kq = ([x]q + qx[y]q)k and

[x + z]kq =
[
1
2

]k

q

(
[2x − 1]

q
1
2
+ qx−

1
2

[
1
2

]−1

q

[
z +

1
2

]
q

)k

=
[
1
2

]k

q

k∑
i=0

(
k
i

)
[2x − 1]k−i

q q(x−
1
2 )i

[
1
2

]−i

q

[
z +

1
2

]i

q

(2:15)

(cf. [4,5]). The above formulas can be found in [7] which are the q-analogues of the

corresponding classical formulas in [[17], (1.2)] and [23], etc. Obviously, put x = 1
2 in

(2.14). Then

Ek(q) = 2kEk

(
1
2
, q

)
�= Ek(0, q) and lim

q→1
Ek(q) = Ek, (2:16)

where Ek are Euler numbers (see (1.5) above).

Lemma 2.2 (Addition theorem).

Bk(x + y, q) =
k∑
i=0

(
k
i

)
qiyBi(x, q)[y]k−i

q (k ≥ 0),

Ek(x + y, q) =
k∑
i=0

(
k
i

)
qiyEi(x, q)[y]k−i

q (k ≥ 0).

Proof. Applying the relationship [x + y − 1
2 ]q = [y]q + qy[x − 1

2 ]q to (2.14) for x a x +

y, we have

Ek(x + y, q) =

⎛
⎝qx+y−

1
2

2
E(q) +

[
x + y − 1

2

]
q

⎞
⎠

k

=

⎛
⎝qy

⎛
⎝qx−

1
2

2
E(q) +

[
x − 1

2

]
q

⎞
⎠ + [y]q

⎞
⎠

k

=
k∑
i=0

(
k
i

)
qiy

⎛
⎝qx−

1
2

2
E(q) +

[
x − 1

2

]
q

⎞
⎠

i

[y]k−i
q

=
k∑
i=0

(
k
i

)
qiyEi(x, q)[y]k−i

q .

Similarly, the first identity follows.□
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Remark 2.3. From (2.12), we obtain the not completely trivial identities

lim
q→1

Bk(x + y, q) =
k∑
i=0

(
k
i

)
Bi(x)yk−i = (B(x) + y)k,

lim
q→1

Ek(x + y, q) =
k∑
i=0

(
k
i

)
Ei(x)yk−i = (E(x) + y)k,

where q Î ℂp tends to 1 in |q - 1|p <1. Here Bi(x) and Ei(x) denote the classical Ber-

noulli and Euler polynomials, see [17,15] and see also the references cited in each of

these earlier works.

Lemma 2.4. Let n be any positive integer. Then

k∑
i=0

(
k
i

)
qi[n]iqBi(x, qn) = [n]kqBk

(
x +

1
n
, qn

)
,

k∑
i=0

(
k
i

)
qi[n]iqEi(x, q

n) = [n]kqEk

(
x +

1
n
, qn

)
.

Proof. Use Lemma 2.2, the proof can be obtained by the similar way to [[7], Lemma

2.3]. □
We note here that similar expressions to those of Lemma 2.4 are given by Luo [[7],

Lemma 2.3]. Obviously, Lemma 2.4 are the q-analogues of

k∑
i=0

(
k
i

)
niBi(x) = nkBk

(
x +

1
n

)
,

k∑
i=0

(
k
i

)
niEi(x) = nkEk

(
x +

1
n

)
,

respectively.

We can now obtain the multiplication formulas by using p-adic integrals.

From (2.3), we see that

Bk(nx, q) =
∫
�p

[nx + z]kqdμ1(z)

= lim
N→∞

1
npN

npN−1∑
a=0

[nx + a]kq

=
1
n

lim
N→∞

1
pN

n−1∑
i=0

pN−1∑
a=0

[nx + na + i]kq

=
[n]kq
n

n−1∑
i=0

∫
�p

[
x +

i
n
+ z

]k

qn
dμ1(z)

(2:17)

is equivalent to

Bk(x, q) =
[n]kq
n

n−1∑
i=0

Bk

(
x + i
n

, qn
)
. (2:18)
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If we put x = 0 in (2.18) and use (2.13), we find easily that

Bk(q) =
[n]kq
n

n−1∑
i=0

Bk

(
i
n
, qn

)

=
[n]kq
n

n−1∑
i=0

k∑
j=0

(
k
j

)[
i

n

]k−j

qn
qijBj(qn)

=
1
n

k∑
j=0

[n]jq

(
k
j

)
Bj(qn)

n−1∑
i=0

qij[i]k−j
q .

(2:19)

Obviously, Equation (2.19) is the q-analogue of

Bk =
1

n(1 − nk)

k−1∑
j=0

nj
(
k
j

)
Bj

n−1∑
i=1

ik−j,

which is true for any positive integer k and any positive integer n >1 (see [[24], (2)]).

From (2.4), we see that

Ek(nx, q) =
∫
�p

[nx + z]kqdμ−1(z)

= lim
N→∞

n−1∑
i=0

pN−1∑
a=0

[nx + na + i]kq(−1)na+i

= [n]kq

n−1∑
i=0

(−1)i
∫
�p

[
x +

i

n
+ z

]k

qn
dμ(−1)n(z).

(2:20)

By (2.12) and (2.20), we find easily that

Ek(x, q) = [n]kq

n−1∑
i=0

(−1)iEk

(
x + i
n

, qn
)

if n odd. (2:21)

From (2.18) and (2.21), we can obtain Proposition 2.5 below.

Proposition 2.5 (Multiplication formulas). Let n be any positive integer. Then

Bk(x, q) =
[n]kq
n

n−1∑
i=0

Bk

(
x + i
n

, qn
)
,

Ek(x, q) = [n]kq

n−1∑
i=0

(−1)iEk

(
x + i
n

, qn
)

if n odd.

3. Construction generating functions of q-Bernoulli, q-Euler numbers, and
polynomials
In the complex case, we shall explicitly determine the generating function Fq(t) of q-

Bernoulli numbers and the generating function Gq(t) of q-Euler numbers:

Fq(t) =
∞∑
k=0

Bk(q)
tk

k!
= eB(q)t and Gq(t) =

∞∑
k=0

Ek(q)
tk

k!
= eE(q)t, (3:1)
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where the symbol Bk(q) and Ek(q) are interpreted to mean that (B(q))k and (E(q))k

must be replaced by Bk(q) and Ek(q) when we expanded the one on the right,

respectively.

Lemma 3.1.

Fq(t) = e
t

1−q +
t log q
1 − q

∞∑
m=0

qme[m]qt,

Gq(t) = 2
∞∑
m=0

(−1)me
2[m+ 1

2 ]qt.

Proof. Combining (2.10) and (3.1), Fq(t) may be written as

Fq(t) =
∞∑
k=0

log q

(1 − q)k

k∑
i=0

(
k
i

)
(−1)i

i
qi − 1

tk

k!

= 1 + log q
∞∑
k=1

1

(1 − q)k
tk

k!

(
1

log q
+

k∑
i=1

(
k
i

)
(−1)i

i
qi − 1

)
.

Here, the term with i = 0 is understood to be 1/log q (the limiting value of the sum-

mand in the limit i ® 0). Specifically, by making use of the following well-known bino-

mial identity

k
(
k − 1
i − 1

)
= i

(
k
i

)
(k ≥ i ≥ 1).

Thus, we find that

Fq(t) = 1 + log q
∞∑
k=1

1

(1 − q)k
tk

k!

(
1

log q
+ k

k∑
i=1

(
k − 1
i − 1

)
(−1)i

1
qi − 1

)

=
∞∑
k=0

1

(1 − q)k
tk

k!
+ log q

∞∑
k=1

k

(1 − q)k
tk

k!

∞∑
m=0

qm
k−1∑
i=0

(
k − 1
i

)
(−1)iqmi

= e
t

1−q +
log q
1 − q

∞∑
k=1

k

(1 − q)k−1

tk

k!

∞∑
m=0

qm(1 − qm)k−1

= e
t

1−q +
t log q
1 − q

∞∑
m=0

qm
∞∑
k=0

(
1 − qm

1 − q

)k tk

k!
.

Next, by (2.11) and (3.1), we obtain the result

Gq(t) =
∞∑
k=0

2k+1

(1 − q)k

k∑
i=0

(
k
i

)
(−1)iq

1
2 i

1
qi + 1

tk

k!

= 2
∞∑
k=0

2k
∞∑
m=0

(−1)m

⎛
⎝1 − qm+ 12

1 − q

⎞
⎠

k

tk

k!

= 2
∞∑
m=0

(−1)m
∞∑
k=0

[
m +

1
2

]k

q

(2t)k

k!

= 2
∞∑
m=0

(−1)me
2[m+ 12 ]qt.

This completes the proof. □
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Remark 3.2. The remarkable point is that the series on the right-hand side of Lemma

3.1 is uniformly convergent in the wider sense.

From (2.13)and (2.14), we define the q-Bernoulli and q-Euler polynomials by

Fq(t, x) =
∞∑
k=0

Bk(x, q)
tk

k!
=

∞∑
k=0

(qxB(q) + [x]q)
k t

k

k!
, (3:2)

Gq(t, x) =
∞∑
k=0

Ek(x, q)
tk

k!
=

∞∑
k=0

(
qx−

1
2
E(q)
2

+
[
x − 1

2

]
q

)k
tk

k!
. (3:3)

Hence, we have

Lemma 3.3.

Fq(t, x) = e[x]q
t
Fq(qxt) = e

t
1−q +

t log q
1 − q

∞∑
m=0

qm+xe[m+x]qt.

Proof. From (3.1) and (3.2), we note that

Fq(t, x) =
∞∑
k=0

(qxB(q) + [x]q)
k t

k

k!

= e(q
xB(q)+[x]q)t

= eB(q)q
xte[x]qt

= e[x]q
t
Fq(qxt).

The second identity leads at once to Lemma 3.1. Hence, the lemma follows. □
Lemma 3.4.

Gq(t, x) = e
[x− 1

2 ]qtGq

⎛
⎝qx−

1
2

2
t

⎞
⎠ = 2

∞∑
m=0

(−1)me[m+x]qt.

Proof. By similar method of Lemma 3.3, we prove this lemma by (3.1), (3.3), and

Lemma 3.1. □
Corollary 3.5 (Difference equations).

Bk+1(x + 1, q) − Bk+1(x, q) =
qx log q
q − 1

(k + 1)[x]kq(k ≥ 0),

Ek(x + 1, q) + Ek(x, q) = 2[x]kq (k ≥ 0).

Proof. By applying (3.2) and Lemma 3.3, we obtain (3.4)

Fq(t, x) =
∞∑
k=0

Bk(x, q)
tk

k!

= 1 +
∞∑
k=0

(
1

(1 − q)k+1
+ (k + 1)

log q
1 − q

∞∑
m=0

qm+x[m + x]kq

)
tk+1

(k + 1)!
.

(3:4)
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By comparing the coefficients of both sides of (3.4), we have B0(x, q) = 1 and

Bk(x, q) =
1

(1 − q)k
+ k

log q
1 − q

∞∑
m=0

qm+x[m + x]k−1
q (k ≥ 1). (3:5)

Hence,

Bk(x + 1, q) − Bk(x, q) = k
qx log q
q − 1

[x]k−1
q (k ≥ 1).

Similarly we prove the second part by (3.3) and Lemma 3.4. This proof is complete.

□
From Lemma 2.2 and Corollary 3.5, we obtain for any integer k ≥ 0,

[x]kq =
1

k + 1
q − 1
qx log q

(
k+1∑
i=0

(
k + 1
i

)
qiBi(x, q) − Bk+1(x, q)

)
,

[x]kq =
1
2

(
k∑
i=0

(
k
i

)
qiEi(x, q) + Ek(x, q)

)

which are the q-analogues of the following familiar expansions (see, e.g., [[7], p. 9]):

xk =
1

k + 1

k∑
i=0

(
k + 1
i

)
Bi(x) and xk =

1
2

(
k∑
i=0

(
k
i

)
Ei(x) + Ek(x)

)
,

respectively.

Corollary 3.6 (Difference equations). Let k ≥ 0 and n ≥ 1. Then

Bk+1

(
x +

1
n
, qn

)
− Bk+1

(
x +

1 − n
n

, qn
)

=
nqn(x−1)+1 log q

q − 1
k + 1

[n]k+1q
(1 + q[nx − n]q)k,

Ek

(
x +

1
n
, qn

)
+ Ek

(
x +

1 − n
n

, qn
)
=

2

[n]kq
(1 + q[nx − n]q)k.

Proof. Use Lemma 2.4 and Corollary 3.5, the proof can be obtained by the similar

way to [[7], Lemma 2.4]. □
Letting n = 1, Corollary 3.6 reduces to Corollary 3.5. Clearly, the above difference

formulas in Corollary 3.6 become the following difference formulas when q ® 1:

Bk

(
x +

1
n

)
− Bk

(
x +

1 − n
n

)
= k

(
x +

1 − n
n

)k−1

(k ≥ 1,n ≥ 1), (3:6)

Ek

(
x +

1
n

)
+ Ek

(
x +

1 − n
n

)
= 2

(
x +

1 − n
n

)k

(k ≥ 0,n ≥ 1), (3:7)

respectively (see [[7], (2.22), (2.23)]). If we now let n = 1 in (3.6) and (3.7), we get the

ordinary difference formulas

Bk+1(x + 1) − Bk+1(x) = (k + 1)xk−1 and Ek(x + 1) + Ek(x) = 2xk

for k ≥ 0.
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In Corollary 3.5, let x = 0. We arrive at the following proposition.

Proposition 3.7.

B0(q) = 1, (qB(q) + 1)k − Bk(q) =

{
logpq
q−1 if k = 1
0 if k > 1,

E0(q) = 1,

(
q−1

2
E(q)
2

+
[
−1
2

]
q

)k

+

(
q
1
2
E(q)
2

+
[
1
2

]
q

)k

= 0 if k ≥ 1.

Proof. The first identity follows from (2.13). To see the second identity, setting x = 0

and x = 1 in (2.14) we have

Ek(0, q) =

⎛
⎝q−1

2

2
E(q) +

[
−1
2

]
q

⎞
⎠

k

and Ek(1, q) =

⎛
⎝q

1
2

2
E(q) +

[
1
2

]
q

⎞
⎠

k

.

This proof is complete. □
Remark 3.8. (1). We note here that quite similar expressions to the first identity of

Proposition 3.7 are given by Kamano [[3], Proposition 2.4], Rim et al. [[8], Theorem

2.7] and Tsumura [[10], (1)].

(2). Letting q ® 1 in Proposition 3.7, the first identity is the corresponding classical

formulas in [[8], (1.2)]:

B0 = 1, (B + 1)k − Bk =
{
1 if k = 1
0 if k > 1

and the second identity is the corresponding classical formulas in [[25], (1.1)]:

E0 = 1, (E + 1)k + (E − 1)k = 0 if k ≥ 1.

4. q-analogues of Riemann’s ζ-functions, the Hurwitz ζ-functions and the
Didichlet’s L-functions
Now, by evaluating the kth derivative of both sides of Lemma 3.1 at t = 0, we obtain

the following

Bk(q) =
(
d
dt

)k

Fq(t)

∣∣∣∣∣
t=0

=
(

1
1 − q

)k

− k log q
q − 1

∞∑
m=0

qm[m]k−1
q , (4:1)

Ek(q) =
(
d
dt

)k

Gq(t)

∣∣∣∣∣
t=0

= 2k+1
∞∑
m=0

(−1)m
[
m +

1
2

]k

q
(4:2)

for k ≥ 0.

Definition 4.1 (q-analogues of the Riemann’s ζ-functions). For s Î ≤, define

ζq(s) =
1

s − 1
1(

1
1−q

)s−1 +
log q
q − 1

∞∑
m=1

qm

[m]sq
,

ζq,E(s) =
2
2s

∞∑
m=0

(−1)m

[m + 1
2 ]

s
q
.
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Note that ζq(s) is a meromorphic function on ≤ with only one simple pole at s = 1

and ζq,E(s) is a analytic function on ≤.

Also, we have

lim
q→1

ζq(s) =
∞∑
m=1

1
ms

= ζ (s) and lim
q→1

ζq,E(s) = 2
∞∑
m=0

(−1)m

(m + 1)s
= ζE(s). (4:3)

(In [[26], p. 1070], our ζE(s) is denote j(s).)
The values of ζq(s) and ζq,E(s) at non-positive integers are obtained by the following

proposition.

Proposition 4.2. For k ≥ 1, we have

ζq(1 − k) = −Bk(q)
k

and ζq,E(1 − k) = Ek−1(q).

Proof. It is clear by (4.1) and (4.2). □
We can investigate the generating functions Fq(t, x) and Gq(t, x) by using a method

similar to the method used to treat the q-analogues of Riemann’s ζ-functions in Defini-

tion 4.1.

Definition 4.3 (q-analogues of the Hurwitz ζ-functions). For s Î ≤ and 0 <x ≤ 1,

define

ζq(s, x) =
1

s − 1
1

( 1
1−q )

s−1 +
log q
q − 1

∞∑
m=0

qm+x

[m + x]sq
,

ζq,E(s, x) = 2
∞∑
m=0

(−1)m

[m + x]sq
.

Note that ζq(s, x) is a meromorphic function on ≤ with only one simple pole at s = 1

and ζq,E(s, x) is a analytic function on ≤.

The values of ζq(s, x) and ζq,E(s, x) at non-positive integers are obtained by the fol-

lowing proposition.

Proposition 4.4. For k ≥ 1, we have

ζq(1 − k, x) = −Bk(x, q)
k

and ζq,E(1 − k, x) = Ek−1(x, q).

Proof. From Lemma 3.3 and Definition 4.3, we have

(
d
dt

)k

Fq(t, x)

∣∣∣∣∣
t=0

= −kζq(1 − k, x)

for k ≥ 1. We obtain the desired result by (3.2). Similarly the second form follows by

Lemma 3.4 and (3.3). □
Proposition 4.5. Let d be any positive integer. Then

Fq(t, x) =
1
d

d−1∑
i=0

Fqd
(
[d]qt,

x + i
d

)
,

Gq(t, x) =
d−1∑
i=0

(−1)iGqd

(
[d]qt,

x + i

d

)
if d odd.
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Proof. Substituting m = nd + i with n = 0, 1,... and i = 0,..., d - 1 into Lemma 3.3, we

have

Fq(t, x) = e
t

1−q +
t log q
1 − q

∞∑
m=0

qm+xe[m+x]qt

= e
[d]qt

1−qd +
1
d

d−1∑
i=0

[d]qt log q
d

1 − qd

∞∑
n=0

qnd+x+ie[nd+x+i]qt

=
1
d

d−1∑
i=0

(
e
[d]qt
1−qd +

[d]qt log q
d

1 − qd

∞∑
n=0

(qd)
n+ x+id e

[n+ x+id ]
qd
[d]qt

)
,

where we use [n + (x + i)
/
d]qd[d]q = [nd + x + i]q . So we have the first form. Similarly

the second form follows by Lemma 3.4. □
From (3.2), (3.3), Propositions 4.4 and 4.5, we obtain the following:

Corollary 4.6. Let d and k be any positive integer. Then

ζq(1 − k, x) =
[d]kq
d

d−1∑
i=0

ζqd

(
1 − k,

x + i
d

)
,

ζq,E(−k, x) = [d]kq

d−1∑
i=0

(−1)iζqd,E

(
−k,

x + i

d

)
if d odd.

Let c be a primitive Dirichlet character of conductor f Î N. We define the generat-

ing function Fq,c(x, t) and Gq,c(x, t) of the generalized q-Bernoulli and q-Euler polyno-

mials as follows:

Fq,χ(t, x) =
∞∑
k=0

Bk,χ(x, q)
tk

k!

=
1
f

f∑
a=1

χ(a)Fqf
(
[f ]qt,

a + x
f

) (4:4)

and

Gq,χ(t, x) =
∞∑
k=0

Ek,χ(x, q)
tk

k!

=
f∑

a=1

(−1)aχ(a)Gqf

(
[f ]qt,

a + x
f

)
if f odd,

(4:5)

where Bk,c(x, q) and Ek,c(x, q) are the generalized q-Bernoulli and q-Euler polyno-

mials, respectively. Clearly (4.4) and (4.5) are equal to

Fq,χ(t, x) =
t log q
1 − q

∞∑
m=0

χ(m)qm+xe[m+x]qt, (4:6)

Gq,χ (t, x) = 2
∞∑
k=0

(−1)mχ(m)e[m+x]qt if f odd, (4:7)
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respectively. As q ® 1 in (4.6) and (4.7), we have Fq,c(t, x) ® Fc(t, x) and Gq,c(t, x)

® Gc(t, x), where Fc(t, x) and Gc(t, x) are the usual generating function of generalized

Bernoulli and Euler numbers, respectively, which are defined as follows [13]:

Fχ(t, x) =
f∑

a=1

χ(a)te(a+x)t

eft − 1
=

∞∑
k=0

Bk,χ(x)
tk

k!
, (4:8)

Gχ(t, x) = 2
f∑

a=1

(−1)aχ(a)e(a+x)t

eft + 1
=

∞∑
k=0

Gk,χ(x)
tk

k!
if f odd. (4:9)

From (3.2), (3.3), (4.4) and (4.5), we can easily see that

Bk,χ (x, q) =
[f ]kq
f

f∑
a=1

χ(a)Bk

(
a + x
f

, qf
)
, (4:10)

Ek,χ(x, q) = [f ]kq

f∑
a=1

(−1)aχ(a)Ek

(
a + x
f

, qf
)

if f odd. (4:11)

By using the definitions of ζq(s, x) and ζq,E(s, x), we can define the q-analogues of

Dirichlet’s L-function.

Definition 4.7 (q-analogues of the Dirichlet’s L-functions). For s Î ℂ and 0 <x ≤ 1,

Lq(s, x, χ) =
log q
q − 1

∞∑
m=0

χ(m)qm+x

[m + x]sq
,

�q(s, x, χ) = 2
∞∑
m=0

(−1)mχ(m)
[m + x]sq

.

Similarly, we can compute the values of Lq(s, x, c) at non-positive integers.

Theorem 4.8. For k ≥ 1, we have

Lq(1 − k, x, χ) = −Bk,χ(x, q)
k

and �q(1 − k, x, χ) = Ek−1,χ (x, q).

Proof. Using Lemma 3.3 and (4.4), we obtain

∞∑
k=0

Bk,χ(x, q)
tk

k!
=
1
f

f∑
a=1

χ(a)

(
e
[f ]qt

1−qf +
[f ]qt log q

f

1 − qf

∞∑
n=0

(qf )
n+ x+af e

[n+ x+af ]
qf
[f ]qt

)

=
t log q
1 − q

∞∑
m=0

χ(m)qm+xe[m+x]qt,

where we use [n + (a + x)
/
f ]qf [f ]q = [nf + a + x]q and

∑f
a=1 χ(a) = 0 . Therefore, we

obtain

Bk,χ(x, q) =
(
d
dt

)k
( ∞∑

k=0

Bk,χ(x, q)
tk

k!

)∣∣∣∣∣
t=0

=
k log q
1 − q

∞∑
m=0

χ(m)qm+x[m + x]k−1
q .
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Hence for k ≥ 1

−Bk,χ(x, q)
k

=
log q
q − 1

∞∑
m=0

χ(m)qm+x[m + x]k−1
q

= Lq(1 − k, x, χ).

Similarly the second identity follows. This completes the proof. □
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