RESEARCH

Open Access

Some results for the *q*-Bernoulli, *q*-Euler numbers and polynomials

Daeyeoul Kim¹ and Min-Soo Kim^{2*}

* Correspondence: minsookim@kaist.ac.kr ²Department of Mathematics, KAIST, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, South Korea Full list of author information is available at the end of the article

Abstract

The *q*-analogues of many well known formulas are derived by using several results of *q*-Bernoulli, *q*-Euler numbers and polynomials. The *q*-analogues of ζ -type functions are given by using generating functions of *q*-Bernoulli, *q*-Euler numbers and polynomials. Finally, their values at non-positive integers are also been computed. **2010 Mathematics Subject Classification**: 11B68; 11S40; 11S80.

Keywords: Bosonic *p*-adic integrals, Fermionic *p*-adic integrals, *q*-Bernoulli polynomials, *q*-Euler polynomials, generating functions, *q*-analogues of ζ -type functions, *q*-analogues of the Dirichlet's *L*-functions

1. Introduction

Carlitz [1,2] introduced q-analogues of the Bernoulli numbers and polynomials. From that time on these and other related subjects have been studied by various authors (see, e.g., [3-10]). Many recent studies on q-analogue of the Bernoulli, Euler numbers, and polynomials can be found in Choi et al. [11], Kamano [3], Kim [5,6,12], Luo [7], Satoh [9], Simsek [13,14] and Tsumura [10].

For a fixed prime p, \mathbb{Z}_p , \mathbb{Q}_p , and \mathbb{C}_p denote the ring of p-adic integers, the field of padic numbers, and the completion of the algebraic closure of \mathbb{Q}_p , respectively. Let $|\cdot|_p$ be the p-adic norm on \mathbb{Q} with $|p|_p = p^{-1}$. For convenience, $|\cdot|_p$ will also be used to denote the extended valuation on \mathbb{C}_p .

The Bernoulli polynomials, denoted by $B_n(x)$, are defined as

$$B_n(x) = \sum_{k=0}^n \binom{n}{k} B_k x^{n-k}, \quad n \ge 0,$$
(1.1)

where B_k are the Bernoulli numbers given by the coefficients in the power series

$$\frac{t}{e^t - 1} = \sum_{k=0}^{\infty} B_k \frac{t^k}{k!}.$$
(1.2)

From the above definition, we see B_k 's are all rational numbers. Since $\frac{t}{e^t-1} - 1 + \frac{t}{2}$ is an even function (i.e., invariant under $x \mapsto -x$), we see that $B_k = 0$ for any odd integer k not smaller than 3. It is well known that the Bernoulli numbers can also be expressed as follows

© 2011 Kim and Kim; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

$$B_k = \lim_{N \to \infty} \frac{1}{p^N} \sum_{a=0}^{p^N - 1} a^k$$
(1.3)

(see [15,16]). Notice that, from the definition $B_k \in \mathbb{Q}$, and these integrals are independent of the prime *p* which used to compute them. The examples of (1.3) are:

$$\lim_{N \to \infty} \frac{1}{p^N} \sum_{a=0}^{p^N-1} a = \lim_{N \to \infty} \frac{1}{p^N} \frac{p^N (p^N - 1)}{2} = -\frac{1}{2} = B_1,$$

$$\lim_{N \to \infty} \frac{1}{p^N} \sum_{a=0}^{p^N-1} a^2 = \lim_{N \to \infty} \frac{1}{p^N} \frac{p^N (p^N - 1)(2p^N - 1)}{6} = \frac{1}{6} = B_2.$$
(1.4)

Euler numbers E_k , $k \ge 0$ are integers given by (cf. [17-19])

$$E_0 = 1, \quad E_k = -\sum_{\substack{i=0\\2|k-i}}^{k-1} \binom{k}{i} E_i \text{ for } k = 1, 2, \dots.$$
(1.5)

The Euler polynomial $E_k(x)$ is defined by (see [[20], p. 25]):

$$E_k(x) = \sum_{i=0}^k \binom{k}{i} \frac{E_i}{2^i} \left(x - \frac{1}{2} \right)^{k-i},$$
(1.6)

which holds for all nonnegative integers *k* and all real *x*, and which was obtained by Raabe [21] in 1851. Setting x = 1/2 and normalizing by 2^k gives the Euler numbers

$$E_k = 2^k E_k \left(\frac{1}{2}\right),\tag{1.7}$$

where $E_0 = 1$, $E_2 = -1$, $E_4 = 5$, $E_6 = -61$,.... Therefore, $E_k \neq E_k(0)$, in fact ([[19], p. 374 (2.1)])

$$E_k(0) = \frac{2}{k+1} (1 - 2^{k+1}) B_{k+1}, \tag{1.8}$$

where B_k are Bernoulli numbers. The Euler numbers and polynomials (so-named by Scherk in 1825) appear in Euler's famous book, Institutiones Calculi Differentialis (1755, pp. 487-491 and p. 522).

In this article, we derive *q*-analogues of many well known formulas by using several results of *q*-Bernoulli, *q*-Euler numbers, and polynomials. By using generating functions of *q*-Bernoulli, *q*-Euler numbers, and polynomials, we also present the *q*-analogues of ζ -type functions. Finally, we compute their values at non-positive integers.

This article is organized as follows.

In Section 2, we recall definitions and some properties for the *q*-Bernoulli, Euler numbers, and polynomials related to the bosonic and the fermionic *p*-adic integral on \mathbb{Z}_p .

In Section 3, we obtain the generating functions of the q-Bernoulli, q-Euler numbers, and polynomials. We shall provide some basic formulas for the q-Bernoulli and q-Euler polynomials which will be used to prove the main results of this article.

In Section 4, we construct the *q*-analogue of the Riemann's ζ -functions, the Hurwitz ζ -functions, and the Dirichlet's *L*-functions. We prove that the value of their functions

at non-positive integers can be represented by the q-Bernoulli, q-Euler numbers, and polynomials.

2. *q*-Bernoulli, *q*-Euler numbers and polynomials related to the Bosonic and the Fermionic *p*-adic integral on \mathbb{Z}_p

In this section, we provide some basic formulas for *p*-adic *q*-Bernoulli, *p*-adic *q*-Euler numbers and polynomials which will be used to prove the main results of this article.

Let $UD(\mathbb{Z}_p, \mathbb{C}_p)$ denote the space of all uniformly (or strictly) differentiable \mathbb{C}_p -valued functions on \mathbb{Z}_p . The *p*-adic *q*-integral of a function $f \in UD(\mathbb{Z}_p)$ on \mathbb{Z}_p is defined by

$$I_q(f) = \lim_{N \to \infty} \frac{1}{[p^N]_q} \sum_{a=0}^{p^N - 1} f(a) q^a = \int_{\mathbb{Z}_p} f(z) d\mu_q(z),$$
(2.1)

where $[x]_q = (1 - q^x)/(1 - q)$, and the limit taken in the *p*-adic sense. Note that

$$\lim_{q \to 1} [x]_q = x \tag{2.2}$$

for $x \in \mathbb{Z}_p$, where q tends to 1 in the region $0 < |q - 1|_p < 1$ (cf. [22,5,12]). The bosonic p-adic integral on \mathbb{Z}_p is considered as the limit $q \to 1$, i.e.,

$$I_1(f) = \lim_{N \to \infty} \frac{1}{p^N} \sum_{a=0}^{p^N - 1} f(a) = \int_{\mathbb{Z}_p} f(z) d\mu_1(z).$$
(2.3)

From (2.1), we have the fermionic *p*-adic integral on \mathbb{Z}_p as follows:

$$I_{-1}(f) = \lim_{q \to -1} I_q(f) = \lim_{N \to \infty} \sum_{a=0}^{p^N - 1} f(a)(-1)^a = \int_{\mathbb{Z}_p} f(z) d\mu_{-1}(z).$$
(2.4)

In particular, setting $f(z) = [z]_q^k$ in (2.3) and $f(z) = [z + \frac{1}{2}]_q^k$ in (2.4), respectively, we get the following formulas for the *p*-adic *q*-Bernoulli and *p*-adic *q*-Euler numbers, respectively, if $q \in \mathbb{C}_p$ with $0 < |q - 1|_p < 1$ as follows

$$B_k(q) = \int_{\mathbb{Z}_p} [z]_q^k d\mu_1(z) = \lim_{N \to \infty} \frac{1}{p^N} \sum_{a=0}^{p^N-1} [a]_{q'}^k$$
(2.5)

$$E_k(q) = 2^k \int_{\mathbb{Z}_p} \left[z + \frac{1}{2} \right]_q^k d\mu_{-1}(z) = 2^k \lim_{N \to \infty} \sum_{a=0}^{p^N - 1} \left[a + \frac{1}{2} \right]_q^k (-1)^a.$$
(2.6)

Remark 2.1. The *q*-Bernoulli numbers (2.5) are first defined by Kamano [3]. In (2.5) and (2.6), take $q \rightarrow 1$. Form (2.2), it is easy to that (see [[17], Theorem 2.5])

$$B_k(q) \to B_k = \int_{\mathbb{Z}_p} z^k d\mu_1(z), \quad E_k(q) \to E_k = \int_{\mathbb{Z}_p} (2z+1)^k d\mu_{-1}(z).$$

For $|q - 1|_p < 1$ and $z \in \mathbb{Z}_p$, we have

$$q^{iz} = \sum_{n=0}^{\infty} \left(q^{i} - 1\right)^{n} {\binom{z}{n}} \quad \text{and} \quad |q^{i} - 1|_{p} \le |q - 1|_{p} < 1,$$
(2.7)

where $i \in \mathbb{Z}$. We easily see that if $|q - 1|_p < 1$, then $q^x = 1$ for $x \neq 0$ if and only if q is a root of unity of order p^N and $x \in p^N \mathbb{Z}_p$ (see [16]).

By (2.3) and (2.7), we obtain

$$I_{1}(q^{iz}) = \frac{1}{q^{i}-1} \lim_{N \to \infty} \frac{(q^{i})^{p^{N}}-1}{p^{N}}$$

$$= \frac{1}{q^{i}-1} \lim_{N \to \infty} \frac{1}{p^{N}} \left\{ \sum_{m=0}^{\infty} {p^{N} \choose m} (q^{i}-1)^{m} - 1 \right\}$$

$$= \frac{1}{q^{i}-1} \lim_{N \to \infty} \frac{1}{p^{N}} \sum_{m=1}^{\infty} {p^{N} \choose m} (q^{i}-1)^{m}$$

$$= \frac{1}{q^{i}-1} \lim_{N \to \infty} \sum_{m=1}^{\infty} \frac{1}{m} {p^{N}-1 \choose m-1} (q^{i}-1)^{m}$$

$$= \frac{1}{q^{i}-1} \sum_{m=1}^{\infty} \frac{1}{m} {-1 \choose m-1} (q^{i}-1)^{m}$$

$$= \frac{1}{q^{i}-1} \sum_{m=1}^{\infty} (-1)^{m-1} \frac{(q^{i}-1)^{m}}{m}$$

$$= \frac{i\log q}{q^{i}-1}$$
(2.8)

since the series $\log \log(1 + x) = \sum_{m=1}^{\infty} (-1)^{m-1} x^m / m$ converges at $|x|_p < 1$. Similarly, by (2.4), we obtain (see [[4], p. 4, (2.10)])

$$I_{-1}(q^{iz}) = \lim_{N \to \infty} \sum_{a=0}^{p^N - 1} (q^i)^a (-1)^a = \frac{2}{q^i + 1}.$$
(2.9)

From (2.5), (2.6), (2.8) and (2.9), we obtain the following explicit formulas of $B_k(q)$ and $E_k(q)$:

$$B_k(q) = \frac{\log q}{(1-q)^k} \sum_{i=0}^k \binom{k}{i} (-1)^i \frac{i}{q^i - 1},$$
(2.10)

$$E_k(q) = \frac{2^{k+1}}{(1-q)^k} \sum_{i=0}^k \binom{k}{i} (-1)^i q^{\frac{1}{2}i} \frac{1}{q^i+1},$$
(2.11)

where $k \ge 0$ and log is the *p*-adic logarithm. Note that in (2.10), the term with i = 0 is understood to be $1/\log q$ (the limiting value of the summand in the limit $i \rightarrow 0$).

We now move on to the *p*-adic *q*-Bernoulli and *p*-adic *q*-Euler polynomials. The *p*-adic *q*-Bernoulli and *p*-adic *q*-Euler polynomials in q^x are defined by means of the bosonic and the fermionic *p*-adic integral on \mathbb{Z}_p :

$$B_k(x,q) = \int_{\mathbb{Z}_p} [x+z]_q^k d\mu_1(z) \text{ and } E_k(x,q) = \int_{\mathbb{Z}_p} [x+z]_q^k d\mu_{-1}(z), \qquad (2.12)$$

where $q \in \mathbb{C}_p$ with $0 < |q - 1|_p < 1$ and $x \in \mathbb{Z}_p$, respectively. We will rewrite the above equations in a slightly different way. By (2.5), (2.6), and (2.12), after some elementary calculations, we get

$$B_k(x,q) = \sum_{i=0}^k \binom{k}{i} [x]_q^{k-i} q^{ix} B_i(q) = (q^x B(q) + [x]_q)^k$$
(2.13)

and

$$E_k(x,q) = \sum_{i=0}^k \binom{k}{i} \frac{E_i(q)}{2^i} \left[x - \frac{1}{2} \right]_q^{k-i} q^{i(x-\frac{1}{2})} = \left(\frac{q^{x-\frac{1}{2}}}{2} E(q) + \left[x - \frac{1}{2} \right]_q \right)^k, \quad (2.14)$$

where the symbol $B_k(q)$ and $E_k(q)$ are interpreted to mean that $(B(q))^k$ and $(E(q))^k$ must be replaced by $B_k(q)$ and $E_k(q)$ when we expanded the one on the right, respectively, since $[x + \gamma]_q^k = ([x]_q + q^x[\gamma]_q)^k$ and

$$[x+z]_{q}^{k} = \left[\frac{1}{2}\right]_{q}^{k} \left(\left[2x-1\right]_{q^{\frac{1}{2}}} + q^{x-\frac{1}{2}} \left[\frac{1}{2}\right]_{q}^{-1} \left[z+\frac{1}{2}\right]_{q}^{k} \right)^{k}$$

$$= \left[\frac{1}{2}\right]_{q}^{k} \sum_{i=0}^{k} \binom{k}{i} \left[2x-1\right]_{q}^{k-i} q^{\left(x-\frac{1}{2}\right)i} \left[\frac{1}{2}\right]_{q}^{-i} \left[z+\frac{1}{2}\right]_{q}^{i}$$

$$(2.15)$$

(cf. [4,5]). The above formulas can be found in [7] which are the *q*-analogues of the corresponding classical formulas in [[17], (1.2)] and [23], etc. Obviously, put $x = \frac{1}{2}$ in (2.14). Then

$$E_k(q) = 2^k E_k\left(\frac{1}{2}, q\right) \neq E_k(0, q) \text{ and } \lim_{q \to 1} E_k(q) = E_k,$$
 (2.16)

where E_k are Euler numbers (see (1.5) above). Lemma 2.2 (Addition theorem).

$$B_{k}(x + \gamma, q) = \sum_{i=0}^{k} {\binom{k}{i}} q^{i\gamma} B_{i}(x, q) [\gamma]_{q}^{k-i} \quad (k \ge 0),$$

$$E_{k}(x + \gamma, q) = \sum_{i=0}^{k} {\binom{k}{i}} q^{i\gamma} E_{i}(x, q) [\gamma]_{q}^{k-i} \quad (k \ge 0).$$

Proof. Applying the relationship $[x + y - \frac{1}{2}]_q = [y]_q + q^y [x - \frac{1}{2}]_q$ to (2.14) for $x \propto x + y$, we have

$$\begin{split} E_k(x+y,q) &= \left(\frac{q^{x+y-\frac{1}{2}}}{2}E(q) + \left[x+y-\frac{1}{2}\right]_q\right)^k \\ &= \left(q^y \left(\frac{q^{x-\frac{1}{2}}}{2}E(q) + \left[x-\frac{1}{2}\right]_q\right) + [y]_q\right)^k \\ &= \sum_{i=0}^k \binom{k}{i} q^{iy} \left(\frac{q^{x-\frac{1}{2}}}{2}E(q) + \left[x-\frac{1}{2}\right]_q\right)^i [y]_q^{k-i} \\ &= \sum_{i=0}^k \binom{k}{i} q^{iy} E_i(x,q) [y]_q^{k-i}. \end{split}$$

Similarly, the first identity follows.

Remark 2.3. From (2.12), we obtain the not completely trivial identities

$$\lim_{q \to 1} B_k(x + \gamma, q) = \sum_{i=0}^k \binom{k}{i} B_i(x) \gamma^{k-i} = (B(x) + \gamma)^k,$$
$$\lim_{q \to 1} E_k(x + \gamma, q) = \sum_{i=0}^k \binom{k}{i} E_i(x) \gamma^{k-i} = (E(x) + \gamma)^k,$$

where $q \in \mathbb{C}_p$ tends to 1 in $|q - 1|_p < 1$. Here $B_i(x)$ and $E_i(x)$ denote the classical Bernoulli and Euler polynomials, see [17,15] and see also the references cited in each of these earlier works.

Lemma 2.4. Let n be any positive integer. Then

$$\sum_{i=0}^{k} \binom{k}{i} q^{i}[n]_{q}^{i}B_{i}(x,q^{n}) = [n]_{q}^{k}B_{k}\left(x+\frac{1}{n},q^{n}\right),$$
$$\sum_{i=0}^{k} \binom{k}{i} q^{i}[n]_{q}^{i}E_{i}(x,q^{n}) = [n]_{q}^{k}E_{k}\left(x+\frac{1}{n},q^{n}\right).$$

Proof. Use Lemma 2.2, the proof can be obtained by the similar way to [[7], Lemma 2.3]. \Box

We note here that similar expressions to those of Lemma 2.4 are given by Luo [[7], Lemma 2.3]. Obviously, Lemma 2.4 are the q-analogues of

$$\sum_{i=0}^k \binom{k}{i} n^i B_i(x) = n^k B_k\left(x + \frac{1}{n}\right), \sum_{i=0}^k \binom{k}{i} n^i E_i(x) = n^k E_k\left(x + \frac{1}{n}\right),$$

respectively.

We can now obtain the multiplication formulas by using p-adic integrals. From (2.3), we see that

$$B_{k}(nx,q) = \int_{\mathbb{Z}_{p}} [nx + z]_{q}^{k} d\mu_{1}(z)$$

$$= \lim_{N \to \infty} \frac{1}{np^{N}} \sum_{a=0}^{np^{N}-1} [nx + a]_{q}^{k}$$

$$= \frac{1}{n} \lim_{N \to \infty} \frac{1}{p^{N}} \sum_{i=0}^{n-1} \sum_{a=0}^{p^{N}-1} [nx + na + i]_{q}^{k}$$

$$= \frac{[n]_{q}^{k}}{n} \sum_{i=0}^{n-1} \int_{\mathbb{Z}_{p}} \left[x + \frac{i}{n} + z \right]_{q}^{k} d\mu_{1}(z)$$
(2.17)

is equivalent to

$$B_k(x,q) = \frac{[n]_q^k}{n} \sum_{i=0}^{n-1} B_k\left(\frac{x+i}{n}, q^n\right).$$
(2.18)

If we put x = 0 in (2.18) and use (2.13), we find easily that

$$B_{k}(q) = \frac{[n]_{q}^{k}}{n} \sum_{i=0}^{n-1} B_{k}\left(\frac{i}{n}, q^{n}\right)$$

$$= \frac{[n]_{q}^{k}}{n} \sum_{i=0}^{n-1} \sum_{j=0}^{k} \binom{k}{j} \left[\frac{i}{n}\right]_{q^{n}}^{k-j} q^{ij} B_{j}(q^{n})$$

$$= \frac{1}{n} \sum_{j=0}^{k} [n]_{q}^{j} \binom{k}{j} B_{j}(q^{n}) \sum_{i=0}^{n-1} q^{ij} [i]_{q}^{k-j}.$$
(2.19)

Obviously, Equation (2.19) is the *q*-analogue of

$$B_k = \frac{1}{n(1-n^k)} \sum_{j=0}^{k-1} n^j \binom{k}{j} B_j \sum_{i=1}^{n-1} i^{k-j} A_i^{k-j}$$

which is true for any positive integer k and any positive integer n > 1 (see [[24], (2)]). From (2.4), we see that

$$E_{k}(nx,q) = \int_{\mathbb{Z}_{p}} [nx+z]_{q}^{k} d\mu_{-1}(z)$$

$$= \lim_{N \to \infty} \sum_{i=0}^{n-1} \sum_{a=0}^{p^{N}-1} [nx+na+i]_{q}^{k}(-1)^{na+i}$$

$$= [n]_{q}^{k} \sum_{i=0}^{n-1} (-1)^{i} \int_{\mathbb{Z}_{p}} \left[x+\frac{i}{n}+z \right]_{q}^{k} d\mu_{(-1)^{n}}(z).$$

(2.20)

By (2.12) and (2.20), we find easily that

$$E_k(x,q) = [n]_q^k \sum_{i=0}^{n-1} (-1)^i E_k\left(\frac{x+i}{n}, q^n\right) \text{ if } n \text{ odd.}$$
(2.21)

From (2.18) and (2.21), we can obtain Proposition 2.5 below. **Proposition 2.5** (Multiplication formulas). *Let n be any positive integer. Then*

$$B_{k}(x,q) = \frac{[n]_{q}^{k}}{n} \sum_{i=0}^{n-1} B_{k}\left(\frac{x+i}{n}, q^{n}\right),$$
$$E_{k}(x,q) = [n]_{q}^{k} \sum_{i=0}^{n-1} (-1)^{i} E_{k}\left(\frac{x+i}{n}, q^{n}\right) \quad \text{if } n \text{ odd}$$

3. Construction generating functions of *q*-Bernoulli, *q*-Euler numbers, and polynomials

In the complex case, we shall explicitly determine the generating function $F_q(t)$ of q-Bernoulli numbers and the generating function $G_q(t)$ of q-Euler numbers:

$$F_q(t) = \sum_{k=0}^{\infty} B_k(q) \frac{t^k}{k!} = e^{B(q)t} \text{ and } G_q(t) = \sum_{k=0}^{\infty} E_k(q) \frac{t^k}{k!} = e^{E(q)t},$$
(3.1)

where the symbol $B_k(q)$ and $E_k(q)$ are interpreted to mean that $(B(q))^k$ and $(E(q))^k$ must be replaced by $B_k(q)$ and $E_k(q)$ when we expanded the one on the right, respectively.

Lemma 3.1.

$$\begin{split} F_q(t) &= e^{\frac{t}{1-q}} + \frac{t\log q}{1-q} \sum_{m=0}^{\infty} q^m e^{[m]_q t}, \\ G_q(t) &= 2 \sum_{m=0}^{\infty} (-1)^m e^{2[m+\frac{1}{2}]_q t}. \end{split}$$

Proof. Combining (2.10) and (3.1), $F_q(t)$ may be written as

$$\begin{split} F_q(t) &= \sum_{k=0}^\infty \frac{\log q}{(1-q)^k} \sum_{i=0}^k \binom{k}{i} (-1)^i \frac{i}{q^i-1} \frac{t^k}{k!} \\ &= 1 + \log q \sum_{k=1}^\infty \frac{1}{(1-q)^k} \frac{t^k}{k!} \left(\frac{1}{\log q} + \sum_{i=1}^k \binom{k}{i} (-1)^i \frac{i}{q^i-1} \right). \end{split}$$

Here, the term with i = 0 is understood to be $1/\log q$ (the limiting value of the summand in the limit $i \rightarrow 0$). Specifically, by making use of the following well-known binomial identity

$$k\binom{k-1}{i-1} = i\binom{k}{i} \quad (k \ge i \ge 1).$$

Thus, we find that

$$\begin{split} F_q(t) &= 1 + \log q \sum_{k=1}^{\infty} \frac{1}{(1-q)^k} \frac{t^k}{k!} \left(\frac{1}{\log q} + k \sum_{i=1}^k \binom{k-1}{i-1} (-1)^i \frac{1}{q^i-1} \right) \\ &= \sum_{k=0}^{\infty} \frac{1}{(1-q)^k} \frac{t^k}{k!} + \log q \sum_{k=1}^{\infty} \frac{k}{(1-q)^k} \frac{t^k}{k!} \sum_{m=0}^{\infty} q^m \sum_{i=0}^{k-1} \binom{k-1}{i} (-1)^i q^{mi} \\ &= e^{\frac{t}{1-q}} + \frac{\log q}{1-q} \sum_{k=1}^{\infty} \frac{k}{(1-q)^{k-1}} \frac{t^k}{k!} \sum_{m=0}^{\infty} q^m (1-q^m)^{k-1} \\ &= e^{\frac{t}{1-q}} + \frac{t \log q}{1-q} \sum_{m=0}^{\infty} q^m \sum_{k=0}^{\infty} \left(\frac{1-q^m}{1-q} \right)^k \frac{t^k}{k!}. \end{split}$$

Next, by (2.11) and (3.1), we obtain the result

$$\begin{aligned} G_q(t) &= \sum_{k=0}^{\infty} \frac{2^{k+1}}{(1-q)^k} \sum_{i=0}^k \binom{k}{i} (-1)^i q^{\frac{1}{2}i} \frac{1}{q^i+1} \frac{t^k}{k!} \\ &= 2 \sum_{k=0}^{\infty} 2^k \sum_{m=0}^{\infty} (-1)^m \left(\frac{1-q^{m+\frac{1}{2}}}{1-q} \right)^k \frac{t^k}{k!} \\ &= 2 \sum_{m=0}^{\infty} (-1)^m \sum_{k=0}^{\infty} \left[m + \frac{1}{2} \right]_q^k \frac{(2t)^k}{k!} \\ &= 2 \sum_{m=0}^{\infty} (-1)^m e^{2[m+\frac{1}{2}]_q^t}. \end{aligned}$$

This completes the proof. \square

Remark 3.2. The remarkable point is that the series on the right-hand side of Lemma 3.1 is uniformly convergent in the wider sense.

From (2.13) and (2.14), we define the *q*-Bernoulli and *q*-Euler polynomials by

$$F_q(t,x) = \sum_{k=0}^{\infty} B_k(x,q) \frac{t^k}{k!} = \sum_{k=0}^{\infty} \left(q^x B(q) + [x]_q \right)^k \frac{t^k}{k!},$$
(3.2)

$$G_q(t,x) = \sum_{k=0}^{\infty} E_k(x,q) \frac{t^k}{k!} = \sum_{k=0}^{\infty} \left(q^{x-\frac{1}{2}} \frac{E(q)}{2} + \left[x - \frac{1}{2} \right]_q \right)^k \frac{t^k}{k!}.$$
(3.3)

Hence, we have

Lemma 3.3.

$$F_q(t,x) = e^{[x]_q t} F_q(q^x t) = e^{\frac{t}{1-q}} + \frac{t \log q}{1-q} \sum_{m=0}^{\infty} q^{m+x} e^{[m+x]_q t}.$$

Proof. From (3.1) and (3.2), we note that

$$F_{q}(t, x) = \sum_{k=0}^{\infty} (q^{x}B(q) + [x]_{q})^{k} \frac{t^{k}}{k!}$$
$$= e^{(q^{x}B(q) + [x]_{q})t}$$
$$= e^{B(q)q^{x}t}e^{[x]_{q}t}$$
$$= e^{[x]_{q}t}F_{q}(q^{x}t).$$

The second identity leads at once to Lemma 3.1. Hence, the lemma follows. □ **Lemma 3.4**.

$$G_q(t,x) = e^{[x-\frac{1}{2}]_q^t} G_q\left(\frac{q^{x-\frac{1}{2}}}{2}t\right) = 2\sum_{m=0}^{\infty} (-1)^m e^{[m+x]_q t}.$$

Proof. By similar method of Lemma 3.3, we prove this lemma by (3.1), (3.3), and Lemma 3.1. \Box

Corollary 3.5 (Difference equations).

$$B_{k+1}(x+1,q) - B_{k+1}(x,q) = \frac{q^{x} \log q}{q-1}(k+1)[x]_{q}^{k}(k \ge 0),$$

$$E_{k}(x+1,q) + E_{k}(x,q) = 2[x]_{q}^{k} \quad (k \ge 0).$$

Proof. By applying (3.2) and Lemma 3.3, we obtain (3.4)

$$F_{q}(t,x) = \sum_{k=0}^{\infty} B_{k}(x,q) \frac{t^{k}}{k!}$$

$$= 1 + \sum_{k=0}^{\infty} \left(\frac{1}{(1-q)^{k+1}} + (k+1) \frac{\log q}{1-q} \sum_{m=0}^{\infty} q^{m+x} [m+x]_{q}^{k} \right) \frac{t^{k+1}}{(k+1)!}.$$
(3.4)

By comparing the coefficients of both sides of (3.4), we have $B_0(x, q) = 1$ and

$$B_k(x,q) = \frac{1}{(1-q)^k} + k \frac{\log q}{1-q} \sum_{m=0}^{\infty} q^{m+x} [m+x]_q^{k-1} \quad (k \ge 1).$$
(3.5)

Hence,

$$B_k(x+1,q) - B_k(x,q) = k \frac{q^x \log q}{q-1} [x]_q^{k-1} \quad (k \ge 1).$$

Similarly we prove the second part by (3.3) and Lemma 3.4. This proof is complete. $\hfill\square$

From Lemma 2.2 and Corollary 3.5, we obtain for any integer $k \ge 0$,

$$\begin{split} [x]_{q}^{k} &= \frac{1}{k+1} \frac{q-1}{q^{x} \log q} \left(\sum_{i=0}^{k+1} \binom{k+1}{i} q^{i} B_{i}(x,q) - B_{k+1}(x,q) \right), \\ & [x]_{q}^{k} &= \frac{1}{2} \left(\sum_{i=0}^{k} \binom{k}{i} q^{i} E_{i}(x,q) + E_{k}(x,q) \right) \end{split}$$

which are the q-analogues of the following familiar expansions (see, e.g., [[7], p. 9]):

$$x^{k} = \frac{1}{k+1} \sum_{i=0}^{k} {\binom{k+1}{i}} B_{i}(x) \text{ and } x^{k} = \frac{1}{2} \left(\sum_{i=0}^{k} {\binom{k}{i}} E_{i}(x) + E_{k}(x) \right),$$

respectively.

Corollary 3.6 (Difference equations). Let $k \ge 0$ and $n \ge 1$. Then

$$B_{k+1}\left(x+\frac{1}{n},q^n\right) - B_{k+1}\left(x+\frac{1-n}{n},q^n\right)$$

= $\frac{nq^{n(x-1)+1}\log q}{q-1}\frac{k+1}{[n]_q^{k+1}}(1+q[nx-n]_q)^k,$
 $E_k\left(x+\frac{1}{n},q^n\right) + E_k\left(x+\frac{1-n}{n},q^n\right) = \frac{2}{[n]_q^k}(1+q[nx-n]_q)^k.$

Proof. Use Lemma 2.4 and Corollary 3.5, the proof can be obtained by the similar way to [[7], Lemma 2.4]. □

Letting n = 1, Corollary 3.6 reduces to Corollary 3.5. Clearly, the above difference formulas in Corollary 3.6 become the following difference formulas when $q \rightarrow 1$:

$$B_k\left(x+\frac{1}{n}\right) - B_k\left(x+\frac{1-n}{n}\right) = k\left(x+\frac{1-n}{n}\right)^{k-1} (k \ge 1, n \ge 1), \tag{3.6}$$

$$E_k\left(x+\frac{1}{n}\right) + E_k\left(x+\frac{1-n}{n}\right) = 2\left(x+\frac{1-n}{n}\right)^k (k \ge 0, n \ge 1),$$
(3.7)

respectively (see [[7], (2.22), (2.23)]). If we now let n = 1 in (3.6) and (3.7), we get the ordinary difference formulas

$$B_{k+1}(x+1) - B_{k+1}(x) = (k+1)x^{k-1}$$
 and $E_k(x+1) + E_k(x) = 2x^k$

for $k \ge 0$.

In Corollary 3.5, let x = 0. We arrive at the following proposition. **Proposition 3.7**.

$$B_0(q) = 1, \ (qB(q) + 1)^k - B_k(q) = \begin{cases} \frac{\log_p q}{q-1} & \text{if } k = 1\\ 0 & \text{if } k > 1, \end{cases}$$
$$E_0(q) = 1, \quad \left(q^{-\frac{1}{2}}\frac{E(q)}{2} + \left[-\frac{1}{2}\right]_q\right)^k + \left(q^{\frac{1}{2}}\frac{E(q)}{2} + \left[\frac{1}{2}\right]_q\right)^k = 0 \quad \text{if } k \ge 1.$$

Proof. The first identity follows from (2.13). To see the second identity, setting x = 0 and x = 1 in (2.14) we have

$$E_k(0,q) = \left(\frac{q^{-\frac{1}{2}}}{2}E(q) + \left[-\frac{1}{2}\right]_q\right)^k \text{ and } E_k(1,q) = \left(\frac{q^{\frac{1}{2}}}{2}E(q) + \left[\frac{1}{2}\right]_q\right)^k.$$

This proof is complete. \Box

Remark 3.8. (1). We note here that quite similar expressions to the first identity of Proposition 3.7 are given by Kamano [[3], Proposition 2.4], Rim et al. [[8], Theorem 2.7] and Tsumura [[10], (1)].

(2). Letting $q \rightarrow 1$ in Proposition 3.7, the first identity is the corresponding classical formulas in [[8], (1.2)]:

$$B_0 = 1$$
, $(B+1)^k - B_k = \begin{cases} 1 & \text{if } k = 1 \\ 0 & \text{if } k > 1 \end{cases}$

and the second identity is the corresponding classical formulas in [[25], (1.1)]:

$$E_0 = 1$$
, $(E+1)^k + (E-1)^k = 0$ if $k \ge 1$.

4. *q*-analogues of Riemann's ζ -functions, the Hurwitz ζ -functions and the Didichlet's *L*-functions

Now, by evaluating the *k*th derivative of both sides of Lemma 3.1 at t = 0, we obtain the following

$$B_k(q) = \left. \left(\frac{\mathrm{d}}{\mathrm{d}t} \right)^k F_q(t) \right|_{t=0} = \left(\frac{1}{1-q} \right)^k - \frac{k \log q}{q-1} \sum_{m=0}^{\infty} q^m [m]_q^{k-1}, \tag{4.1}$$

$$E_k(q) = \left. \left(\frac{\mathrm{d}}{\mathrm{d}t} \right)^k G_q(t) \right|_{t=0} = 2^{k+1} \sum_{m=0}^{\infty} (-1)^m \left[m + \frac{1}{2} \right]_q^k$$
(4.2)

for $k \ge 0$.

Definition 4.1 (*q*-analogues of the Riemann's ζ -functions). For $s \in \leq$, define

$$\begin{split} \zeta_q(s) &= \frac{1}{s-1} \frac{1}{\left(\frac{1}{1-q}\right)^{s-1}} + \frac{\log q}{q-1} \sum_{m=1}^{\infty} \frac{q^m}{[m]_q^s}, \\ \zeta_{q,E}(s) &= \frac{2}{2^s} \sum_{m=0}^{\infty} \frac{(-1)^m}{[m+\frac{1}{2}]_q^s}. \end{split}$$

Note that $\zeta_q(s)$ is a meromorphic function on \leq with only one simple pole at s = 1 and $\zeta_{q}E(s)$ is a analytic function on \leq .

Also, we have

$$\lim_{q \to 1} \zeta_q(s) = \sum_{m=1}^{\infty} \frac{1}{m^s} = \zeta(s) \quad \text{and} \quad \lim_{q \to 1} \zeta_{q,E}(s) = 2\sum_{m=0}^{\infty} \frac{(-1)^m}{(m+1)^s} = \zeta_E(s).$$
(4.3)

(In [[26], p. 1070], our $\zeta_E(s)$ is denote $\varphi(s)$.)

The values of $\zeta_q(s)$ and $\zeta_q E(s)$ at non-positive integers are obtained by the following proposition.

Proposition 4.2. For $k \ge 1$, we have

$$\zeta_q(1-k) = -\frac{B_k(q)}{k}$$
 and $\zeta_{q,E}(1-k) = E_{k-1}(q).$

Proof. It is clear by (4.1) and (4.2). \Box

We can investigate the generating functions $F_q(t, x)$ and $G_q(t, x)$ by using a method similar to the method used to treat the *q*-analogues of Riemann's ζ -functions in Definition 4.1.

Definition 4.3 (*q*-analogues of the Hurwitz ζ -functions). For $s \in \leq$ and $0 < x \leq 1$, define

$$\begin{aligned} \zeta_q(s, \ x) &= \frac{1}{s-1} \frac{1}{\left(\frac{1}{1-q}\right)^{s-1}} + \frac{\log q}{q-1} \sum_{m=0}^{\infty} \frac{q^{m+x}}{[m+x]_q^s} \\ \zeta_{q,E}(s, \ x) &= 2 \sum_{m=0}^{\infty} \frac{(-1)^m}{[m+x]_q^s}. \end{aligned}$$

Note that $\zeta_q(s, x)$ is a meromorphic function on \leq with only one simple pole at s = 1 and $\zeta_q, E(s, x)$ is a analytic function on \leq .

The values of $\zeta_q(s, x)$ and $\zeta_{q'}E(s, x)$ at non-positive integers are obtained by the following proposition.

Proposition 4.4. For $k \ge 1$, we have

$$\zeta_q(1-k, x) = -\frac{B_k(x, q)}{k}$$
 and $\zeta_{q,E}(1-k, x) = E_{k-1}(x, q).$

Proof. From Lemma 3.3 and Definition 4.3, we have

$$\left(\frac{\mathrm{d}}{\mathrm{d}t}\right)^k F_q(t, x) \bigg|_{t=0} = -k\zeta_q(1-k, x)$$

for $k \ge 1$. We obtain the desired result by (3.2). Similarly the second form follows by Lemma 3.4 and (3.3). \Box

Proposition 4.5. Let d be any positive integer. Then

$$F_{q}(t, x) = \frac{1}{d} \sum_{i=0}^{d-1} F_{q^{d}}\left([d]_{q}t, \frac{x+i}{d}\right),$$

$$G_{q}(t, x) = \sum_{i=0}^{d-1} (-1)^{i} G_{q^{d}}\left([d]_{q}t, \frac{x+i}{d}\right) \quad if \ d \ odd.$$

Proof. Substituting m = nd + i with n = 0, 1,... and i = 0,..., d - 1 into Lemma 3.3, we have

$$\begin{split} F_q(t, \ x) &= e^{\frac{t}{1-q}} + \frac{t\log q}{1-q} \sum_{m=0}^{\infty} q^{m+x} e^{[m+x]_q t} \\ &= e^{\frac{[d]_q t}{1-q^d}} + \frac{1}{d} \sum_{i=0}^{d-1} \frac{[d]_q t\log q^d}{1-q^d} \sum_{n=0}^{\infty} q^{nd+x+i} e^{[nd+x+i]_q t} \\ &= \frac{1}{d} \sum_{i=0}^{d-1} \left(e^{\frac{[d]_q t}{1-q^d}} + \frac{[d]_q t\log q^d}{1-q^d} \sum_{n=0}^{\infty} \left(q^d\right)^{n+\frac{x+i}{d}} e^{[n+\frac{x+i}{d}]_{q^d} [d]_q t} \right), \end{split}$$

where we use $[n + (x + i)/d]_{q^d}[d]_q = [nd + x + i]_q$. So we have the first form. Similarly the second form follows by Lemma 3.4. \Box

From (3.2), (3.3), Propositions 4.4 and 4.5, we obtain the following:

Corollary 4.6. Let d and k be any positive integer. Then

$$\begin{aligned} \zeta_q(1-k, \ x) &= \frac{[d]_q^k}{d} \sum_{i=0}^{d-1} \zeta_{q^d} \left(1-k, \ \frac{x+i}{d} \right), \\ \zeta_{q,E}(-k, \ x) &= [d]_q^k \sum_{i=0}^{d-1} (-1)^i \zeta_{q^d,E} \left(-k, \ \frac{x+i}{d} \right) \quad if \ d \ odd \end{aligned}$$

Let χ be a primitive Dirichlet character of conductor $f \in \mathbb{N}$. We define the generating function $F_{q,\chi}(x, t)$ and $G_{q,\chi}(x, t)$ of the generalized *q*-Bernoulli and *q*-Euler polynomials as follows:

$$F_{q,\chi}(t, x) = \sum_{k=0}^{\infty} B_{k,\chi}(x, q) \frac{t^k}{k!}$$

$$= \frac{1}{f} \sum_{a=1}^{f} \chi(a) F_{q^f}\left([f]_q t, \frac{a+x}{f}\right)$$
(4.4)

and

$$G_{q,\chi}(t, x) = \sum_{k=0}^{\infty} E_{k,\chi}(x, q) \frac{t^k}{k!}$$

$$= \sum_{a=1}^{f} (-1)^a \chi(a) G_{q^f}\left([f]_q t, \frac{a+x}{f}\right) \quad \text{if } f \text{ odd},$$
(4.5)

where $B_{k,\chi}(x, q)$ and $E_{k,\chi}(x, q)$ are the generalized *q*-Bernoulli and *q*-Euler polynomials, respectively. Clearly (4.4) and (4.5) are equal to

$$F_{q,\chi}(t, x) = \frac{t \log q}{1-q} \sum_{m=0}^{\infty} \chi(m) q^{m+x} e^{[m+x]_q t},$$
(4.6)

$$G_{q,\chi}(t, x) = 2 \sum_{k=0}^{\infty} (-1)^m \chi(m) e^{[m+x]_q t} \quad \text{if } f \text{ odd},$$
(4.7)

$$F_{\chi}(t, x) = \sum_{a=1}^{f} \frac{\chi(a)te^{(a+x)t}}{e^{ft} - 1} = \sum_{k=0}^{\infty} B_{k,\chi}(x) \frac{t^{k}}{k!}, \qquad (4.8)$$

$$G_{\chi}(t, x) = 2 \sum_{a=1}^{f} \frac{(-1)^{a} \chi(a) e^{(a+x)t}}{e^{ft} + 1} = \sum_{k=0}^{\infty} G_{k,\chi}(x) \frac{t^{k}}{k!} \quad \text{if } f \text{ odd.}$$
(4.9)

From (3.2), (3.3), (4.4) and (4.5), we can easily see that

$$B_{k,\chi}(x, q) = \frac{[f]_q^k}{f} \sum_{a=1}^f \chi(a) B_k\left(\frac{a+x}{f}, q^f\right),$$
(4.10)

$$E_{k,\chi}(x, q) = [f]_q^k \sum_{a=1}^f (-1)^a \chi(a) E_k\left(\frac{a+x}{f}, q^f\right) \quad \text{if } f \text{ odd.}$$
(4.11)

By using the definitions of $\zeta_q(s, x)$ and $\zeta_{q,E}(s, x)$, we can define the *q*-analogues of Dirichlet's *L*-function.

Definition 4.7 (*q*-analogues of the Dirichlet's *L*-functions). For $s \in \mathbb{C}$ and $0 < x \le 1$,

$$L_q(s, x, \chi) = \frac{\log q}{q-1} \sum_{m=0}^{\infty} \frac{\chi(m)q^{m+x}}{[m+x]_q^s},$$
$$\ell_q(s, x, \chi) = 2 \sum_{m=0}^{\infty} \frac{(-1)^m \chi(m)}{[m+x]_q^s}.$$

Similarly, we can compute the values of $L_q(s, x, \chi)$ at non-positive integers. **Theorem 4.8**. For $k \ge 1$, we have

$$L_q(1-k, x, \chi) = -\frac{B_{k,\chi}(x,q)}{k} \text{ and } \ell_q(1-k, x, \chi) = E_{k-1,\chi}(x, q).$$

Proof. Using Lemma 3.3 and (4.4), we obtain

$$\begin{split} \sum_{k=0}^{\infty} B_{k,\chi}(x, q) \frac{t^k}{k!} &= \frac{1}{f} \sum_{a=1}^{f} \chi(a) \left(e^{\frac{[f]_q t}{1-q^f}} + \frac{[f]_q t \log q^f}{1-q^f} \sum_{n=0}^{\infty} \left(q^f\right)^{n+\frac{x+a}{f}} e^{\left[n+\frac{x+a}{f}\right]_q [f]_q t} \right) \\ &= \frac{t \log q}{1-q} \sum_{m=0}^{\infty} \chi(m) q^{m+x} e^{[m+x]_q t}, \end{split}$$

where we use $[n + (a + x)/f]_q [f]_q = [nf + a + x]_q$ and $\sum_{a=1}^f \chi(a) = 0$. Therefore, we obtain

$$B_{k,\chi}(x, q) = \left(\frac{\mathrm{d}}{\mathrm{d}t}\right)^k \left(\sum_{k=0}^{\infty} B_{k,\chi}(x, q) \frac{t^k}{k!}\right)\Big|_{t=0}$$
$$= \frac{k \log q}{1-q} \sum_{m=0}^{\infty} \chi(m) q^{m+x} [m+x]_q^{k-1}.$$

Hence for $k \ge 1$

$$-\frac{B_{k,\chi}(x,q)}{k} = \frac{\log q}{q-1} \sum_{m=0}^{\infty} \chi(m) q^{m+x} [m+x]_q^{k-1}$$
$$= L_q (1-k, x, \chi).$$

Similarly the second identity follows. This completes the proof. \Box

Acknowledgements

This study was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (2011-0001184).

Author details

¹National Institute for Mathematical Sciences, Doryong-dong, Yuseong-gu Daejeon 305-340, South Korea ²Department of Mathematics, KAIST, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, South Korea

Authors' contributions

The authors have equal contributions to each part of this paper. All the authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Received: 2 September 2011 Accepted: 23 December 2011 Published: 23 December 2011

References

- 1. Carlitz, L: g-Bernoulli numbers and polynomials. Duke Math J. 15, 987–1000 (1948). doi:10.1215/S0012-7094-48-01588-9
- 2. Carlitz, L: *q*-Bernoulli and Eulerian numbers. Trans Am Math Soc. 76, 332–350 (1954)
- Kamano, K: p-adic q-Bernoulli numbers and their denominators. Int J Number Theory. 4(6), 911–925 (2008). doi:10.1142/ S179304210800181X
- Kim, M-S, Kim, T, Ryoo, C-S: On Carlitz's type q-Euler numbers associated with the fermionic p-adic integral on Z_p. J Inequal Appl 2010, 13 (2010). Article ID 358986
- Kim, T: On a *q*-analogue of the *p*-adic log gamma functions and related integrals. J Number Theory. 76, 320–329 (1999). doi:10.1006/jnth.1999.2373
- 6. Kim, T: Note on the Euler q-zeta functions. J Number Theory. 129(7), 1798–1804 (2009). doi:10.1016/j.jnt.2008.10.007
- Luo, Q-M: Some results for the *q*-Bernoulli and *q*-Euler polynomials. J Math Anal Appl. 363(1), 7–18 (2010). doi:10.1016/j. jmaa.2009.07.042
- Rim, S-H, Bayad, A, Moon, E-J, Jin, J-H, Lee, S-J: A new costruction on the *q*-Bernoulli polynomials. Adv Diff Equ. 2011, 34 (2011). doi:10.1186/1687-1847-2011-34
- Satoh, J: q-analogue of Riemann's ζ-function and q-Euler numbers. J Number Theory. 31, 346–62 (1989). doi:10.1016/ 0022-314X(89)90078-4
- 10. Tsumura, H: A note on *q*-analogue of the Dirichlet series and *q*-Bernoulli numbers. J Number Theory. **39**, 251–256 (1991). doi:10.1016/0022-314X(91)90048-G
- Choi, J, Anderson, PJ, Srivastava, HM: Carlitz's q-Bernoulli and q-Euler numbers and polynomials and a class of generalized q-Hurwitz zeta functions. Appl Math Comput. 215(3), 1185–1208 (2009). doi:10.1016/j.amc.2009.06.060
- 12. Kim, T: On the analogs of Euler numbers and polynomials associated with *p*-adic *q*-integral on Z_p at q = -1. J Math Anal Appl. **331**(2), 779–792 (2007). doi:10.1016/j.jmaa.2006.09.027
- Simsek, Y: q-analogue of twisted I-series and q-twisted Euler numbers. J Number Theory. 110, 267–278 (2005). doi:10.1016/j.jnt.2004.07.003
- Simsek, Y: Twisted (h, q)-Bernoulli numbers and polynomials related to twisted (h, q)-zeta function and L-function. J Math Anal Appl. 324, 790–804 (2006). doi:10.1016/j.jmaa.2005.12.057
- 15. Robert, AM: A course in p-adic analysis, Graduate Texts in Mathematics. Springer-Verlag, New York198 (2000)
- 16. Washington, LC: Introduction to Cyclotomic Fields. Springer-Verlag, New York, 2 (1997)
- Kim, M-S: On Euler numbers, polynomials and related *p*-adic integrals. J Number Theory. **129**, 2166–2179 (2009). doi:10.1016/j.jnt.2008.11.004
- Liu, G: On congruences of Euler numbers modulo powers of two. J Number Theory. 128(12), 3063–3071 (2008). doi:10.1016/j.jnt.2008.04.003
- Sun, Z-W: On Euler numbers modulo powers of two. J Number Theory. 115, 371–380 (2005). doi:10.1016/j. jnt.2005.01.001
- 20. Nörlund, NE: Vorlesungen über Differenzenrechnung. Berlin, Verlag Von Julius Springer (1924)
- Raabe, JL: Zurückführung einiger Summen und bestmmtiem Integrale auf die Jacob-Bernoullische Function. J Reine Angew Math. 42, 348–367 (1851)
- 22. Kim, T: On explicit formulas of p-adic q-L-functions. Kyushu J Math. 48(1), 73-86 (1994). doi:10.2206/kyushujm.48.73
- 23. Srivastava, HM, Choi, J: Series Associated with the Zeta and Related Functions. Kluwer Academic Publishers, Dordrecht (2001)
- Howard, FT: Applications of a recurrence for the Bernoulli numbers. J Number Theory. 52, 157–172 (1995). doi:10.1006/ jnth.1995.1062

25. Carlitz, L: A note on Euler numbers and polynomials. Nagoya Math J. 7, 35–43 (1954)

26. Ayoub, R: Euler and the zeta function. Am Math Monthly. **81**, 1067–1086 (1974). doi:10.2307/2319041

doi:10.1186/1687-1847-2011-68

Cite this article as: Kim and Kim: Some results for the *q*-Bernoulli, *q*-Euler numbers and polynomials. Advances in Difference Equations 2011 2011:68.

Submit your manuscript to a SpringerOpen[™] journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- Immediate publication on acceptance
- ► Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at ► springeropen.com