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Abstract

In this article, we investigate existence of solutions for perturbed abstract measure
functional differential equations. Based on the Arzelà-Ascoli theorem and the fixed
point theorem, we give sufficient conditions for existence of solutions for a class of
perturbed abstract measure functional differential equations. Our system includes the
systems studied in some previous articles as special cases and our sufficient
conditions for existence of solutions are less conservative. An example is given to
illustrate the effectiveness of our existence theorem of solutions.

1 Introduction
Abstract measure differential equations are more general than difference equations, dif-

ferential equations, and differential equations with impulses. The study of abstract

measure differential equations was initiated by Sharma [1] in 1970s. From then on,

properties of abstract measure differential equations have been researched by various

authors. But up to now, there were only some limited results on abstract measure dif-

ferential equations can be found, such as existence [2-6], uniqueness [2,3,5], and extre-

mal solutions [3,4,6]. There were also several researches on abstract measure integro-

differential equations [7,8]. The study on abstract measure differential equations is still

rare.

Recently, there were a number of focuses on existence problems, for example, see

[9-11] and references therein, and functional differential equations were also investi-

gated widely, such as work done in [12-14]. However, there were only very few results

on existence of solutions for abstract measure functional differential equations.

There were some consideration on abstract measure delay differential equations [2]

and perturbed abstract measure differential equations [4]. However, to the best of

authors’ knowledge, there were not any results dealing with perturbed abstract measure

functional differential equations. In this article, we investigate the existence of solutions

for perturbed abstract measure functional differential equations. This is a problem of

difficulty and challenge. Based on the Leray-Schauder alternative involving the sum of

two operators [15] and the Arzelà-Ascoli theorem, the existence results of our system

is derived. The perturbed abstract measure functional differential system researched in

this paper includes the systems studied in [2,4] as special cases. Additionally, consider-

ing appropriate degeneration, our sufficient conditions for existence of solutions are
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also less conservative than those in [2,4], respectively. The study in the previous arti-

cles are improved.

The content of this article is organized as follows: In Section 2, some preliminary

fact is recalled; the perturbed abstract measure functional differential equation is pro-

posed, as well as some relative notations. In Section 3, the existence theorem is given

and strict proof is shown; two remarks are given to analyze that our existence results

are less conservative. In Section 4, an example is used to illustrate the effectiveness of

our results for existence of solutions.

2 Preliminary
Definition 2.1 Let X be a Banach space, a mapping T : X ® X is called D-Lipschitzian,

if there is a continuous and nondecreasing function jT : ℝ+ ® ℝ+ such that

‖ Tx − Ty ‖ ≤ φT(‖ x − y ‖)

for all x, y Î X, jT(0) = 0. T is called Lipschitzian, if jT(x) = ax, where a > 0 is a

Lipschitz constant. Furthermore, T is called a contraction on X, if a < 1.

Let T : X ® X, where X is a Banach space. T is called totally bounded, if T(M) is

totally bounded for any bounded subset M of X. T is called completely continuous, if

T is continuous and totally bounded on X. T is called compact, if T(X) is a compact

subset of X. Every compact operator is a totally bounded operator.

Define any convenient norm || · || on X. Let x, y be two arbitrary points in X, then

segment xy is defined as

xy = {z ∈ X | z = x + r(y − x), 0 ≤ r ≤ 1}.

Let x0 Î X be a fixed point and z ∈ X, 0x0 ⊂ 0z, where 0 is the zero element of X.

Then for any x ∈ x0z, we define the sets Sx and S̄x as

Sx = {rx| − ∞ < r < 1},
S̄x = {rx| − ∞ < r ≤ 1}.

For any x1, x2 ∈ x0z ⊂ X, we denote x1 <x2 if Sx1 ⊂ Sx2, or equivalently x0x1 ⊂ x0x2.

Let ω Î [0, h], h > 0. For any x ∈ x0z, xω is defined by

xω < x, ‖ x − xω ‖ = ω.

Let M denote the s-algebra which generated by all subsets of X, so that (X, M) is a

measurable space. Let ca(X, M) be the space consisting of all signed measures on M.

The norm || · || on ca(X, M) is defined as:

‖ p ‖ = | p | (X),

where |p| is a total variation measure of p,

| p | (X) = sup
π

∞∑
i=1

| p(Ei) |, Ei ⊂ X,

where π : {Ei : i Î N} is any partition of X. Then ca(X, M) is a Banach space with the

norm defined above.
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Let μ be a s-finite positive measure on X. p Î ca(X, M) is called absolutely continu-

ous with respect to the measure μ, if μ(E) = 0 implies p(E) = 0 for some E Î M. And

we denote p ≪ μ.

Let M0 denote the s-algebra on Sx0. For x0 <z, Mz denotes the s-algebra on Sz. It is

obvious that Mz contains M0 and the sets of the form Sx, x ∈ x0z.

Given a p Î ca(X, M) with p ≪ μ, consider perturbed abstract measure functional

differential equation:

dp
dμ = f (x, p(S̄xω

)) + g(x, p(S̄x), p(S̄xω
)), a.e. [μ] on x0z, (1)

and

p(E) = q(E), E ∈ M0. (2)

where q is a given signed measure, dp
dμ is a Radon-Nikodym derivative of p with

respect to μ. f : Sz × ℝ ® ℝ, g : Sz × ℝ × ℝ ® ℝ. f (x, p(S̄xω
)) and g(x, p(S̄x), p(S̄xω

)) are

μ-integrable for each p Î ca(Sz, Mz).

Define

| f (x, p(·)) |= sup
ω∈[0,h]

| f (x, p(S̄xω
)) |,

| g(x, p, p(·)) |= sup
ω∈[0,h]

| g(x, p(Sx), p(S̄xω
)) | .

Definition 2.2 q is a given signed measure on M0. A signed measure p Î ca(Sz, Mz)

is called a solution of (1)-(2), if

(i) p(E) = q(E), E Î M0,

(ii) p ≪ μ on x0z,

(iii) p satisfies (1) a.e. [μ] on x0z.

Remark 2.1 The system (1)-(2) is equivalent to the following perturbed abstract

measure functional integral system:

p(E) =
{∫

E f (x, p(S̄xω
))dμ +

∫
E g(x, p(S̄x), p(S̄xω

))dμ, E ∈ Mz, E ⊂ x0z
q(E), E ∈ M0.

We denote a solution p of (1)-(2) as p(S̄x0 , q).

Definition 2.3 A function b : Sz × ℝ × ℝ ® ℝ is called Carathéodory, if

(i) x ® b(x, y, z) is μ-measurable for each (y, z) Î ℝ × ℝ,

(ii) (y, z) ® b(x, y, z) is continuous a.e. [μ] on x0z.

The function b defined as the above is called L1μ-Carathéodory, further if

(iii) for each real number r > 0, there exists a function hr(x) ∈ L1μ(Sz, R
+) such that

| β(x, y, z) |≤ hr(x) a.e. [μ] on x0z

for each y Î ℝ, z Î ℝ with |y| ≤ r, |z| ≤ r.

Lemma 2.1 [15] Let Br(0) and B̄r(0) denote, respectively, the open and closed balls

in a Banach algebra X with center 0 and radius r for some real number r > 0. Suppose

A : X ® X, B : B̄r(0) → X are two operators satisfying the following conditions:

(a) A is a contraction, and

(b) B is completely continuous.

Then either

Wan and Sun Advances in Difference Equations 2011, 2011:67
http://www.advancesindifferenceequations.com/content/2011/1/67

Page 3 of 8



(i) the operator equation Ax + Bx = x has a solution x in B̄r(0), or

(ii) there exists an element u ∈ ∂B̄r(0) such that λA( u
λ
) + λBu = u for some l Î (0,

1).

3 Main results
We consider the following assumptions:

(A0) For any z Î X satisfies x0 <z, the s-algebra Mz is compact with respect to the

topology generated by the pseudo-metric d defined by

d(E1, E2) =| μ | (E1�E2), E1, E2 ∈ Mz.

(A1) μ({x0}) = 0.

(A2) q is continuous on Mz with respect to the pseudo-metric d defined in (A0).

(A3) There exists a μ-integrable function a : Sz ® ℝ+ such that

| f (x, y1(·)) − f (x, y2(·)) |≤ α(x) | y1(·) − y2(·) | a.e.[μ] on x0z.

(A4) g(x, y, z(·)) is L1μ-Carathéodory.

Theorem 3.1 Suppose that the assumptions (A0)-(A4) hold. Further if ‖ α‖L1μ < 1 and

there exists a real number r > 0 such that

r >
F0 + ‖q|| + ||hr‖L1μ

1 − ||α||L1μ
(3)

where F0 =
∫
x0z

| f (x, 0) | dμ. Then the system (1)-(2) has a solution on x0z.

Proof: Consider the open ball Br(0) and the closed ball B̄r(0) in ca(Sz, Mz), with r

satisfying the inequality (3). Define two operators A : ca(Sz, Mz) ® ca(Sz, Mz),

B : B̄r(0) → ca(Sz, Mz) as:

Ap(E) =
{∫

E f (x, p(S̄xω
))dμ, E ∈ Mz, E ⊂ x0z

0, E ∈ M0.

Bp(E) =
{∫

E g(x, p(S̄x), p(S̄xω
))dμ, E ∈ Mz, E ⊂ x0z

q(E), E ∈ M0.

Now we prove the operators A and B satisfy conditions that are given in Lemma 2.1

on ca(Sz, Mz) and B̄r(0), respectively.

Step I. A is a contraction on ca(Sz, Mz).

Let p1, p2 Î ca(Sz, Mz). Then by assumption (A3)

∣∣Ap1(E) − Ap2(E)
∣∣ =|

∫
E
f (x, p1(S̄xω

))dμ −
∫
E
f (x, p2(S̄xω

))dμ |

≤
∫
E
α(x) sup

ω

| p1(S̄xω
) − p2(S̄xω

) | dμ

≤
∫
E
α(x) | p1 − p2 | (S̄x)dμ

≤ ‖ α ‖L1μ | p1 − p2 | (E)

for all E Î Mz.

Considering the definition of norm on ca(Sz, Mz), we have

‖ Ap1 − Ap2 ‖≤ ‖ α ‖L1μ ‖ p1 − p2 ‖,
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for all p1, p2 Î ca(Sz, Mz). So A is a contraction on ca(Sz, Mz).

Step II. B is continuous on B̄r(0).

Let {pn}nÎN be a sequence of signed measures in B̄r(0), and {pn}nÎN converges to a

signed measure p. In case E Î Mz, E ⊂ x0z, using dominated convergence theorem

limBpn(E) = lim
n→∞

∫
E
g(x, pn(S̄x), pn(S̄xω

))dμ

=
∫
E
g(x, p(S̄x), p(S̄xω

))dμ

= Bp(E).

In case E Î M0, lim
n→∞Bpn(E) = q(E) = Bp(E). Obviously, B is a continuous operator

on B̄r(0).

Step III. B is a totally bounded operator on B̄r(0).

Let {pn}nÎN be a sequence of signed measures in B̄r(0), then ||pn|| ≤ r(n Î N). Next

we show that {Bpn}nÎN are uniformly bounded and equicontinuous.

First, {Bpn}nÎN are uniformly bounded. Let E Î Mz, and E = F ∪ G, where F Î M0

and G Î Mz, G ⊂ x0z. F ∩ G = ∅. Hence,

∣∣Bpn(E)∣∣ ≤| q(F) | +
∫
G

| g(x, pn(S̄x), pn(S̄xω
)) | dμ

≤| q(F) | +
∫
G
hr(x)dμ,

consequently,

‖ Bpn ‖=| Bpn | (Sz) = sup
∞∑
i=1

| Bpn(Ei) | ≤‖ q ‖ + ‖ hr ‖L1μ ,

for every pn ∈ B̄r(0). Then {Bpn}nÎN are uniformly bounded.

Second, {Bpn}nÎN is an equicontinuous sequence in ca(Sz, Mz). Let Ei Î Mz, and Ei =

Fi ∪ Gi, where Fi Î M0 and Gi ∈ Mz, Gi ⊂ x0z, and Fi ∩ Gi = ∅. i = 1, 2.

Considering assumption (A4), then

|Bpn(E1) − Bpn(E2)| ≤ |q(F1) − q(F2)| + |
∫
G1

g(x, pn(S̄x), pn(S̄xω
))dμ

−
∫
G2

g(x, pn(S̄x), pn(S̄xω
))dμ|

≤ |q(F1) − q(F2)|
+

∫
G1�G2

|g(x, pn(S̄x), pn(S̄xω
))|dμ

≤ |q(F1) − q(F2)| +
∫
G1�G2

hr(x)dμ.

when d(E1, E2) ® 0, E1 ® E2. Then, F1 ® F2, and |μ|(G1ΔG2) = d(G1ΔG2) ® 0.

Considering assumption (A2), q is continuous on compact Mz implies it is uniformly

continuous on Mz. so

| Bpn(E1) − Bpn(E2) |→ 0, as d(E1, E2) → 0

for every pn ∈ B̄r(0).
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{Bpn}nÎN is an equicontinuous sequence in ca(Sz, Mz).

According to the Arzelà-Ascoli theorem, there is a subset {Bpnk}n,k∈N of {Bpn}nÎN
that converges uniformly. Thus, operator B is compact on B̄r(0). Then, B is a totally

bounded operator on Br(0).

From steps II and III, the operator B is completely continuous on Br(0).

Step IV. (1)-(2) has a solution on x0z.

Now, by applying Lemma 2.1, we show that (i) holds. Otherwise, there exists an ele-

ment u Î ca(Sz, Mz) with ||u|| = r such that λA( u
λ
) + λBu = u for some l Î (0, 1).

If it is true, we have

u(E) =

{
λ

∫
E f (x,

u(S̄xω )
λ

)dμ + λ
∫
E g(x, u(S̄x), u(S̄xω

))dμ, E ∈ Mz, E ⊂ x0z
λq(E), E ∈ M0.

for some l Î (0, 1). Then

| u(E) | ≤| λA( u(E)
λ

) | + | λB(u(E)) |
≤ λ | q(F) | + λ

∫
G
[|f (x, u(S̄xω )

λ
) − f (x, 0) | + | f (x, 0) |]dμ

+ λ

∫
G

| g(x, u(S̄x), u(S̄xω
)) | dμ

≤| q(F) | +
∫
G

α(x) | u(S̄xω
) | dμ +

∫
G

| f (x, 0) | dμ +
∫
G
hr(x)dμ

≤| q(F)| + ‖ α | |L1μ | u(E) | +
∫
G

| f (x, 0) | dμ +
∫
G
hr(x)dμ.

so we get

| u(E) |≤ | q(F) | +
∫
G | f (x, 0) | dμ +

∫
G hr(x)dμ

1 − ‖ α ‖L1μ
,

for all E Î Mz.

By the definition of the norm on ca(Sz, Mz),

‖ u ‖≤
‖ q ‖ + F0 + ‖ hr ‖L1μ

1 − ‖ α ‖L1μ
.

As ||u|| = r, we have

r ≤
‖ q ‖ + F0 + ‖ hr ‖L1μ

1 − ‖ α ‖L1μ
.

This is a contradiction. Consequently, the equation p(E) = Ap(E) + Bp(E) has a solu-

tion p(S̄x0 , q) ∈ B̄r(0) ⊂ ca(Sz,Mz). It is said that (1)-(2) has a solution on x0z. The

proof of Theorem 3.1 is completed.

Remark 3.1 If f(x, y) = 0 and ω is a given constant, then system (1)-(2) degenerates

into

dp
dμ = g(x, p(S̄x), p(S̄xω

)), a.e. [μ] on x0z, (4)
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and

p(E) = q(E), E ∈ M0, (5)

obviously, (4)-(5) is the system (4) considered in [2]. Additionally, our degenerated

assumptions for the existence theorem equal to (A1)-(A4) in [2], the more complex

assumption (A5) [2] is not necessary. So our results are less conservative.

Remark 3.2 If ω = 0, then system (1)-(2) degenerates into

dp
dμ = f (x, p(S̄x)) + g(x, p(S̄x)), a.e. [μ] on x0z, (6)

and

p(E) = q(E), E ∈ M0. (7)

obviously, (6)-(7) is the system (3.6)-(3.7) studied in [4]. Additionally, our degener-

ated assumptions for the existence theorem equal to (A0)-(A2) and (B0)-(B1) in [4], the

more complex assumption (B2) [4] is not necessary. So, our results are less

conservative.

4 Example
Let p Î ca(Sz, Mz) with p ≪ μ. Consider the equation as follows:

dp
dμ = α(x) | p(Sxω

) | + hr(x)|p(S̄x) + p(S̄xω )|
1 + |p(S̄x) + p(S̄xω )|

, a.e. [μ] on x0z, (8)

and

p(E) = q(E), E ∈ M0. (9)

where hr(x) ∈ L1μ(Sz, R
+), ‖ α‖L1μ < 1 and 0 ≤ ω ≤ h(h > 0). f : Sz × ℝ ® ℝ and g : Sz

× ℝ × ℝ ® ℝ are defined as

f (x, y(·)) = α(x) | p(S̄xω
) |,

g(x, y, z(·)) = hr(x) | p(S̄x) + p(S̄xω
) |

1 + | p(S̄x) + p(S̄xω
) | .

It is obvious that the assumptions (A0) - (A2) hold. Then, we show that f and g satisfy

the assumptions (A3) and (A4), respectively.

First, f is continuous on ca(Sz, Mz).∣∣f (x, y1(·)) − f (x, y2(·))
∣∣ ≤| α(x) | sup

ω

‖ p1(S̄xω
) | − | p2(S̄xω

) ‖

≤ | α(x) | sup
ω

| p1(S̄xω
) − p2(S̄xω

) |

=| α(x) | | y1(·) − y2(·) |,

f(x, y(·)) satisfies (A3).

Second, |g(x, y, z(·))| ≤ hr(x). g(x, y, z(·)) satisfies the assumption (A4).

Thus, if there exists r Î ℝ satisfies r >
F0 + ‖q‖ + ‖hr ||L1μ

1 − ‖α||L1μ
with F0 =

∫
x0z

| f (x, 0) | dμ, all
conditions in

Theorem 3.1 are satisfied. So, (8)-(9) has a solution p(S̄x0 , q) on x0z.
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