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Abstract

In this article, we discuss how to use a standard minimizing argument in critical
point theory to study the existence of non-trivial homoclinic solutions of the
following second-order non-autonomous discrete systems

�2xn−1 + A�xn − L(n)xn + ∇W(n, xn) = 0, n ∈ Z,

without any periodicity assumptions. Adopting some reasonable assumptions for A
and L, we establish that two new criterions for guaranteeing above systems have
one non-trivial homoclinic solution. Besides that, in some particular case, for the first
time the uniqueness of homoclinic solutions is also obtained.
MSC: 39A11.
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1. Introduction
The theory of nonlinear discrete systems has widely been used to study discrete mod-

els appearing in many fields such as electrical circuit analysis, matrix theory, control

theory, discrete variational theory, etc., see for example [1,2]. Since the last decade,

there have been many literatures on qualitative properties of difference equations,

those studies cover many branches of difference equations, see [3-7] and references

therein. In the theory of differential equations, homoclinic solutions, namely doubly

asymptotic solutions, play an important role in the study of various models of continu-

ous dynamical systems and frequently have tremendous effects on the dynamics of

nonlinear systems. So, homoclinic solutions have extensively been studied since the

time of Poincaré, see [8-13]. Similarly, we give the following definition: if xn is a solu-

tion of a discrete system, xn will be called a homoclinic solution emanating from 0 if

xn ® 0 as |n| ® +∞. If xn ≠ 0, xn is called a non-trivial homoclinic solution.

For our convenience, let N, Z, and R be the set of all natural numbers, integers, and

real numbers, respectively. Throughout this article, | · | denotes the usual norm in RN

with N Î N, (·,·) stands for the inner product. For a, b Î Z, define Z(a) = {a, a + 1, ...}, Z

(a, b) = {a, a + 1, ..., } when a ≤ b.

In this article, we consider the existence of non-trivial homoclinic solutions for the

following second-order non-autonomous discrete system
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�2xn−1 + A�xn − L(n)xn + ∇W(n, xn) = 0 (1:1)

without any periodicity assumptions, where A is an antisymmetric constant matrix, L

(n) Î C1(R, RN×N) is a symmetric and positive definite matrix for all n Î Z, W(n, xn) =

a(n)V(xn), and a: R ® R+ is continuous and V Î C1(RN, R). The forward difference

operator Δ is defined by Δxn = xn+1 - xn and Δ2xn = Δ(Δxn).

We may think of (1.1) as being a discrete analogue of the following second-order

non-autonomous differential equation

x′′ + Ax′ − L(t)x +Wx(t, x) = 0 (1:2)

(1.1) is the best approximations of (1.2) when one lets the step size not be equal to 1

but the variable’s step size go to zero, so solutions of (1.1) can give some desirable

numerical features for the corresponding continuous system (1.2). On the other hand,

(1.1) does have its applicable setting as evidenced by monographs [14,15], as men-

tioned in which when A = 0, (1.1) becomes the second-order self-adjoint discrete sys-

tem

�2xn−1 − L(n)xn + ∇W(n, xn) = 0, n ∈ Z, (1:3)

which is in some way a type of the best expressive way of the structure of the solu-

tion space for recurrence relations occurring in the study of second-order linear differ-

ential equations. So, (1.3) arises with high frequency in various fields such as optimal

control, filtering theory, and discrete variational theory and many authors have exten-

sively studied its disconjugacy, disfocality, boundary value problem oscillation, and

asymptotic behavior. Recently, Bin [16] studied the existence of non-trivial periodic

solutions for asymptotically superquadratic and subquadratic system (1.1) when A = 0.

Ma and Guo [17,18] gave results on existence of homoclinic solutions for similar sys-

tem (1.3). In this article, we establish that two new criterions for guaranteeing the

above system have one non-trivial homoclinic solution by adopting some reasonable

assumptions for A and L. Besides that, in some particular case, we obtained the

uniqueness of homoclinic solution for the first time.

Now we present some basic hypotheses on L and W in order to announce our first

result in this article.

(H1) L(n) Î C1(Z, RN×N) is a symmetric and positive definite matrix and there exists

a function a: Z ® R+ such that (L(n)x, x) ≥ a(n)|x|2 and a(n) ® + ∞ as |n| ® +∞;

(H2) W(n, x) = a(n) |x|g, i.e., V(x) = |x|g, where a: Z ® R such that a(n0) >0 for some

n0 Î Z, 1 < g <2 is a constant.

Remark 1.1 From (H1), there exists a constant b >0 such that

(L(n)x, x) ≥ β | x|2, ∀n ∈ Z, x ∈ RN, (1:4)

and by (H2), we see V(x) is subquadratic as |x| ® +∞ and

∇W(n, x) = γ a(n) | x|γ−2x (1:5)

In addition, we need the following estimation on the norm of A. Concretely, we sup-

pose that (H3) A is an antisymmetric constant matrix such that ‖ A ‖< √
β , where b

is defined in (1.4).
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Remark 1.2 In order to guarantee that (H3) holds, it suffices to take A such that ||

A|| is small enough.

Up until now, we can state our first main result.

Theorem 1.1 If (H1)-(H3) are hold, then (1.1) possesses at least one non-trivial

homoclinic solution.

Substitute (H2)’ by (H2) as follows

(H2)’ W(n, x) = a(n)V(x), where a: Z ® R such that a(n1) >0 for some n1 Î Z and V

Î C1(RN, R), and V(0) = 0. Moreover, there exist constants M >0, M1 >0, 1 < θ <2

and 0 < r ≤ 1 such that

V(x) ≥ M | x|θ , ∀x ∈ RN, | x |≤ r (1:6)

and

| V ′(x) |≤ M1, ∀x ∈ RN. (1:7)

Remark 1.3 By V(0) = 0, V Î C1(RN, R) and (1.7), we have

| V(x) |=|
∫ 1

0
(V ′(μx), x)dμ |≤ M1 | x |, (1:8)

which yields that V(x) is subquadratic as |x| ® +∞.

We have the following theorem.

Theorem 1.2 Assume that (H1), (H2)’ and (H3) are satisfied, then (1.1) possesses at

least one non-trivial homoclinic solution. Moreover, if we suppose that V Î C2(RN, R)

and there exists constant ω with 0 < ω < β − √
β ‖ A ‖ such that

‖ a(n)V ′′(x)‖2 ≤ ω, ∀n ∈ Z, x ∈ RN, (1:9)

then (1.1) has one and only one non-trivial homoclinic solution.

The remainder of this article is organized as follows. After introducing some nota-

tions and preliminary results in Section 2, we establish the proofs of our Theorems 1.1

and 1.2 in Section 3.

2. Variational structure and preliminary results
In this section, we are going to establish suitable variational structure of (1.1) and give

some lemmas which will be fundamental importance in proving our main results. First,

we state some basic notations.

Letting

E =

{
x ∈ S :

∑
n∈Z

[(�xn)2 + (L(n)xn, xn)] < +∞
}
,

where

S = {x = {xn} : xn ∈ RN,n ∈ Z}

and

x = {xn}n∈Z = {. . . , x−n, . . . , x−1, x0, x1, . . . , xn, . . .}.
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According to the definition of the space E, for all x, y Î E there holds∑
n∈Z

[(�xn,�yn) + (L(n)xn, yn)]

=
∑
n∈Z

[(�xn,�yn) + (L
1
2 (n)xn, L

1
2 (n)yn)]

≤
(∑

n∈Z
(| �xn|2+ | L

1
2 (n)xn|2)

) 1
2

·
(∑

n∈Z
(| �yn|2+ | L

1
2 (n)yn|2)

) 1
2

< +∞.

Then (E, <·, · >) is an inner space with

< x, y > =
∑
n∈Z

[(�xn,�yn) + (L(n)xn, yn)], ∀x, y ∈ E

and the corresponding norm

‖ x‖2 =
∑
n∈Z

[(�xn)2 + (L(n)xn, xn)], ∀x ∈ E.

Furthermore, we can get that E is a Hilbert space. For later use, given b > 0, define

lβ = {x = {xn} ∈ S :
∑
n∈Z

| xn|β < +∞} and the norm

‖ x‖lβ = β

√∑
n∈Z

| xn|β =‖ x‖β .

Write l∞ = {x = {xn} Î S: |xn| < +∞} and

‖ x‖l∞ = sup
n∈Z

| xn | .

Making use of Remark 1.1, there exists

β ‖ x ‖2l2= β
∑
n∈Z

| xn|2 ≤
∑
n∈Z

[(�xn)2 + (L(n)xn, xn)] =‖ x‖2,

then

‖ x‖l∞ ≤‖ x‖l2 ≤ β
−1
2 ‖ x ‖ (2:1)

Lemma 2.1 Assume that L satisfies (H1), {x
(k)} ⊂ E such that x(k) ⇀ x. Then x(k) ⇀ x

in l2.

Proof Without loss of generality, we assume that x(k) ⇀ 0 in E. From (H1) we have a

(n) > 0 and a(n) ® +∞ as n ® ∞, then there exists D > 0 such that | 1
α(n) | = 1

α(n) ≤ ε

holds for any ε > 0 as |n| >D.

Let I = {n: |n| ≤ D, n Î Z} and EI = {x ∈ E :
∑
n∈I

[(�xn)2 + L(n)xn · xn] < +∞} , then EI

is a 2DN-dimensional subspace of E and clearly x(k)⇀ 0 in EI. This together with the

uniqueness of the weak limit and the equivalence of strong convergence and weak con-

vergence in EI, we have x(k) ® 0 in EI, so there has a constant k0 > 0 such that∑
n∈I

| x(k)n |2 ≤ ε, ∀k ≥ k0. (2:2)
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By (H1), there have

∑
|n|>D

| x(k)n |2 =
∑
|n|>D

1
α(n)

· α(n) | x(k)n |2

≤ ε
∑

|n|>D

α(n) | x(k)n |2 ≤ ε
∑

|n|>D

(L(n)x(k)n , x(k)n )

≤ ε
∑

|n|>D

[(�x(k)n )2 + (L(n)x(k)n , x(k)n )] = ε ‖ x(k)‖2.

Note that ε is arbitrary and ||x(k)|| is bounded, then∑
|n|>D

| x(k)n |2 → 0, (2:3)

combing with (2.2) and (2.3), x(k) ® 0 in l2 is true.

In order to prove our main results, we need following two lemmas.

Lemma 2.2 For any x(j) >0, y(j) >0, j Î Z there exists

∑
j∈Z

x(j)y(j) ≤
⎛
⎝∑

j∈Z
xq(j)

⎞
⎠

1
q

·
⎛
⎝∑

j∈Z
ys(j)

⎞
⎠

1
s

,

where q >1, s >1, 1
q + 1

s = 1.

Lemma 2.3 [19] Let E be a real Banach space and F Î C1(E, R) satisfying the PS

condition. If F is bounded from below, then

c = inf
E

F

is a critical point of F.

3. Proofs of main results
In order to obtain the existence of non-trivial homoclinic solutions of (1.1) by using a

standard minimizing argument, we will establish the corresponding variational func-

tional of (1.1). Define the functional F: E ® R as follows

F(x) =
∑
n∈Z

[
1
2
(�xn)

2 +
1
2
(L(n)xn, xn) +

1
2
(Axn,�xn) − W(n, xn)

]

=
1
2

‖ x‖2 + 1
2

∑
n∈Z

(Axn,�xn) −
∑
n∈Z

W(n, xn).
(3:1)

Lemma 3.1 Under conditions of Theorem 1.1, we have F Î C1(E, R) and any critical

point of F on E is a classical solution of (1.1) with x±∞ = 0.

Proof We first show that F: E ® R. By (1.4), (2.1), (H2), and Lemma 2.2, we have

0 ≤
∑
n∈Z

| W(n, xn) | =
∑
n∈Z

| a(n) | | xn|γ

≤
(∑

n∈Z
| a(n)|

2
2−γ

) 2−γ

2
(∑

n∈Z
| xn|γ

2
γ

) γ

2

=‖ a(n)‖ 2
2−γ

‖ x ‖γ
2≤ β

− γ

2 ‖ a(n) ‖ 2
2−γ

‖ x‖γ

< +∞

(3:2)
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Combining (3.1) and (3.2), we show that F: E ® R.

Next we prove F Î C1(E, R). Write F1(x) = 1
2 ‖ x‖2 + 1

2

∑
n∈Z

(Axn,�xn) ,

F2(x) =
∑
n∈Z

W(n, xn) , it is obvious that F(x) = F1(x) - F2(x) and F1(x) Î C1(E, R). And

by use of the antisymmetric property of A, it is easy to check

< F′
1(x), y >=

∑
n∈Z

[(�xn,�yn) + (Axn,�yn) + (L(n)xn, yn)], ∀y ∈ E. (3:3)

Therefore, it is sufficient to show that F2(x) Î C1(E, R).

Because of V(x) = |x|g, i.e., V Î C1(RN, R), let us write �(t) = F2(x + th), 0 ≤ t ≤ 1, for

all x, h Î E, there holds

ϕ′(0) = lim
t→0

ϕ(t) − ϕ(0)
t

= lim
t→0

F2(x + th) − F2(x)
t

= lim
t→0

1
t

∑
n∈Z

[V(n, xn + thn) − V(n, xn)]

= lim
t→0

∑
n∈Z

∇V(n, xn + θnthn) · hn

=
∑
n∈Z

∇V(n, xn) · hn

where 0 <θn < 1. It follows that F2(x) is Gateaux differentiable on E.

Using (1.5) and (2.1), we get

|∇W(n, xn)| =| γ a(n) | xn|γ−2xn | = γ a(n) | xn|γ−1

≤ γ a(n) ‖ x ‖γ−1
l∞ ≤ γ a(n)β−1

2 ‖ x‖γ−1

= da(n)

(3:4)

where d = γ β
−1
2 ‖ x‖γ−1 is a constant. For any y Î E, using (2.1), (3.4) and lemma

2.2, it follows

|
∑
n∈Z

(∇W(n, xn), yn)| ≤
∑
n∈Z

da(n)|yn|

= d
∑
n∈Z

a(n)|yn| ≤ d

(∑
n∈Z

|a(n)|2
)1
2

(∑
n∈Z

|yn|2
)1
2

≤ d‖a(n)‖2
(∑

n∈Z

1
β
(L(n)yn, yn)

)1
2

≤ d√
β

‖a(n)‖2‖y‖

thus the Gateaux derivative of F2(x) at x is F′
2(x) ∈ E and

< F′
2(x), y >=

∑
n∈Z

(∇W(n, xn), yn), ∀x, y ∈ E.
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For any y Î E and ε > 0, when ||y|| ≤ δ, i.e., | y |≤ α
−1
2 δ there exists δ >0 such that

| ∇W(n, xn + yn) − ∇W(n, xn) |< ε.

is true. Therefore,

| < F′
2(x + y) − F′

2(x), h > | = |
∑
n∈Z

(∇W(n, xn + yn) − ∇W(n, xn), hn)|

≤ ε
∑
n∈Z

|hn| ≤ εβ
−
1
2 ‖h‖,

that is

‖ F′
2(x + y) − F′

2(x) ‖≤ εβ
−1
2 .

Note that ε is arbitrary, then F′
2 : E → E′ , x → F′

2(x) is continuous and F2(x) Î C1(E,

R). Hence, F Î C1(E, R) and for any x, h Î E, we have

< F′(x), h > = < x, h > −
∑
n∈Z

(∇W(n, xn), hn)

=
∑
n∈Z

[(−(�xn−1)2 + (Axn,�xn) + (L(n)xn, xn) − ∇W(n, xn), hn)]

that is

< F′(x), x >=‖ x‖2 −
∑
n∈Z

(∇W(n, xn), xn) (3:5)

Computing Fréchet derivative of functional (3.1), we have

∂F(x)
∂x(n)

= −�2xn−1 − A�xn + L(n)xn − ∇W(n, xn), n ∈ Z

this is just (1.1). Then critical points of variational functional (3.1) corresponds to

homoclinic solutions of (1.1)

Lemma 3.2 Suppose that (H1), (H2) in Theorem 1.1 are satisfied. Then, the func-

tional (3.1) satisfies PS condition.

Proof Let {x(k)}kÎN ⊂ E be such that {F(x(k))}kÎN is bounded and {F’ (x(k))} ® 0 as k ®
+∞. Then there exists a positive constant c1 such that

| F(x(k)) |≤ c1, ‖ F′(x(k))‖E′ ≤ c1, ∀k ∈ N. (3:6)

Firstly, we will prove {x(k)}kÎN is bounded in E. Combining (3.1), (3.5) and remark

1.1, there holds

(1 − μ

2
) ‖ x(k)‖2 =< F′(x(k)), x(k) > −μF(x(k))

+
∑
n∈Z

[(∇W(n, x(k)n ), x(k)n ) − μW(n, x(k)n )]

≤< F′(x(k)), x(k) > −μF(x(k))
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together with (3.6)

(1 − μ

2
) ‖ x(k)‖2 ≤ c1 ‖ x(k) ‖ +μc1. (3:7)

Since 1 <μ <2, it is not difficult to know that {x(k)}kÎN is a bounded sequence in E.

So, passing to a subsequence if necessary, it can be assumed that x(k) ⇀ x in E. More-

over, by Lemma 2.1, we know x(k) ⇀ x in l2. So for k ® +∞,

< F′(x(k)) − F′(x), x(k) − x >→ 0,

and ∑
n∈Z

(∇W(n, x(k)n ) − ∇W(n, xn), x
(k)
n − xn) → 0.

On the other hand, by direct computing, for k large enough, we have

< F′(x(k)) − F′(x), x(k) − x >

=‖ x(k) − x‖2 −
∑
n∈Z

(∇W(n, x(k)n ) − ∇W(n, xn), x
(k)
n − xn).

It follows that

‖ x(k) − x ‖→ 0,

that is the functional (3.1) satisfies PS condition.

Up until now, we are in the position to give the proof of Theorem 1.1.

Proof of Theorem 1.1 By (3.1), we have, for every m Î R \ {0} and x Î E \ {0},

F(mx) =
m2

2
‖ x‖2 + m2

2

∑
n∈Z

(Axn,�xn) −
∑
n∈Z

W(n,mxn)

=
m2

2
‖ x‖2 + m2

2

∑
n∈Z

(Axn,�xn) − | m|γ
∑
n∈Z

a(n) | xn|γ

≥ m2

2
‖ x‖2 − m2

2
β

−1
2 ‖ A ‖ ‖ x‖2 − β

− γ

2 | m|γ ‖ a(n)‖2−γ

2
‖ x‖γ .

(3:8)

Since 1 < g <2 and ‖ A ‖< √
β , (3.8) implies that F(mx) ® +∞ as |m| ® +∞. Con-

sequently, F(x) is a functional bounded from below. By Lemma 2.3, F(x) possesses a

critical value c = infxÎE F(x), i.e., there is a critical point x Î E such that

F(x) = c, F′(x) = 0.

On the other side, by (H2), there exists δ0 >0 such that a(n) >0 for any n Î [n0 - δ0,

n0 + δ0]. Take c0 Î RN \ {0} and let y Î E be given by

yn =
{
c0 sin[ 2π

2δ0
(n − n1)], n ∈ [n0 − δ0,n0 + δ0]
0, n ∈ Z\[n0 − δ0,n0 + δ0]

Then, by (3.1), we obtain that

F(my) =
m2

2
‖ y‖2 + m2

2
β

−1
2 ‖ A ‖ ‖ y‖2− | m|γ

n0+δ0∑
n=n0−δ0

a(n) | yn|γ ,
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which yields that F(my) <0 for |m| small enough since 1 < g <2, i.e., the critical point

x Î E obtained above is non-trivial.

Although the proof of the first part of Theorem 1.2 is very similar to the proof of

Theorem 1.1, for readers’ convenience, we give its complete proof.

Lemma 3.3 Under the conditions of Theorem 1.2, it is easy to check that

< F′(x), y > =
∑
n∈Z

[(�xn,�yn) + (Axn,�yn) + (L(n)xn, yn) − (∇W(n, xn), yn)] (3:9)

for all x, y Î E. Moreover, F(x) is a continuously Fréchet differentiable functional

defined on E, i.e., F Î C1(E, R) and any critical point of F(x) on E is a classical solution

of (1.1) with x±∞ = 0.

Proof By (1.8) and (2.1), we have

0 ≤
∑
n∈Z

| W(n, xn) | =
∑
n∈Z

| a(n) | · | V(xn) |≤ M1

∑
n∈Z

| a(n) | · | xn |

≤ M1

(∑
n∈Z

| a(n) |2
) 1

2

·
(∑

n∈Z
| xn|2

) 1
2

= M1 ‖ a‖2 ‖ x‖2

≤ β
−1
2M1 ‖ a‖2 ‖ x ‖,

which together with (3.1) implies that F: E ® R. In the following, according to the

proof of Lemma 3.1, it is sufficient to show that for any y Î E,

∑
n∈Z

(∇W(n, xn), yn), ∀x ∈ E

is bounded. Moreover, By (1.8), (2.1), and Lemma 2.2, there holds

|
∑
n∈Z

(∇W(n, xn), yn) | ≤
∑
n∈Z

| ∇W(n, xn) | · | yn |

≤ M1

∑
n∈Z

| a(n) | · | xn | · | yn |

≤ M1 ‖ a‖2 ‖ x‖2 ‖ y‖2
≤ M1β

−1 ‖ a‖2 ‖ x ‖ ‖ y ‖

which implies that
∑
n∈Z

(∇W(n, xn), yn) is bounded for any x, y Î E.

Using Lemma 2.1, the remainder is similar to the proof of Lemma 3.1, so we omit

the details of its proof.

Lemma 3.4 Under the conditions of Theorem 1.2, F(x) satisfies the PS condition.

Proof From the proof of Lemma 3.2, we see that it is sufficient to show that for any

sequence {x(k)}kÎN ⊂ E such that {F(x(k))}kÎN is bounded and F’ (x(k)) ® 0 as k ® +∞,

then {x(k)}kÎN is bounded in E.

In fact, since {F(x(k))}kÎN is bounded, there exists a constant C2 >0 such that

| F(x(k)) |≤ C2, ∀k ∈ N. (3:10)
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Making use of (1.8), (3.1), (3.15), and Lemma 2.2, we have

1
2

‖ x(k)‖2 = F(x(k)) − 1
2

∑
n∈Z

(Ax(k)n ,�x(k)n ) +
∑
n∈Z

W(n, x(k)n )

≤ C2 +
1
2

β
−1
4 ‖ A ‖ ‖ x(k)‖2 +M1

∑
n∈Z

| a(n) ‖ x(k)n |

≤ C2 +
1
2

β
−1
2 ‖ A ‖ ‖ x(k)‖2 +M1β

−
1
2 ‖ a‖2 ‖ x(k) ‖,

which implies that {x(k)}kÎN is bounded in E, since ‖ A ‖< √
β .

Combining Lemma 2.1, the remainder is just the repetition of the proof of Lemma

3.2, we omit the details of its proof.

With the aid of above preparations, now we will give the proof of Theorem 1.2.

Proof of Theorem 1.2 By(1.8), (2.1), (3.1), and Lemma 2.2, we have, for every m Î R

\ {0} and x Î E \ {0},

F(mx) =
m2

2
‖ x‖2 + m2

2

∑
n∈Z

(Axn,�xn) −
∑
n∈Z

W(n,mxn)

≥ m2

2
‖ x‖2 − m2

2
β

−1
2 ‖ A ‖ ‖ x‖2 − β

−
1
2M1 | m | ‖ a(n)‖2 ‖ x ‖,

which yields that F(mx) ® +∞ as |m| ® +∞, since ‖ A ‖< √
β . Consequently, F(x)

is a functional bounded from below. By Lemmas 2.3 and 3.4, F(x) possesses a critical

value c = infxÎE F(x), i.e., there is a critical point x Î E such that

F(x) = c, F′(x) = 0.

In the following, we show that the critical point x obtained above is non-trivial. From

(H2)’, there exists δ1 > 0 such that a(n) >0 for any n Î [n1 - δ1, n1 + δ1]. Take c1 Î RN

with 0 < |c1| = r where r is defined in (H2)’ and let y Î E be given by

yn =
{
c1 sin[ 2π

2δ1
(n − n1)], n ∈ [n1 − δ1,n1 + δ1]
0, n ∈ Z\[n1 − δ1,n1 + δ1]

Then, for every n Î Z, |y| ≤ r ≤ 1. By (1.6), (2.1), and (3.1), we obtain that

F(my) ≤ m2

2
‖ y‖2 + m2

2
β

−1
2 ‖ A ‖ ‖ y‖2 − M | m|θ

n1+δ1∑
n=n1−δ1

a(n) | yn|θ ,

which yields that F(my) <0 for |m| small enough since 1 < θ <2, i.e., the critical point

x Î E obtained above is non-trivial.

Finally, we show that if (1.9) is true, then (1.1) has one and only one non-trivial

homoclinic solution. On the contrary, assuming that (1.1) has at least two distinct

homoclinic solutions x and y, by Lemma 3.3, we have

0 = (F′(x) − F′(y), x − y) =‖ x − y‖2 −
∑
n∈Z

(Axn − Ayn,�xn − �yn)

+
∑
n∈Z

(∇W(n, xn) − ∇W(n, yn), xn − yn).
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According to (1.9), with Lemma 2.2, we have

0 = (F′(x) − F′(y), x − y)

=‖ x − y‖2 −
∑
n∈Z

(Axn − Ayn,�xn − �yn) +
∑
n∈Z

(aV ′(xn) − aV ′(yn), xn − yn)

≥‖ x − y‖2 −
∑
n∈Z

(Axn − Ayn,�xn − �yn) −
∑
n∈Z

[a
V ′(xn) − V ′(yn)

| xn − yn | | xn − yn|2]

=‖ x − y‖2 −
∑
n∈Z

(Axn − Ayn,�xn − �yn) −
∑
n∈Z

aV ′′(z) | xn − yn|2

≥‖ x − y‖2 −
∑
n∈Z

(Axn − Ayn,�xn − �yn) − ‖ aV ′′(z)‖2 ‖ xn − yn ‖22

≥‖ x − y‖2 −
∑
n∈Z

(Axn − Ayn,�xn − �yn) − ω
1
β

‖ xn − yn‖2

≥‖ x − y‖2 − (
∑
n∈Z

| Axn − Ayn|2)
1
2 (

∑
n∈Z

| �xn − �yn|2)
1
2 − ω

β
‖ xn − yn‖2

≥‖ x − y‖2 − ‖ A ‖√
β

‖ x − y‖2 − ω

β
‖ xn − yn‖2

=‖ x − y‖2(β − √
β ‖ A ‖ −ω

β
),

where z Î E and z Î (x, y), which implies that ||x - y|| = 0, since

0 < ω < β − √
β ‖ A ‖ , that is, x ≡ y for all n Î Z.
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