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1. Introduction and preliminaries
In 1897, Hensel [1] introduced a normed space which does not have the Archimedean
property. It turned out that non-Archimedean spaces have many nice applications (see
[2-5]).

A valuation is a function | - | from a field K into [0, =) such that 0 is the unique ele-
ment having the 0 valuation, |rs| = |r| - |s| and the triangle inequality holds, i.e.,

[r+s| < |r|+]|s|, Vr,seK.

A field K is called a valued field if K carries a valuation. Throughout this paper, we
assume that the base field is a valued field, hence call it simply a field. The usual abso-
lute values of R and C are examples of valuations.

Let us consider a valuation which satisfies a stronger condition than the triangle
inequality. If the triangle inequality is replaced by

[r+s| <max{|r|, |s]}, Vr, seKk,

then the function | - | is called a non-Archimedean valuation, and the field is called a
non-Archimedean field. Clearly, |1| = | - 1| = 1 and |n| < 1 for all n € N. A trivial
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example of a non-Archimedean valuation is the function | - | taking everything except
for 0 into 1 and |0] = 0.

Definition 1.1. Let X be a vector space over a field K with a non-Archimedean
valuation | - |. A function || - || : X — [0, ) is said to be a non-Archimedean norm if
it satisfies the following conditions:

(@) ||x|| = 0 if and only if x = 0;
@) ||rx|| = |7] ||%|| (re K, xe X);
(iii) the strong triangle inequality

[x+yl =max{llxI, Iy} VxyeX

holds. Then (X, || - ||) is called a non-Archimedean normed space.

Definition 1.2. (i) Let {x,} be a sequence in a non-Archimedean normed space X.
Then the sequence {x,,} is called Cauchy if for a given ¢ > O there is a positive integer N
such that

| —xm || < €

for all n, m = N.

(ii) Let {x,} be a sequence in a non-Archimedean normed space X. Then the sequence
(%} is called convergent if for a given ¢ > O there are a positive integer N and an x € X
such that

%, —x|l < &

for all n > N. Then we call x € X a limit of the sequence {x,}, and denote by lim,,_,..
X, = X

(iii) If every Cauchy sequence in X converges, then the non-Archimedean normed
space X is called a non-Archimedean Banach space.

Assume that X is a real inner product space and f: X — R is a solution of the ortho-
gonal Cauchy functional equation flx + y) = fix) + f{y), (x, ) = 0. By the Pythagorean
theorem, flx) = ||x||* is a solution of the conditional equation. Of course, this function
does not satisfy the additivity equation everywhere. Thus, orthogonal Cauchy equation
is not equivalent to the classic Cauchy equation on the whole inner product space.

Pinsker [6] characterized orthogonally additive functionals on an inner product space
when the orthogonality is the ordinary one in such spaces. Sundaresan [7] generalized
this result to arbitrary Banach spaces equipped with the Birkhoff-James orthogonality.
The orthogonal Cauchy functional equation

flx+y)=f(x)+f(y), xLly,

in which L is an abstract orthogonality relation was first investigated by Gudder and
Strawther [8]. They defined L by a system consisting of five axioms and described the
general semi-continuous real-valued solution of conditional Cauchy functional equa-
tion. In 1985, Ritz [9] introduced a new definition of orthogonality by using more
restrictive axioms than of Gudder and Strawther. Moreover, he investigated the struc-
ture of orthogonally additive mappings. Rétz and Szabé [10] investigated the problem
in a rather more general framework.

Let us recall the orthogonality in the sense of Ritz; cf. [9].
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Suppose X is a real vector space with dim X > 2 and L is a binary relation on X with
the following properties:

(04) totality of L for zero: x L 0,0 L x for all x € X;

(O,) independence: if x, y € X - {0}, x L y, then x, y are linearly independent;

(03) homogeneity: if x, y € X, x Ly, then ox L By for all o, f e R;

(O,) the Thalesian property: if P is a 2-dimensional subspace of X, x € Pand A € R,,
which is the set of non-negative real numbers, then there exists yo € P such that x L y,
and x + Yo L Ax - y,.

The pair (X, 1) is called an orthogonality space. By an orthogonality normed space
we mean an orthogonality space having a normed structure.

Some interesting examples are

(i) The trivial orthogonality on a vector space X defined by (O;), and for non-zero
elements x, y € X, x L y if and only if x, y are linearly independent.

(if) The ordinary orthogonality on an inner product space (X, (., .)) given by x L y if
and only if (x, y) = 0.

(iii) The Birkhoff-James orthogonality on a normed space (X, ||.||) defined by x L y if
and only if ||x + Ay|| = ||x]| for all A € R.

The relation L is called symmetric if x L y implies that y L x for all x, y € X. Clearly,
examples (i) and (ii) are symmetric but example (iii) is not. It is remarkable to note,
however, that a real normed space of dimension greater than 2 is an inner product
space if and only if the Birkhoff-James orthogonality is symmetric. There are several
orthogonality notions on a real normed space such as Birkhoff-James, Boussouis,
Singer, Carlsson, unitary-Boussouis, Roberts, Phythagorean, isosceles and Diminnie
(see [11-17]).

The stability problem of functional equations originated from the following question
of Ulam [18]: Under what condition does there exist an additive mapping near an
approximately additive mapping? In 1941, Hyers [19] gave a partial affirmative answer
to the question of Ulam in the context of Banach spaces. In 1978, Rassias [20]
extended the theorem of Hyers by considering the unbounded Cauchy difference ||fx
+y) - flx) - f] < e(||x]1” + ||]]P), (¢ > 0, p € [0,1)). The reader is referred to
[21-23] and references therein for detailed information on stability of functional
equations.

Ger and Sikorska [24] investigated the orthogonal stability of the Cauchy functional
equation flx + y) = flx) + fly), namely, they showed that if f is a mapping from an
orthogonality space X into a real Banach space Y and |[fix + y) - flx) - fAy)|| < ¢ for all
x, y € X with x L y and some ¢ > 0, then there exists exactly one orthogonally additive
mapping g : X — Y such that || f(x) —g(x) || < 1368 for all x € X.

The first author treating the stability of the quadratic equation was Skof [25] by
proving that if fis a mapping from a normed space X into a Banach space Y satisfying
[fix + y) + flx - 9) - 2flx) - 2f1y)|| < ¢ for some ¢ > 0, then there is a unique quadratic
mapping g : X = Y such that || f(x) —g(x) | < 5. Cholewa [26] extended the Skof’s
theorem by replacing X by an abelian group G. The Skof’s result was later generalized
by Czerwik [27] in the spirit of Hyers-Ulam-Rassias. The stability problem of func-
tional equations has been extensively investigated by some mathematicians (see
[28-32]).
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The orthogonally quadratic equation
fle+y) +fx—y) = 2f(x) + 2f (¥), xLly

was first investigated by Vajzovi¢ [33] when X is a Hilbert space, Y is the scalar field,
fis continuous and L means the Hilbert space orthogonality. Later, Drljevi¢ [34], Fochi
[35] and Szabé [36] generalized this result. See also [37].

The stability problems of several functional equations have been extensively investi-
gated by a number of authors, and there are many interesting results concerning this
problem (see [38-51]).

Katsaras [52] defined a fuzzy norm on a vector space to construct a fuzzy vector
topological structure on the space. In particular, Bag and Samanta [53], following
Cheng and Mordeson [54], gave an idea of fuzzy norm in such a manner that the cor-
responding fuzzy metric is of Karmosil and Michalek type [55]. They established a
decomposition theorem of a fuzzy norm into a family of crisp norms and investigated
some properties of fuzzy normed spaces [56].

Definition 1.3. (Bag and Samanta [53]) Let X be a real vector space. A function N : X
x R — O[1]is called a fuzzy norm on X if for all x, ye X and all s, t € R,

(N1) N(x, t) = 0 for t < 0;

(N2) x = 0 if and only if N(x, t) = 1 for all ¢t > 0;

(N3) N(cx, t) =N (x, Q)ifc = 0;

(N4) N(x + y, ¢ + t) > min{N(x, s), N(y, t)};

(N5) N(x,.) is a non-decreasing function of R and lim, ,.. N(x, t) = 1;

(N6) for x = 0, N(x,.) is continuous on R.

The pair (X, N) is called a fuzzy normed vector space. The properties of fuzzy
normed vector space and examples of fuzzy norms are given in (see [57,58]).

Example 1.1. Let (X, ||.||) be a normed linear space and o, 3 > 0. Then

“a t>0xeX
_ | avepiiay 1> O
NG 1) {0 t<0xeX

is a fuzzy norm on X.

Definition 1.4. (Bag and Samanta [53]) Let (X, N) be a fuzzy normed vector space. A
sequence {x,} in X is said to be convergent or converge if there exists an x € X such
that lim;_,., N(x, - x, t) = 1 for all t > 0. In this case, x is called the limit of the
sequence {x,} in X and we denote it by N - lim,_,.. x,, = x.

Definition 1.5. (Bag and Samanta [53]) Let (X, N) be a fuzzy normed vector space. A
sequence {x,} in X is called Cauchy if for each ¢ > 0 and each t > 0 there exists an ng
€ N such that for all n > ny and all p > 0, we have N(x,,,,, - x,, t) > 1 - &.

It is well known that every convergent sequence in a fuzzy normed vector space is
Cauchy. If each Cauchy sequence is convergent, then the fuzzy norm is said to be
complete and the fuzzy normed vector space is called a fuzzy Banach space.

We say that a mapping f: X — Y between fuzzy normed vector spaces X and Y is con-
tinuous at a point x € X if for each sequence {x,} converging to xy € X, then the sequence
{fix,,)} converges to flx,). If f: X — Y'is continuous at each x € X, then f: X — Y'is said to
be continuous on X (see [56]).
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Definition 1.6. Let X be a set. A function d : X x X — [0, ] is called a generalized
metric on X if d satisfies the following conditions:

(1) d(x, y) = 0 if and only if x = y for all x, y € X;

(2) d(x, y) = d(y, x) for all x, y e X;

(3) d(x, z) < d(x, y) + d(y, z) forall x, y, ze X.

Theorem 1.1. ([59,60]) Let (X, d) be a complete generalized metric space and ] : X —
Y be a strictly contractive mapping with Lipschitz constant L < 1. Then, for all x € X,
either

d("x, J"'x) = o0

for all nonnegative integers n or there exists a positive integer ny such that

(1) d("x, " '%) < oo for all ng > ny;

(2) the sequence {J"x} converges to a fixed point y* of J;

(3) y* is the unique fixed point of ] in the set Y = {y € X : d(J"x, y) < oo}

@) d(y, y*) < |1, d(y, JyYforally e Y.

In this paper, we consider the following generalized quadratic functional equation

of (Zx,) + Zf (Zx, —(n+c— 1)xj)
i=1 =2 \i=1
ey

= (n+c—1) f(x1)+CZf(xi)+ Z (Zf(xi_xj))

i=2 i<jj=3 \i=2

and prove the Hyers-Ulam stability of the functional equation (1) in various normed
spaces spaces.

This paper is organized as follows: In Section 2, we prove the Hyers-Ulam stability of
the orthogonally quadratic functional equation (1) in non-Archimedean orthogonality
spaces.

In Section 3, we prove the Hyers-Ulam stability of the quadratic functional equation
(1) in fuzzy Banach spaces.

2, Stability of the orthogonally quadratic functional equation (1)
Throughout this section, assume that (X, L) is a non-Archimedean orthogonality space
and that (Y, [|.||y) is a real non-Archimedean Banach space. Assume that |2 - n - ¢| =
0, 1. In this section, applying some ideas from [22,24], we deal with the stability pro-
blem for the orthogonally quadratic functional equation (1) for all xy, ..., x, € X with
xy L x; forall i = 1, 3, ..., n in non-Archimedean Banach spaces.

Theorem 2.1. Let ¢ : X" — [0, ) be a function such that there exists an o < 1 with

X1 Xn
X1, ..., Xn) < 12—=c—nl? P 2
e 0 < | |a¢(2_c_n 2_C_n) @

for all x4, ..., x, € X with x5 L x; (i # 2). Let f: X = Y be a mapping with f0) = 0
and satisfying
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of (Zx,-) + Zf (Zx,- —(n+c— l)xj)
i=1 j=2 i=1
) 3)
—(n+c—1) (f(x1)+ch(x,-)+ > (Zf(x,—x] )) <o(x, ..., %)

i=2 i<jj=3 v

for all xy, ..., x, € X with x, L x; (i # 2) and fixed positive real number c. Then there
exists a unique orthogonally quadratic mapping Q : X — Y such that

<p(0x, 0,...,0)

I =iy =, 7 LT @
forall x e X.
Proof. Putting x, = x and %, = %3 = - - - = x,, = 0 in (3), we get

1f((2=c—n)x) = (2 —c—n)*f(x)ly < ¢(0, x 0, ..., 0) (®)
for all x € X, since x L 0. So

‘f(((zz— - n))x) —Iw) = "’ﬁi’f’f’_",;{f’) (©)
for all x e X.

Consider the set
S :={h : X— Y;h(0) =0}
and introduce the generalized metric on S:
d(g h)=inf{u eR,: [ g(x) — h(x)lly <pne(0, x, 0, ..., 0), VxeX},

where, as usual, inf ¢ = +eo. It is easy to show that (S, d) is complete (see [61]).
Now we consider the linear mapping J : S — S such that

1
Jg(x) = 2—c—n)x
3(x) (Z_C_n)zg(( )x)
for all x € X.
Let g, i € S be given such that d(g, /) = e. Then,
I g(x) — h(®)lly <e9(0, x, O, ..., 0)

for all x € X. Hence,

1 Jg(x) — Jh(x)lly = <aep0 x 0, ..., 0)

Y

H 8((2=c—n)x) _h((2—c—n)x)
n)2 (2-c—n)?

for all x € X. So d(g, /) = ¢ implies that d(Jg, /i) < oe. This means that
d(Jg, Jh) < ad(g, h)
forallg, he S

It follows from (6) that d(f, Jf) < 12— n‘z
By Theorem 1.1, there exists a mapping Q : X — Y satisfying the following:
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(1) Q is a fixed point of ], i.e.,
Q((2 —c—n)x) = (2 —c—n)*Q(x) (7)
for all x € X. The mapping Q is a unique fixed point of J in the set
M={geS:d(h g) < oo}.
This implies that Q is a unique mapping satisfying (7) such that there exists a 4 € (0,
o) satisfying
I f(x) — Q(x)lly < ue(0, x, 0, ..., 0)

for all x € X;
(2) dJ" f; Q) = 0 as n — oo. This implies the equality
1
lim 2—c—n)"x) =Q(x
B ( )") = Q)
for all x € X;
(3)d(f, Q) < .! d(f, Jf), which implies the inequality

11—«
1
—c—nl2—12—-c—nlta’

d(f, Q) < 2

This implies that the inequality (4) holds.
It follows from (2) and (3) that

cQ (Zx,) + ZQ (Zx, —(n+c— l)xj)
i=1 j=2 i=1

—(n+c—1)(Q(x1)+cZQ(x,-)+ ) (iQ(x,-—xj)))
i=2 i<jj=3 \i=2 v
= m o, cl_ npen | (; (2—c- ”)mxi)
+Xn:f(2n:(2—c—n)"’x,—— (n+c— 1)(2—c—n)mxj)
=2 \i=1

—(n+c—1) (f((z —c—n)"x1)+cY f((2—c—n)"x)
i=2

s (zf«z T —xm))

i<jj=3 \i=2 v
2—c—n)"x1,...,(2 —c—n)"x
< 1im Y, )
m— 00 |2—C—n|2m
2 — ¢ — n|*ma™
< lim | | o1, ..., xm) =0

m—>oo |2 — ¢ — n|2m

for all x4, ..., x, € X with x5 1 x;. So Q satisfies (1) for all xy, ..., x, € X with x, 1 x;.
Hence, Q : X — Y is a unique orthogonally quadratic mapping satisfying (1), as
desired. ©
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From now on, in corollaries, assume that (X, 1) is a non-Archimedean orthogonality
normed space.

Corollary 2.1. Let 6 be a positive real number and p a real number with 0 <p < 1.
Let f: X = Y be a mapping with f(0) = 0 and satisfying

cf <Zx,> + Zf (Zx, —(n+c— l)x])
i=1 j=2 \i=1

_1 . ®)
—(n+c—1)|flx1)+cd_flx)+ > (Zf(x,— - x]—)> <0 (Z [ xill")
i=2 v i=1

i<jj=3 \i=2

for all x4, ..., x,, € X with xo L x;. Then there exists a unique orthogonally quadratic
mapping Q : X — Y such that

o1lx|P i :
[2—c—n|?2—|2—c—n]|p+! lf 2—c—n] >1

2—c—nPOlxlP
I f(x) —Qx) Il = { 2conprpcnp F12—c=nl <1

forall x € X.

Proof. The proof follows from Theorem 2.1 by taking ¢(x,

n
e xn) =003l
for all &y, ..., x, € X with x5 1 x;. Then, we can choose

. 2—c—n'Pif 2—c—n| <1
“l12-c—nftif 2—c—n| >1°

and we get the desired result. O

Theorem 2.2. Let f: X — Y be a mapping with f0) = 0 and satisfying (3) for which
there exists a function ¢ : X" — [0, ) such that

(/J(xl, ey xn)f Olfﬂ((z—C—n)xl,...,(z_c_n)xn)

|2 —c—n|?

for all x1, .., x, € X with x, L x; and fixed positive real number c. Then there exists a
unique orthogonally quadratic mapping Q : X — Y such that

29(0,%,0,...,0)
If(x) = Q)lly < 2—c—nl2 =12 —c—nla

)
forall x € X.

Proof. Let (S, d) be the generalized metric space defined in the proof of Theorem 2.1.
Now we consider the linear mapping / : S — S such that

Jg(x) = (2—C_n)2g( X n)

2—c—

for all x € X. Let g, h € S be given such that d(g, #) = e. Then,

I g(x) — h(x)lly <e¢(0, x, O, ..., 0)
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for all x € X. Hence,

2—c—n

1 Jg(x) — Jh(x)ly = H(2—6—")28<2_i_n) ‘(2_5_")2;’( . )

Y
el ) (o)
2—c—n 2—c—n/l|y
) x
< |2—c—nl"¢|0, ,0 ...,0
2—c—n
2_ - 2 *e ’ ’ AR
< 2-c m|2_c_npwm X, 0 0)
=aep(0, x, 0, ..., 0)
for all x € X. So d(g, /) = ¢ implies that d(Jg, /i) < oe. This means that
d(Jg, Jh) < ad(g, h)
forall g, he S.
It follows from (5) that
X X
—(2—c—n)? < 0, ,0 ...,0
or-me-ore(y )], <o o)
< ¢ (0, x, 0 0)
= |2_C_n|2(,0 ’ 7 2RI .
So
d(f, < .
G5 < 2 —c—n|?
By Theorem 1.1, there exists a mapping Q : X — Y satisfying the following:
(1) Q is a fixed point of J, i.e.,
X 1
= X 10
T GUR PRI (10)

for all x € X. The mapping Q is a unique fixed point of J in the set
M={geS:d(h g) < oo}
This implies that Q is a unique mapping satisfying (10) such that there exists a y €
(0, o) satistying
I f(x) = Q)lly =< ne(0, x, 0, ..., 0)

for all x € X;
(2) dJ" f; Q) = 0 as n — oo. This implies the equality

lim (2 - ¢ —n)>"g ( g ) = Q)

m—00 (2 —C — n)m
for all x € X;
3)d(f, Q) < 1141 d(f, Jf), which implies the inequality

o

d(f,Q)§|2

—c—nl2—12—-c—nlla’

This implies that the inequality (9) holds.

Page 9 of 17



Kenary et al. Advances in Difference Equations 2011, 2011:62
http://www.advancesindifferenceequations.com/content/2011/1/62

The rest of the proof is similar to the proof of Theorem 2.1. ©

Corollary 2.2. Let 6 be a positive real number and p a real number with p > 1. Let f
: X > Y be a mapping with f(0) = 0 and satisfying (8). Then there exists a unique
orthogonally quadratic mapping Q : X — Y such that

[2—c—nPOlIxl
() = Q) I = | Pl V2 emml <
e if12—c—n| > 1

[2—c—n|P*2 —|2—c—n|3

forall x e X.
Proof. The  proof follows from  Theorem 2.2 by  taking
o(x1, ..., xy) =0 (an I xillp) for all x4, ..., x, € X with x, L x;. Then, we can
i=
choose

J12=c—nftif 2—c—n| <1

“Tl2—c—n'"Pif 2—c—n >1°

and we get the desired result. O

3. Fuzzy stability of the quadratic functional equation (1)
In this section, using the fixed point alternative approach, we prove the Hyers-Ulam
stability of the functional equation (1) in fuzzy Banach spaces.

Throughout this section, assume that X is a vector space and that (Y, N) is a fuzzy
Banach space. In the rest of the paper,let 2 - n - ¢ > 1.

Theorem 3.1. Let ¢ : X" — [0, ) be a function such that there exists an o. < 1 with

) B I ) (a1
RN X1, «oos X
P\a—con 2—c—n _(2—c—n)2(p ' !

Sfor all x, ..., x, € X. Let f: X = Y be a mapping with f0) = 0 and satisfying

N|cf (ix’) +if (ixi— (n+c— l)xj)
i=1 j=2 i=1
n n n—1 (12)
—(nrc—1) | f) +e Y fo)+ DD flai-x)) | ¢

i=2 i<jj=3 \i=2
t
>
t+o(x1,...,%)

for all xy, .., x, € X and all t > 0. Then the limit

QU =N = lim 2 —c=nprr ()

exists for each x € X and defines a unique quadratic mapping Q : X — Y such that

(2—c—n)? = (2 —c—n)a)t

NU =R, 0 = ((2—c—n)? —(2—c—n)a)t+ap(0,x0,...,0) (13)
Proof. Putting x, = x and 1 = x3 = ... = x, = 0 in (12), we have
N(f(@-c=my-@-c—nfw.1) = (p(O,x,tO, o) (14)

Page 10 of 17
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forallx € Xand ¢ > 0.
Replacing x by , in (14), we obtain

N(f(x)_(z_c_")zf(z—i—n)’ t) = 1490, 2;;;,0,...,0)' (15)

forallye X and ¢t > 0.
By (15), we have

X ot L
N(f(x)_(z_c_n)2f<2—c—n>' (2—6—7’1)2) = t+¢(0,x0,...,0) (16

Consider the set
S:={g:X—Y;g(0) =0}
and the generalized metric d in S defined by

t

d(f, g) = inf {N(g(x) = h(x), ut) = t+¢(0,x0,...,0)

,VxeX,t>0},

where inf & = +oo. It is easy to show that (S, d) is complete (see [[61], Lemma 2.1]).
Now, we consider a linear mapping / : S— S such that

Jg(x) = (2_6—11)23(2 X )

—Cc—n

forall x € X. Let g, h € S satisfy d(g, /1) = e. Then,

t

N =h(). )= 0x0,....0)

for all x € X and ¢ > 0. Hence,

N(g(x) —Jh(x), aet)

=N((2—c—n)2g(2_i_n)—(2—c—n)2h<2_i_n>, oeat)
=N<g(2—i—n)_h<2—i—n)’ (2—i8in)2)

at

> (2—c—n)?
= (2:;{")2 + (P(O, 27’;7", 0,..., O)
at
(?_7cfn)2
Z at

(chfn)z + (Q_,sin)Z go(ol X, O, ey 0)
t
t+¢(0,%,0,...,0)

for all x € X and ¢ > 0. Thus, d(g, &) = € implies that d(Jg, /i) < ae. This means that
d(Jg, Jh) < ad(g, h)

for all g, 1 € S. It follows from (16) that

0.1 = (2—j—n)2
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By Theorem 1.1, there exists a mapping Q : X — Y satisfying the following:
(1) Q is a fixed point of J, that is,

b 1
= X 17
Q(z_c_n) L a7
for all x € X. The mapping Q is a unique fixed point of J in the set

Q={heS:d(g h) < oo}.

This implies that Q is a unique mapping satisfying (17) such that there exists u € (0,
o) satisfying
t

N(f(x) — Q(x), nt) = t+¢(0,x0,...,0)

forallx e Xand ¢ > 0.
(2) dJ” f, Q) — 0 as m — oo. This implies the equality

forall x e X.
(3)d(f, Q) < dl(’:g ) with fe Q, which implies the inequality

2-c—n)P(1—-a)

This implies that the inequality (13) holds.
Using (11) and (12), we obtain

W w L (R (n+c—1)
NEmemy [Cf<§(2—c_n)"‘)+Zf(z(2—c—n)'"_(2—c—")ri)
Xi
e (1 () 5 ()
f ,(2—c—n)*t
i<jj=3 (1<]3 <(2 >)):| )
t

t+(p((2 ey (275"4;)’")

d(f, Q) =

(18)

for all x4, .., x,€ X, t>0and all e N.
So by (11) and (18), we have

om - Xi - . Xi (n+c—1)x
{z-e-n [Cf(gtzcn)'">+,-_22f(§(26n)’"‘(2cn)"i)
X1 - Xi
—(n+c—1) (f((2—c—ﬂ)m) ”i;f(@—c—")m)

2 (5 ) )

i<j,j=3

2 2m
> ( C")

t a™
(2—c—n)?" + (2—c—n)?" (p(xlz cee xn)
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for all xy, ..., x, € X, £ >0 and all # € N. Since

t

. 2—c—n)™"
lim ( )

n—o0

1

m

o =
(27cfn)2m + (275—;1)2’" <p(x1, N ,xn)

for all x4, ..., x, € X and all £ > 0, we deduce that
N (CQ (in) + ZQ (in —(n+c— l)xj>
i=1 j=2 i=1
n n n—1
—(n+c—1) [ Q) +¢)_Qx)+ Y (ZQ(xi —xj)) ct] =1

i=2 i<jj=3 \i=2

for all x4, ..., x,, € X and all £ > 0. Thus the mapping Q : X — Y satisfying (1), as
desired. This completes the proof. O

Corollary 3.1. Let = 0 and let r be a real number with r > 1. Let X be a normed
vector space with norm || - ||. Let f: X = Y be a mapping with fl0) = 0 and satisfying

N (cf (2”:3@) + Xn:f (Xn:xi —(n+c— 1)xj>
i=1 =2 \i=1
n n n—1
—(n+c—1) [fx)+ed flx)+ Y (Zf(xi —x,-)) ot (19)

i=2 i<jj=3 \i=2
t

z n
t+6 (300 Il xll")

for all x,, .., x, € X and all t > 0. Then

QW =N - fim @-n-0"f(, )

exists for each x € X and defines a unique quadratic mapping Q : X — Y such that

(2-c—n)¥ —(2—-c—n)’)t

N(f(x) — Qx), ) = (2—c—n)2 —(2—c—n))t+6 | x|

forall x € X and all t >0.
Proof. The proof follows from Theorem 3.1 by taking

o(x1, .. x) =6 (Z [ xinf)

for all x4, ..., x, € X. Then, we can choose o = (2 - ¢ - n)*™*" and we get the desired
result. O

Theorem 3.2. Let ¢ : X" — [0, ) be a function such that there exists an o <1 with
o((2—c—n)xy, ..., (2 —c—n)x,) < (2 —c—n)ap(x1, ..., x,) (20)

for all xy, ..., x, € X. Let f: X > Y be a mapping with f(0) = 0 and satisfying (12).
Then the limit

Page 13 of 17



Kenary et al. Advances in Difference Equations 2011, 2011:62
http://www.advancesindifferenceequations.com/content/2011/1/62

L f(@—c—n)"x)

m—>00 (2 —c¢—n)*"

Q(x) :=N—

exists for each x € X and defines a unique quadratic mapping Q : X — Y such that

(2—-c—n)?(1 —a)t

(2—-c—n)?*(1—a)t+¢(0,x0,...,0) 2D

N(f(x) - Qx), 1) =

Proof. Let (S, d) be the generalized metric space defined as in the proof of Theorem
3.1. Consider the linear mapping / : S — S such that

1
L (s

for all x € X. Let g, h € S be such that d(g, #) = €. Then,

t

N(g(x) —h(x),et) = 0(0,x,0,...,0)

for all x € X and ¢ >0. Hence,

N(Jg(x) — Jh(x), ast) = N (g(((;__cc__:))f) _ h(((;__cc_—n"))zx)’ag t)
= N(g((2 — ¢ —n)x) = h((2 — c — n)x), (2 — ¢ — n)’ast)

- (2 —c—n)lat

T 2-c—n)at+ (2 —c—n)ag(0,x0,...,0)
t

T t+¢(0,x,0,...,0)

for all x € X and ¢ >0. Thus, d(g, %) = € implies that d(/g, /i) < oe. This means that
d (/g Jh) < ad (g h)

forallg, he S.
It follows from (14) that

w(fU@= e

(2-c—n)? -

L

= (2—c—n)2) = t+¢(0,x0,...,0)

for all x € X and ¢ >0. So d(f,Jf) < 2—c—n)*

By Theorem 1.1, there exists a mapping Q : X — Y satisfying the following:
(1) Q is a fixed point of J, that is,

(2 - c—n)*Qx) = Q((2 — ¢ — n)x) (22)
for all x € X. The mapping Q is a unique fixed point of J in the set
Q={heS:d(gh) < oo}
This implies that Q is a unique mapping satisfying (22) such that there exists y € (0,
o) satisfying

t

N(f(x) — Q(x), ut) > t+¢(0,x0,...,0)
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for all x € X and ¢ >0.
(2) dJ"f, Q) — 0 as m — oo. This implies the equality

(2 =c—n)"x)

lim N — =Q(x

Mm—>00 (2 —c— n)Zm Q( )
forall x e X.

af Jf) . e . .
(3)d(f,Q) < ) with fe Q, which implies the inequality
-«
1
d(f.Q) =<

2-c—n)(1-a)

This implies that the inequality (21) holds.

The rest of the proof is similar to that of the proof of Theorem 3.1. O

Corollary 3.2. Let § = 0 and let r be a real number with 0 < r <1. Let X be a
normed vector space with norm || - ||. Let f: X — Y be a mapping with fl0) = 0 and
satisfying (19). Then the limit

i J(@ == n)")

m—co (2 —¢—n)*"

Q(x) :=N—

exists for each x € X and defines a unique quadratic mapping Q : X — Y such that

(2=c—n)2—(2—-c—n)")t

NI =QDD= (5 o mcmmyso 2l

forall x € X and all t >0.
Proof. The proof follows from Theorem 3.2 by taking

n
o(x1,...,%,) =6 Z Il il
i-1

2r-2

for all x4, ..., x, € X. Then, we can choose o = (2 - ¢ - n) and we get the desired

result. O
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