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Abstract

In this article, we study nonexistence, radial symmetry, and monotonicity of the
positive solutions for a class of integral systems with weights. We use a new type of
moving plane method introduced by Chen-Li-Ou. Our new ingredient is the use of
Hardy-Littlewood-Sobolev inequality instead of Maximum Principle. Our results are
new even for the Laplace case.
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1. Introduction

In this article, we study positive solutions of the following system of integral equations
in RN(N = 3),

q
ue) = |U£y—) i I
R u(y)’ (1.1)
vx) = [ e dy,

gy [yl x —yIN=«

with & <0,0 < <N, 1 <p < N;,‘i;" and 1 < g < N[f,‘if. Under certain restrictions

of regularity, the non-negative solution (i, v) of (1.1) is proved to be trivial or radially
symmetric with respect to some point of R™ respectively.
The integral system (1.1) is closely related to the system of PDEs in R

_A 01/2 - ,
(=) u= e
y (1.2)
— A2y = )
(=8 v=

In fact, every positive smooth solution of PDE (1.2) multiplied by a constant satisfies
(1.1). This equivalence between integral and PDE systems for @ = 2 can be verified as
in the proof of Theorem 1 in [1]. For single equations, we refer to [[2], Theorem 4.1].
Here, in (1.2), the following definition is used.

(—A)Pu= (| x|"u")"
where A is the Fourier transformation and V its inverse.
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When o = 2, Figueiredo et al. [3] studied the system of PDEs (1.2) in a bounded
smooth domain Q with Dirichlet boundary conditions. They found a critical hyperbola,

given by
N — N -
5, T_N-2, pg>o. (1.3)
q+1 p+1

Below this hyperbola they showed the existence of nontrivial solutions of (1.2). Inter-
estingly, this hyperbola is closely related to the problem (1.2) in the whole space. For o
=2and & n = 0, ie., the elliptic systems without weights in RY, Serrin conjectured
that (1.2) has no bounded positive solutions below the hyperbola of (1.3). It is known
that above this hyperbola, (1.2) has positive solutions. Some Liouville-type results were
shown in [4,5] (see also [6,7]).

When o = 2 and & 1 < 0, Felmer [8] proved the radial symmetry of the solutions of
the corresponding elliptic system (1.2) by the moving plane method which was based
on Maximum Principle, going back to Alexandroff, Serrin [9], and Gidas et al. [10].

For & n >0, Chen and Li [11] proved the radial symmetry of solutions of (1.1) on the
hyperbola (1.3). In the special case, when & 11 = 0, the system (1.1) reduces to

q
u(x) = [ ") Noo QY
RN | X — Y| —«

u(yy’ 4

v(x) = dy.

(=S ey

The integral system (1.4) is closely related to the system of PDEs

(—A)*u =, s
(—A) 2y = . (1:5)

Recently, using the method of moving planes, Ma and Chen [12] proved a Liouville-
type theorem of (1.4), and for the more generalized system,

q
=S li(yy)lN—“ @
u(yy (16
v(x) = [

RN | X — leiﬁ .

Huang et al. [13] proved the existence, radial symmetry and monotonicity under
some assumptions of p, ¢, &, and . Furthermore, using Doubling Lemma indicated in
[14], which is an extension of an idea of Hu [15], Chen and Li [[16], Theorem 4.3]
obtained the nonexistence of positive solutions of (1.4) under some stronger integrabil-

o0

ity conditions (e.g., u,v € Ly},

are necessary). In fact, for System (1.5) of & = 2, Liou-

ville-type theorems are known for (g, p) in the region [0, ﬁié] X [0,%122]. For the
interested readers, we refer to [17,18] and their generalized cases [19,20], where the
results were proved by the moving plane method or the method of moving spheres
which both deeply depend on Maximum Principle. In [21], Mitidieri proved that if (g,

p) satisfies
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1 1 N-2

p+1+q+1> N ' P q>0 .7

then System (1.5) possesses no nontrivial radial positive solutions. Later, Mitidieri
[22] showed that a Liouvillle-type theorem holds if (g, p) satisfies

N-2 max{ g+1 p+1 }

S !
N ap—1 qp—1

generalizing a work by Souto [23]. In [24], Serrin and Zou proved that for (g, p)
satisfying (1.7), there exists no positive solution of System (1.1) when the solution has
an appropriate decay at infinity.

When o = 2, it has been conjectured that a Liouville-type theorem of System (1.5)
holds if the condition (1.7) holds. This conjecture is further suggested by the works of
Van der Vorst [25] and Mitidieri [21] on existence in bounded domains, Hulshof and
Van der Vorst [26], Figueiredo and Felmer [6] on existence on bounded domains
through variational method, and Serrin and Zou [27] on existence of positive radial
solutions when the inequality in (1.7) is reversed. Figueierdo and Felmer [17], Souto
[28], and Serrin and Zou [24] studied System (1.5) and obtained some Liouville-type
results. Ma and Chen [12] gave a partial generalized result about their work. Serrin
conjectured that if (g, p) satisfies (1.7), System (1.5) has no bounded positive solutions.
It is known that outside the region of (1.7), System (1.5) has positive solutions. We
believe that the critical hyperbola in the conjecture is closely related to the famous
Hardy-Littlewood-Sobolev inequality [29] and its generalization. For more results
about elliptic systems, one may look at the survey paper of Figueierdo [30].

There are some related works about this article. When u(x) = v(x) and g =p = [Q’j‘;‘t,
System (1.4) becomes the single equation
N+a
u N—a
u(x) = f o (”W dy, u>0inRN. (1.8)
The corresponding PDE is the well-known family of semilinear equations
N+a
(-A)*?u=uN-o, u>0inRN. (1.9)
In particular, when N > 3 and o = 2, (1.9) becomes
N+2
—Au=uN-2, u>0inRN. (1.10)

The classification of the solutions of (1.10) has provided an important ingredient in
the study of the well-known Yamabe problem and the prescribing scalar curvature pro-
blem. Equation (1.10) was studied by Gidas et al. [31], Caffarelli et al. [32], Chen and
Li [33] and Li [34]. They classified all the positive solutions. In the critical case, Equa-
tion (1.10) has a two-parameter family of solutions given by

N-2

- ¢ 2 1.11
u(x)_(d+|x—5c|7-) ’ (1.11)
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where . _ [N(N — Z)d]é with d >0 and % € RN. Recently, Wei and Xu [35] general-

ized this result to the solutions of the more general Equation (1.9) with a being any
even number between 0 and N.

Apparently, for other real values of o between 0 and N, (1.9) is also of practical interest
and importance. For instance, it arises as the Euler-Lagrange equation of the functional

N—a

o 2N
I(w) = [ | (=A)4ulPdy/| [ |ulN-edx
IR[ /

N

The classification of the solutions would provide the best constant in the inequality
of the critical Sobolev imbedding from H‘E (RN) to . [\?IL (RNY:
N—a

2N N o
/| u| N—a dx < C/ | (—A)4ul’dx.
RN

N

Let us emphasize that considerable attention has been drawn to Liouville-type results
and existence of positive solutions for general nonlinear elliptic equations and systems,
and that numerous related works are devoted to some of its variants, such as more
general quasilinear operators and domains, and the blowup questions for nonlinear
parabolic equations and systems. We refer the interested reader to [20,22,26,27,36-39],
and some of the references therein.

Our results in the present article can be considered as a generalization of those in
[8,12,17,18]. We note that we here use the Kelvin-type transform and a new type of
moving plane method introduced by Chen-Li-Ou, and our new ingredient is the use of
Hardy-Littlewood-Sobolev inequality instead of Maximum Principle. Our results are
new even for the Laplace case of o = 2.

Our main results are the following two theorems.

Theorem 1.1. Let the pair (u, v) be a non-negative solution of (1.1) and

N-& N+a—& N-£& N+a—§&
N

Neo Nea ? Neo Yowith & n <0 and 0 <a <N, but p = Nea=n 5 d

<q= N—«a

<q<
q= N[f]‘if are not true at the same time. Moreover, assume that y € Lic([RN)and

_ p—1 _ p—1 _ q-1
B = (N—a)p+n _ With B = (N—a)p+n _and ¢ = (N-a)g+¢ . Then both u and v are tri-
N 1 N 1 N 1

vial, i.e., (u, v) = (0, 0).

N+a—n

Theorem 1.2. Let the pair (u, v) be a non-negative solution of (1.1) and p= """,

q= NKI‘:E with & 11 < 0 and 0 <o <N. Moreover, assume that y eL{ZC(IRN)und

B = (:g\;fgf;] with B = (jg\ﬁgg] and ¢ = (jg\fgf; Then, u and v are radially symmetric

and decreasing with respect to some point of RN,
Remark 1.1. Due to the technical difficulty, we here only consider the nonexistence and

symmetry of positive solutions in the range of &, 1 <0, p > 1[:1]:2 and q > ﬁ:i For ¢, m >0,

Chen and Li [11]proved the radial symmetry of solutions of (1.1) on the hyperbola (1.3).
For £ =1 = 0 and max{1, 2/(N - 2)} <p, q <, Chen and Li [[16], Theorem 4.3] obtained
the nonexistence of positive solutions of (1.1) under some stronger integrability conditions
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(e.g, w,v € L, are necessary). We note that there exist many open questions on nonexis-
tence and symmetry of positive solutions of the equation with weights as (1.1) in the rest
range of p, q, & and 1. It is an interesting research subject in the future.
We shall prove Theorem 1.1 via the Kelvin-type transform and the moving plane
method (see [2,40,41]) and prove Theorem 1.2 by the similar idea as in [17].
Throughout the article, C will denote different positive constants which depend only
on N, p, q, o and the solutions « and v in varying places.

2, Kelvin-type transform and nonexistence
In this section, we use the moving plane method to prove Theorem 1.1. First, we intro-
duce the Kelvin-type transform of u and v as follows, for any x = 0,

i(x) =| x/*Nu <| ;2) and  v(x) =| x* Ny <| ;2) .

Then by elementary calculations, one can see that (1.1) and (1.2) are transformed
into the following forms:

5 q
=/ M,
v [VE [x—yN—e
M (2.1)
W=/,
pn LY [ —yIN=e
and
—A 0(/2—= 751—/611
(—A)u = x| 2.2)
(—A)5 = | x| 7',

wheret=(N+a)-n-(N-o)p=>0ands=(N+a)-<¢-(N-a)g = 0. Obviously,

both i(x) and v(x) may have singularities at origin. Since ueLﬁC(IRN) and

Ve L;’;C([RN), it is easy to see that ui(x) and v(x) have no singularities at infinity, i.e.,

for any domain Q that is a positive distance away from the origin,

/L’t(y)ﬂdy < oo and /ﬁ(y)"’dy < 0. (2.3)
Q

Q

In fact, for y = z/ |z|2, we have
i o s
/ a(y)Pdy = / Ay Nu( )y dy
Q [ Yl
Q
B / (1 2N u(z))” | 272N dz
Q*

- [ 12 Ny
Q*

< C/u(z)ﬁdz
Q*
< .

Page 5 of 10
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For the second equality, we have made the transform y = z/|z|?. Since Q is a positive
distance away from the origin, Q*, the image of Q under this transform, is bounded.
Also, note that S(N - @) - 2N > 0 by the assumptions of Theorem 1.1. Then, we get
the estimate (2.3).

For a given real number A, define

Yp={x=(x1,..., %) | X1 = A}.

Let & = (24 - %1, X X,), 11y (x) = B(x*)and 7y (x) = B(x*).
The following lemma is elementary and is similar to Lemma 2.1 in [2].

Lemma 2.1. For any solution (u(x), v(x)) of (2.1), we have

i (x) — i(x) = / (L2 =y N = 1 =y AT B0 = 17 10) Ty (.4
Py

and

U (x) — 7(x) = / (x =y = 1 =y A~ 1y a0)Y 1 dy. (o5
DIy

Proof. It is easy to see that

i(x) = / Ly~ 1 x =y NP (y)dy

Py

(2.6)
e [ 1 e e )y
Py
Substituting x by ", we have
i) = [ 117 12 =y NPy
> 2.7)

+f|%rwx—ﬂ*“wﬂn®-
Z

The fact that |x - y*| = |«* - y| implies (2.4). Similarly, one can show that (2.5) holds.
So, Lemma 2.1 is proved.

Proof of Theorem 1.1.

Outline: Let x; and x, be any two points in RN, We shall show that

u(x1) =u(xy) and v(x1) =v(x2)

and therefore u and v must be constants. This is impossible unless # = v = 0. To
obtain this, we show that # and v are symmetric about the midpoint (x; + x)/2. We
may assume that the midpoint is at the origin. Let i and v be the Kelvin-type trans-
formations of u and v, respectively. Then, what left to prove is that ¢ and 7 are sym-
metric about the origin. We shall carry this out in the following three steps.

Step 1. Define

Ti=(xe %, | u(x) < iy (x))
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and
V= {xe | bx) < v (x))

We show that for sufficiently negative values of A, both £¥ and ! must be empty.

Whenever x, y € X, we have that |x - y| < |¢* - y|. Moreover, since A <0, |y*| > |y|
for any y € X,. Then by emma 2.1, for any x € X, it is easy to verify that

i (x) — () < / (= =N o — N 7[5 0)" — 50)71dy
X
< / |2 =y 1y ()" - 9()]dy (2.8)

x;
< / = N [ () (@) — 50)1dy.
=7

Now we recall the double weighted Hardy-Littlewood-Sobolev inequality which was
generalized by Stein and Weiss [42]:

” / 207 | a{ (_Y)W e 97 13 = o 115 09

where 0<7t<N/p), 0=<y <N/gand 1/p+(y+7t+A)/N=1+1/q with

1/p+1/p =1.
It follows first from inequality (2.9) and then the Hoélder inequality that, for any r
>max{(N - §)/(N - &), (N - n)/(N - o)},

Il -ty < Cl / L=y 1y o) 0 0) — 91Vl s
5 (2.10)
< Cl oy I 500 = 90 iy

— q-1
where ¢ = (N-o)qs -
AR

Similarly, one can show that
Il va =Vl = Cll ||i;(lzg)|| . (y) — a() sy (2.11)

_ p-1
where B = (N—a)p+n .
N

Combining (2.10) and (2.11), we arrive at
- - - —1 - —1 - -
I = sty < C B Wity | 8 W | B — il ) (2.12)

By the integrability conditions, we can choose M sufficiently large, such that for A <
-M, we have

- —1 - —1
C B Mgty B 15y = - (2.13)
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These imply that |l i, — Ullj-(g7) = 0. In other words, £¥ must be measure zero, and

hence empty. Similarly, one can show that X is empty. Step 1 is complete.

Step 2. Now we have that for 1 < -M,
i(x) > i, (x) and ¥(x) > (x), Vxe ZA. (2.14)

Thus, we can move the plane 1 < -M to the right as long as (2.14) holds. Suppose

that at one Ay < 0, we have, on Y,
u(x) > iy, (x) and v(x) > vy, (x).
But either
meas {x € Zxo | u(x) > i,(x)} >0
or
meas {x € ZAO | v(x) > vy, (x)} > 0.

Then, we want to show that the plane can be moved further to the right, i.e., there
exists an ¢ depending on N, p, g and the solution (i, 7) such that (2.14) holds on >,
forall A € [Ag, Ao + €).

Assume that meas{x €}, |v(x) > v3,(x)} >0. By (2.4), we know that

u(x) > U, (x) in the interior of Z,\O. Define f;‘:) ={xe Zxo | ii(x) < iI5,(x)} and

ZKO ={x€2,\0 | U(x) < 1y, (x)}- It is clear that i"\k has measure zero, and

—

. i 0 . —
lim; ., >} C Z,\O in the sense of measures. The same conclusion holds for 7. Let

G* be the reflection of the set G about the plane x; = 4. We see from (2.10) and (2.11)
that

- — — -1 — —1 — -
I = sty = C I B Wy 85 Wty 2 = Bl (2.15)

Again, the integrability of # and v ensures that one can choose ¢ small enough, such
that for all A € [Ay, A¢ + &),

- q—1 - p—1
Cl B Mgl 15y -

Now by (2.15) we have
I — ullpspy =0

and therefore $¥ is empty. A similar argument shows that ¥ is empty too.

Step 3. If the plane stops at x; = Ay for some Ay < O, then # and ¥ must be sym-
metric and monotone about the plane x; = Ay. This implies that f and 7 have no sin-
gularity at the origin. But the equations in (2.2) tell us that this is impossible if #(x)
and v(x) are nontrivial. Hence, we can move the plane to x; = 0. Then, u(x) and v(x)
are symmetric about the plane origin. Then u# = v = 0. The proof of Theorem 1.1 is

complete.
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3. Symmetry and monotonicity
In this section, we prove Theorem 1.2 which shows that the non-negative solutions of
System (1.1) are radially symmetric and decreasing with respect to some point in RV,
Proof of Theorem 1.2. We show that §; and p are symmetric with respect to some
plane parallel x; = 0. Indeed, if Ay < 0, such as the steps of Theorem 1.1, we know 7
and p are symmetric with respect to the hyperplane x; = A¢. If o = 0, we conclude
that tig(x) > @1(x) and vo(x) > v(x) for all x € Xy. On the other hand, we perform the
moving plane procedure from the right and find a corresponding Ay > 0. If Aj > 0,
an analogue to Theorem 1.1 shows that § and ¢ are symmetric with respect to the
hyperplane x1 = A5. If A5 = 0, we conclude that #p(x) > ii(x) and vp(x) > v(x) for all
x € X, From above we can conclude ; and p are symmetric with respect to the plane
x1 = 0. We perform this moving plane procedure taking planes perpendicular to any
direction, and for each direction ye RY, |y| = 1, we can find a plane T, with the prop-
erty that both # and p are symmetric with respect to T, A simple argument shows
that all these planes intersect at a single point, or 1 =y = 0. The proof of Theorem 1.2
is complete.
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