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Abstract

In this article, the results of theoretical research of the generalized hypercube
function by generalizing two known functions referring to the cube hypervolume
and hypersurface and the recurrent relation between them have been presented. By
introducing two degrees of freedom k and n (and the third half-edge r), we are able
to develop the derivative functions for all three arguments and discuss the
possibilities of their use. The symbolic evaluation, numerical experiment, and graphic
presentation of the functions are realized using Mathcad Professional and
Mathematica.
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1. Introduction
The hypercube function (HC) is a hypothetical function connected with multidimen-

sional space. It belongs to the group of special functions, so its testing is being per-

formed on the basis of known functions of the type: Γ–gamma, ψ–psi, ln–logarithm,

exp–exponential function, and so on. By introducing two degrees of freedom k and n,

we generalize it from discrete to continual [1,2]. In addition, we can advance from the

field of the natural integers of the dimensions–degrees of freedom of cube geometry,

to the field of real and non-integer values, where all the conditions concur for a more

condense mathematical analysis of the function HC(k, n, r). In this article, the analysis

is focused on the infinitesimal calculus application of the HC which is given in the

generalized form. For research papers on the development of multidimensional func-

tion theory, see Bowen [3], Conway [4], Coxeter [5], Dewdney [6], Hinton [7], Hocking

and Young [8], Gardner [9], Manning [10], Maunder [11], Neville [12], Rucker [13],

Skiena [14], Sloane [15], Sommerville [16], Wilker [17], and others and for its testing,

see Letić et al. [18]. Today the results of the HC research are represented both in geo-

metry and topology and in other branches of mathematics and physics, such as Boole’s

algebra, operational researches, theory of algorithms and graphs, combinatorial analy-

sis, nuclear and astrophysics, molecular dynamics, and so on.

2. The derivative HCs
2.1. The hypercube functional matrix

The former results [2], as it is known, give the functions of the hypercube surface (n = 2),

i.e., volume (n = 3), therefore, we have, respectively
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HC(k, 2, r) = 2k rk−1 =
∂

∂r
HC(k, 3, r) orHC(k, 3, r) =

r∫
0

HC(k, 2, r) dr = (2r)k.

On the basis of the above recurrent relations, we formulated the general form of the

HC [1].

Definition 2.1. The generalized HC is defined by equality

HC(k,n, r) =
2krk+n−3�(k + 1)

�(k + n − 2)
(k,n ∈ �, r ∈ N). (2:1)

where r is the half-edge of the hypercube. These functions need to be the functions

of three variables with two degrees of freedom k and n and the hypercube radius r.

With real cubic entities there exist, for example, square edge, length, size, or surface,

then the cube surface and volume, where there exists only the variable–the half-edge r

(Figure 1).

Having in mind the characteristic that the derivatives with respect to the half-edge r

generate new functions (the HC matrix columns), we perform “movements” to lower

or higher degrees of freedom. We start from the nth degree of freedom, on the basis

of the following recurrent relations:

∂

∂r
HC(k,n, r) = HC(k,n − 1, r) andHC(k,n + 1, r) =

r∫
0

HC(k,n, r) dr. (2:2)

The previous characteristics are essential and hypothetical. They also hold for ele-

ments outside of this submatrix of six elements (see Figures 1 and 2). For example, the

derivations (2.3, left) show that we have obtained the zeroth (n = 0) degree of freedom,

Figure 1 Moving through the vector of real surfaces (surf column): by deducting one degree of
freedom k from the surface cube, we obtain a square, and for two, a number 2. Moving through the
vector of real solids (solids column): deducting one degree of freedom k from the cube, we obtain a full
square, and for two we get a line segment or an edge (a = 2r).
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if we perform the nth degree derivation. Using the defined derivative degree, the HC

function is being calculated as well for the complex field of the hypercube matrix,

namely, we obtain an expression that is equal to (2.3, right)

∂n

∂rn
HC(k,n, r) = HC(k, 0, r) or

∂2n

∂r2n
HC(k,n, r) = HC(k,−n, r). (2:3)

Due to the known characteristics of the gamma function and on the basis of rela-

tions generalizing (2.2) and (2.3), we obtain the following differential equation:

∂n

∂rn

∞∑
k=0

HC(k,n, r) −
∞∑
k=0

HC(k, 0, r) = 0or
∂2n

∂r2n

∞∑
k=0

HC(k,n, r)−
∞∑
k=0

HC(k,−n, r) = 0.

So, on the basis of the recurrent relation, we establish a connection with the positive

degree of freedom n and its symmetrical negative degree (-n), through the differential

equation which describes the relation among the columns of the hypercube matrix for

k, n Î ℜ (2.4). In view of the general HC (2.1), we develop an adequate matrix M[HC]

kxn (k, n Î ℜ), where concrete values for the selected submatrix 9 × 9 follow as well.

M[HC]kxn = (2:4)

Figure 2 The submatrix of the function HC(k, n, r) that covers one field of real degrees of freedom
(k, n Î ℜ). The highlighted are the coordinates of six characteristic real cubical functions (undef. are
undefined, most frequently singular values ± ∞, while 0 are the zeros of the HC(k, n ,r) function).
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For example when n = 3 and k = 1, 4 we obtain the following relation

∂4

∂r4
HC(k, 3, r) = HC(k,−1, r) and

∂4

∂r4

⎡
⎢⎢⎢⎢⎣

2r
4r2

8r
8r2

16r4

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

0
0
0
0

384

⎤
⎥⎥⎥⎥⎦ .

The matrix M[HC]kxn is based on the characteristic that each of its vectors of the

(n - 1)-column (also marked as <n - 1>) is equal to the derivative with respect to the

half-edge r of the following vector (<n>) and in the order according to Figure 2. This

recursive characteristic ordinates among the initial assumptions (2.2).

Theorem 2.2. From the columns of the matrix [M]kxn, the following equality holds:

[M]<n−1> =
∂

∂r
[M]<n>.

For example, for two adjacent columns of the matrix [M]<n - 1>and [M]<n>, the recur-

rent vectors follow

[M]<n−1> =
∂

∂r

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

rn−3

�(n − 2)
2rn−2

�(n − 1)
8rn−1

�(n)
48rn

�(n + 1)
...

2krk+n−3�(k + 1)
�(k + n − 2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ri−n

�(n − 1)
2rn−3

�(n)
8rn−2

�(n + 1)
48rn−1

�(n + 2)
...

2krk+n−4�(k + 1)
�(k + n − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

for n ∈ �.

Interesting results can be obtained on the basis of horizontal (n) or vertical (k)

degrees of freedom (arranged in 2.4) and the generalized HC function, e.g., for the level

surface, as follows:

k2krk−1
∣∣∣
k=3

∨ 8rn−1

�(n)

∣∣∣∣
n=2

∨ 2krk+n−3�(k + 1)
�(k + n − 2)

∣∣∣∣
k=3∧n=2

⇒ 24r2 ≡ 6a2,

or for the solid level

(2r)k
∣∣∣
k=3

∨ 48rn

�(n + 1)

∣∣∣∣
n=3

∨ 2krk+n−3�(k + 1)
�(k + n − 2)

∣∣∣∣
k=3∧n=3

⇒ 8r3 ≡ a3.

This characteristic is very significant, because we can obtain the same result in view

of the two special formulae, or using only one, the general.

2.2. The analysis if the recurrent potential function of the type zυ

The HC, besides the gamma function, also has the potential component rk+n-3. The

generalized equation of the hth derivation of the fractional power function zυ amounts

to [19]

∂hzυ

∂zh
=

�(υ + 1)
�(υ − h + 1)

zυ−h (−υ /∈ N).
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Namely, here we know that the exponent with the basis of the half-edge r of the HC

function is υ = k+n-3. Now, the mth derivation of the HC on the radius is defined by

the following equation

∂m

∂rm
HC(k,n, r) =

2k�(k + 1)
�(k + n − 2)

· ∂mrk+n−3

∂rm
,

so, the mth derivation is reduced to

∂m

∂rm
HC(k,n, r) =

1
rm

�(k + n − 2)
�(k + n − m + 1)

HC(k,n, r).

After applying some transformations on the above expression, we obtain the function

form.

Theorem 2.3. The mth derivative of the hypercubical function with respect to the

radius r is

∂m

∂rm
HC(k,n, r) = HC(k,n − m, r) =

2krk+n−m−3�(k + 1)
�(k + n − m − 2)

. (2:5)

originating from the known characteristic Γ(z+1) = zΓ(z). Equation 2.5 is recurrent by

nature, and with it we find every degree of the expression (for +m) and integral (for

-m), depending on the position of (n) for which we do these operations. In that sense we

define and, where appropriate, use a unique operator with which we merge the opera-

tions of differentiating and integrating (using the unique symbol D± m) on the radius of

the HC function. These operations are generalized as well on non-integer (fractional)

degrees of derivative/integral.

Definition 2.4. The unique operator that merges the operations of differentiating

and integrating with respect to the radius of the hypercubical function is given by

∂±m

∂r±m
HC(k,n, r) ≡ D±m {

HC(k,n.r)
}
.

The defined integrals of the HC function are (with the reference degree of freedom υ

= k+n-3) equal to

r∫
0

HC(k,n, r)dr =
r

υ + 1
HC(k,n, r) = HC(k,n + 1, r),

r∫
0

r∫
0

HC(k,n, r)drdr =
r2

(υ + 1)(υ + 2)
HC(k,n, r) = HC(k,n + 2, r),

...
r∫

0

r∫
0

· · ·
r∫

0

HC(k,n, r)drdr · · · dr
︸ ︷︷ ︸

m

=
rm

(υ + 1)(υ + 2) . . . (υ +m)
HC(k,n, r) = HC(k,n +m, r).
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The HC function multiplier can be presented in a product form in this shape

rm

(υ + 1)(υ + 2)(υ + 3) · · · (υ +m)
= rm

m−1∏
i=0

1
(υ + i + 1)

or

rm
m−1∏
i=0

1
(υ + i + 1)

=
rm�(υ + 1)

�(υ +m + 1)
,

so the integral of the mth degree is defined as

r∫
0

r∫
0

· · ·
r∫

0

HC(k,n, r)drdr · · · dr
︸ ︷︷ ︸

m

=
rm�(υ + 1)

�(υ +m + 1)
HC(k,n, r).

After some transformations, we get a more generalized form

r∫
0

r∫
0

· · ·
r∫

0

HC(k,n, r)drdr · · · dr
︸ ︷︷ ︸

m

=
2krk+n+m−3�(k + 1)
�(k + n +m − 2)

.

The generalized recurrent relation could symbolically be expressed by the term

∂±m

∂r±m
HC(k,n, r) = HC(k,n ∓ m, r) =

2krk+n∓m−3�(k + 1)
�(k + n ∓ m − 2)

,

where we assume that

∂−m

∂r−m
HC(k,n, r) = HC(k,n +m, r) =

r∫
0

r∫
0

· · ·
r∫

0

HC(k,n, r)drdr · · · dr
︸ ︷︷ ︸

m

.

The general equation covers derivational and integral characteristics of recursion and

has the following form

∂±m

∂r±m
HC(k,n, r) − HC(k,n ∓ m, r) = 0.

Having in mind the known characteristics of the gamma function, the value of differ-

ential and integral degree m need not be integer, as e.g., with classical differentiating

(integrating).

2.3. Fractional differentials/integrals of the HC function

The degree of derivation (or integration) m may be integer or non-integer, conse-

quently, out of the field of real numbers. So, for example, for the integer derivatives

the following values are representative and each of them gives the same result.

Example 2.5. In the first case, there exists a second derivative of the HC function

connected to the degree of freedom n = 5 and derivative degree m = 2, as follows
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∂2

∂r2
HC(k, 5, 2, r) = (2r)2 (2:6)

or in the second case by double integrating of the HC function, when n = 1 and m = -2,

it follows

∂−2

∂r−2
HC(k, 1,−2, r) = (2r)2. (2:7)

Both operations give the same result. Applying non-integer (fractional) derivative

degrees, e.g., m = ± 1/2, starting with the fixed degrees of freedom n = 7/2 and n = 5/2,

we obtain the same results as the previous ones, with the procedure of integer differen-

tiating/integrating (2.6) and (2.7). Thus, the results follow

∂

1
2

∂r

1
2

HC(k,
7
2
,
1
2
, r) = (2r)2, (2:8)

in other words with non-integer integralling (m = -1/2)

∂
−
1
2

∂r
−
1
2

HC(k,
5
2
,−1

2
, r) = (2r)2. (2:9)

Evidently that the results (2.6), (2.7), (2.8), and (2.9) are identical.

2.4. The HC gradient

Gradient may be applied on the hypercubical function, taking into consideration its

differentiability and multidimensionality. As this function has three variables, k, n, and

r, the solution of gradient functions ∇k, n, r is given as follows

∇k,n,r{HC(k,n, r)} =

⎡
⎢⎢⎢⎢⎣

∂

∂k
HC(k,n, r)

∂

∂n
HC(k,n, r)

∂

∂r
HC(k,n, r)

⎤
⎥⎥⎥⎥⎦ = HC(k,n, r)

⎡
⎢⎣
ln 2r + ψ0(k + 1) − ψ0(k + n − 2)

ln r − ψ0(k + n − 2)
1
r
(k + n − 3)

⎤
⎥⎦ .

This function is particularly noteworthy with fixing the extreme of the contour HC

functions.

2.5. Contour graphics of HCs

The graphics of the function and their derivatives may be simply obtained by computer

analysis. Each checking in sense of the analytical expanding of the HCs (Figure 3) and

in the left half-plane (k ≤ 0), it relies on the characteristics of the gamma (Γ) and

digamma (ψ0) functions, which make the HC.

The derivation functions hc1 = dHC/dk = ∇k{HC} and ch1 = dHC/dn = ∇n{HC} also

belong to the family of HCs. Using them, we separate two groups of functions, accord-

ing to the degrees of freedom k and n. The first derivate function on the degree of

freedom k is as follows
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hc1(k,n, r) =
∂

∂k
HC(k,n, r) = HC(k,n, r)

[
ln 2r + ψ0(k + 1) − ψ0(k + n − 2)

]
,

and has a special meaning when we determine the maximum of HCs, e.g., for the

common half-edge and the domain k Î N (Figure 4). Also, on the basis of the known

Figure 3 The graphic of the two essential HCs for k Î ℜ and common half-edge.

Figure 4 The HCs for the certain values of the degrees of freedom n = 0, 1, 4, 5 and the values k Î
ℜ.
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criteria, for each function in the family of derivations functions, we define the maxi-

mum value of the HC function by equating its derivative with zero. Other than the

maximum, we give the following, where the value of the degree of freedom k0 is

named as “optimal”. Consequently

∂

∂k
HC(k,n, r) = 0 and

∂2

∂k2
HC(k,n, r) > 0 and

∂2

∂k2
HC(k,n, r) > 0 ⇒ maxHC(k,n, r)∧ k0.

2.6. The extreme values of the HC function from the viewpoint of the freedom degree k

The function hc1(k, n, r) has a special meaning (Figure 5) in defining the extreme

values of the HCs, e.g., for the common radius and the domain k Î ℜ. Also, in view of

the known criteria, for each function in the family of derivative functions, we obtain

minimum values of the HC functions by equating its derivative with zero. Other than

the minimum, we give the following, where the value of the degree of freedom k0 is

named as “optimal”.

hc1(k,n, r) = 0 and
∂

∂k
hc1(k,n, r) > 0 ⇒ minHC(k,n, r) ∧ k0.

For the surface HC, with the half edge r = 1, the derivative function, after some

transformations, is

hc1(k, 2, 1) = HC(k, 2, 1)
[
ln 2 + ψ0(k + 1) − ψ0(k − 1)

]
= 0.

Taking into consideration ψ0(k + 1) − ψ0(k − 1) =
1
k
, this expression may be ratio-

nalized as

Figure 5 The surface HC and its derivative function with characteristically values.
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Example 2.6. By equating with zero, the expression in brackets is

ln 2 +
1
k
= 0 ⇒ k0 = − 1

ln 2
≈ −1, 44269. (2:10)

We obtain a symbolical solution for the “optimal” dimension (2.10) (Figure 6).

The symbolical and numerical value states are

HC(k0,n, 1) = − 1
ln 2e

≈ −0, 53074. (2:11)

On the basis of (2.10)-(2.11), we define the minimum cube surface for the “optimal”

dimension k0. Also, we obtain k0 ≈ -1,44269, which gives the lateral surface of min HC

(k0, n ,1) ≈ -0,53074 as in (Table 1). For other HCs, we also define minimum values,

but clearly on numeric bases. Meanwhile, for degrees of freedom n ≥ 3, the minimum

Figure 6 Surface and solid HC for certain degrees of freedom n Î ℜ and common half-edges (or a
= 2).

Table 1 Minimum cube surface for optimal dimension and various degrees of freedom

Dimension n Optimal dimension k0 minHC Error

-1 2.680571494 -6.2786205562 4.293 × 10-12

0 1.648207317 -1.1780735642 1.940 × 10-11

1 0.584187070 -0.3641730147 -1.836 × 10-12

2 -1.442695041 -0.5307378454 5.191 × 10-13

3 -∞ 0 0

. . . . . . . . . . . .

i -∞ 0 0

. . . . . . . . . . . .

n -∞ 0 0
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comes down to zero. The greatest values of the considered functions are infinite, when

k0 = ∞.

2.7. The first derivatives of the ch1 function of HC in relation to the degree of freedom n

Since the function HC(k, n, r) is the function of two variables (not taking into consid-

eration the radius r), we can determine its partial derivatives on the degree of freedom

n, so the derivatives are set, respectively.

The general solution is

ch1(k,n, r) =
∂

∂n
HC(j,n, r) = HC(k,n, r)

[
ln r − ψ0(k + n − 2)

]
.

These functions can be important in further research of the HC. The extreme values

of these contour functions HC(k, n, r) (where k is known) can be presented in Table 2,

and they are visually shown in Figures 7 and 8,

Table 2 Extreme values of contour functions where k is known

Dimension k Optimal dimension n0 maxHC Error

0 3.461632145 1.129017388 6.619 × 10-15

1 2.461632145 2.258347771 3.818 × 10-14

2 1.461632145 9.033391083 -3.179 × 10-12

3 0.461632145 54.20034650 -2.964 × 10-11

4 0 384 0

. . . . . . . . . . . .

j 0 2k
�(j + 1)
�(j − 2)

0

. . . . . . . . . . . .

k 0 2n
�(n + 1)
�(n − 2)

0

Figure 7 3D HC for the unit radius HC(−1 ≤ k ≤ 6,−4 ≤ n ≤ 4, 1) =
2k �(k + 1)
�(k + n − 2)

and coordinates of real cubic
entities (k, n Î ℜ).
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2.8. The higher-order derivatives of the HC function on the k argument

The derivatives of the HC for any argument retain the characteristics similar to the

original HC function. This is especially noticeable in graphical representation. In addi-

tion, it would be interesting to examine the regularities in the structure of this function

of the higher degree derivation. In that sense, later in this article, we present the deri-

vative functions on the k argument (the more complex case) i.e. n (the simpler case)

analytically and graphically. The second derivative of the HC on the argument k is

hc2(k,n, r) =
∂2

∂k2
HC(k,n, r) =

HC(k,n, r)
{ [

ψ0(k + 1) − ψ0(υ + 1) + ln 2r
]2

+ ψ1(k + 1) − ψ1(υ + 1)
}
,

where ψ0(z) =
d
dz

ln�(z) is the digamma, ψ1(z) =
d2

dz2
ln�(z) the trigamma func-

tion, and ζ(z) Riemann’s zeta function. The concrete value of this derivative for the

fixed parameters k = 3 and n = 3 is obtained later. The mixed derivation of the HC is

∂2

∂k∂n
HC(k,n, r) =

HC(k,n, r)
[ (

ψ0(υ + 1) − ln r
) (

ψ0(υ + 1) − ψ0(k + 1) − ln 2r
) − ψ1(υ + 1)

]
.

Example 2.7. After applying the same values of k and n it follows that

∂2HC(k,n, 1)
∂k∂n

∣∣∣∣ k = 3
n = 3

= 4
(
2γ − 11

3

)
ln 2 − 2

3

(
2π2 − 46

3

)
.

The fourth derivative of the HC on the argument n, and the common radius is of the

form

Figure 8 The HC and its derivative with the HC maximum location and optimum for the value of
the degree of freedom n0 ≈ 0,46163 for n Î N, for the degree of freedom k = 3 and the common
half-edge.
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Here, we include a degree of freedom as υ = n + k - 3.

Example 2.8. For the HC HC(k, n, r), some values of the derivative function of the

argument n, are

ch4(0, 0, 1) = 2
{
4

[
3γ + 2ζ (3)

] − 2γ 2(9 − 2γ ) − π2(2γ − 3)
}
,

ch4(1, 2, 1) = 2γ
[
8ζ (3) + γ (γ 2 − π2)

]
+

π2

5
ζ (2),

ch4(0, 2, 1) = 8ζ (3) + 2γ (2γ 2 − π2),

ch4(2, 0, 2) = 8
[
4ζ (3) + (γ + ln 2)(6γ ln 2 − π2) + 2(γ 3 + ln32)

]
,

where ζ(z) is the Riemann’s zeta function, and ζ(3) ≈ 1,202057 the Apery’s constant

[20].

3. Conclusion
When we obtain the HC functions of the mth derivative, we notice a certain regularity

in the disposal of coefficients in addition to the polygamma functions (-1, 10, -10, -15,

5, 10, -1; see (3.1)). Partial derivatives with respect to the argument k are relatively

complicated and they have been obtained only for the first and second derivatives. The

previous partial derivations of the HC function have been derived to the fifth degree of

freedom n, so in that case, for r = 1, we obtain the following coefficients along with

psi (polygamma) function (3.1). As it is known, this derivative can be obtained as well

on the basis of integral equation, where we consider m = 5.

dm

dnm
�(n) =

∞∫
0

tn−1e−t(ln t)mdt ⇒ d5

dn5
�(n) =

∞∫
0

tn−1e−t(ln t)5dt.

Such integral presentation of the derivative of reciprocal gamma function, and also

HC is known, but the equivalent solution (3.1) is not explained enough with the alter-

native members of the psi functions.

hc5(k,n, r) =
∂5

∂n5
HC(k,n, r)

= −HC(k,n, r)
{(

ψ0(k + n − 2) − ln r
)5 − 10

(
ψ0(k + n − 2) − ln r

)3
ψ1(k + n − 2)

+ 10
(
ψ0(k + n − 2) − ln r

)2
ψ2(k + n − 2) + 15

(
ψ0(k + n − 2) − ln r

)2
ψ2

1
(k + n − 2)

− 5ψ3(k + n − 2)
(
ψ0(k + n − 2) − ln r

) − 10ψ1(k + n − 2)ψ2(υ + 1) + ψ4(k + n − 2)
}

(3:1)

= −HC(k,n, r)
{ (

ψ0(k + n − 2) − ln r
)5 − 10

(
ψ0(k + n − 2) − ln r

)3
ψ1(k + n − 2)+

10
(
ψ0(k + n − 2) − ln r

)2
ψ2(k + n − 2) + 15

(
ψ0(k + n − 2) − ln r

)2
ψ2

1
(k + n − 2)−

5ψ3(k + n − 2)
(
ψ0(k + n − 2) − ln r

) − 10ψ1(k + n − 2)ψ2(υ + 1) + ψ4(k + n − 2)
}
.

In general, the HC of the mth derivative of n can be defined on the basis of the pro-

duct of polygamma (psi) polynomial of the mth degree and HC. Its general form is the

following

chm(k,n, 1) =
∂m

∂nm
HC(k,n, r) = HC(k,n, r) · f m {

ψ(m−1)(k + n − 2), r
}
.
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The analysis of the multidimensional object-cube and the formulas of this geometry–

suggests its complexity and connection with special functions and the other fields of

geometry. Certain issues (for which we do not give solutions in this article) relate to

the rational and general forms of the derivative on the two degrees of freedom, while

the general derivative/integral on the argument r is obtained in (2.1) and it amounts to

∂±m

∂r±m
HC(k,n, r) =

2krk+n∓m−3�(k + 1)
�(k + n ∓ m − 2)

.
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