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Abstract

A new approach for investigating polynomial solutions of differential equations is
proposed. It is based on elementary linear algebra. Any differential operator of the

form L(y) =
k=N∑
k=0

ak(x)y(k) , where ak is a polynomial of degree ≤ k, over an infinite field

F has all eigenvalues in F in the space of polynomials of degree at most n, for all n. If
these eigenvalues are distinct, then there is a unique monic polynomial of degree n
which is an eigenfunction of the operator L, for every non-negative integer n.
Specializing to the real field, the potential of the method is illustrated by recovering
Bochner’s classification of second order ODEs with polynomial coefficients and
polynomial solutions, as well as cases missed by him - namely that of Romanovski
polynomials, which are of recent interest in theoretical physics, and some Jacobi type
polynomials. An important feature of this approach is the simplicity with which the
eigenfunctions and their orthogonality and norms can be determined, resulting in
significant reduction in computational complexity of such problems.
2000 MSC: 33C45; 34A05; 34A30; 34B24.

1 Introduction
Polynomial solutions of differential equations is a classical subject, going back to Routh

[1], Bochner [2] and Brenke [3] and it continues to be of interest in applications, as in,

e.g., [4,5]. The idea we wish to present in this article is to conduct the discussion of

differential equations with polynomial coefficients in a linear algebraic context. It is

surprising that by such a change of view point, one can add more than what is avail-

able in the classical literature and, at the same time, recover classical results efficiently

and in a unified manner.

We take this opportunity to correct a common misconception regarding Brenke’s

contributions in the classification of second-order ODEs that have polynomial solu-

tions [6, p. 508]. He first considers all the second-order ODEs that have a polynomial

solution in every degree and only subsequently classifies self-adjoint equations by an

argument similar to that given in Section 3. He then returns to the general second-

order equation and, for an inexplicable reason, does not carry through the argument to

its logical conclusion and misses some important cases.

In this article, we investigate operators of the form L(y) =
∑N

k=0 ak(x)y
(k), where ak is

a polynomial of degree ≤ k, with coefficients in an infinite field F. Clearly, any linear

nth-order differential operator, which has polynomial coefficients and eigenpolynomials

of degrees 0 up to n, must be of this form, and, as shown in Section 2, such operators

may not have eigenpolynomials in every degree. We show that these operators,
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operating on polynomials, have all their eigenvalues in the field and in case the eigen-

values are distinct, there is exactly one monic polynomial in every degree which is an

eigenfunction of L.

Specializing to second-order equations because of their importance in applications–

and leaving in this article the higher-order case because of its technical complexity–the

canonical forms of second-order equations, their eigenvalues, and multiplicities are

investigated. This includes the family of Romanovski polynomials and some Jacobitype

polynomials, which are missing in the classification of Brenke and Bochner as well as

in the latest books on the subject; the Romanovski polynomials are the main subject of

some recent physics literature [5,7].

Necessary and sufficient conditions for a second-order operator to be self-adjoint are

obtained and a reduction formula for computations of norms of eigenfunctions of

these operators is also given, which avoids the customary case-by-case analysis found,

e.g., in [6,8,9].

A complete classification of second-order operators which are self-adjoint with

respect to some weight function is also given: among all the polynomial solutions of

differential equations, the classical polynomials make their appearance as soon as one

searches for self-adjoint operators. This classification is due originally to Brenke [3].

Although one normally assumes that the leading polynomial coefficient of a differen-

tial equation should never vanish, it is worth noting that it is precisely the singularities

of the equation that encapsulate all the important information about the equation.

In the last section, the important examples of Jacobi and some non-standard polyno-

mials are given in detail.

Regarding eigenvalues we will use the following terminology.

Let l be an eigenvalue of an operator L on a finite dimensional space. The geometric

multiplicity of l is the dimension of its eigenspace while its algebraic multiplicity (or

multiplicity for short) is its multiplicity as a zero of the characteristic polynomial.

Moreover, l is said to be simple if its algebraic multiplicity is equal to 1, semisimple if

its algebraic and geometric multiplicities coincide, and defective if its algebraic multi-

plicity is greater than its geometric multiplicity.

2 Basic results
In this article, ℙ is the space of all polynomials over an infinite field F and ℙn is the

subspace of polynomials with degree at most n, and for a fixed positive integer N, L : ℙ

® ℙ is the Nth-order operator given by Ly =
∑N

k=1 ak(x)D
ky , where D is the usual dif-

ferential operator and ak(x) is a polynomial of degree at most k (1 ≤ k ≤ N). In this

way, for each non-negative integer n, ℙn is L-invariant. Put ak(x) =
∑

h≥0 akhx
h , where

akh = 0 if k < h. As L(xj) is a scalar multiple of xj plus lower-order terms (1 ≤ j ≤ n),

we see that the matrix representation of L, with respect to the standard basis Bn = {1,

x,. .., xn}, is upper triangular and the eigenvalues are the coefficients of xj in L(xj) (1 ≤ j

≤ n). In more detail, the (n+1) × (n+1) matrix of L operating on ℙn is

An =

⎡
⎣∑

k≥1

(j − k)kak,k+i−j

⎤
⎦

1≤i,j≤n+1
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where (j − k)k = (j − 1)(j − 2) ... (j − k) and akh = 0 when k < h, so An is upper trian-

gular (and where each row and each column has at most N + 1 non-zero entries).

Clearly, An+1 is obtained from An by adding one row and one column at the end, and

so all the eigenvalues of the operator L are in F and are given by

λ0 = 0, λn = na11 + n(n − 1)a22 + · · · + n!ann for n ≥ 1 (2:1)

where ann = 0 if n > N. Each ln has, as an eigenfunction, a polynomial yn(x) = yn0 +

yn1x + ... + ynnx
n whose vector representation (yn0 ,..., ynn)

T in the standard basis Bn of

ℙn can directly be computed using the homogeneous triangular system

(An − λnI) (yn0, . . . , ynn)T = 0

In particular, if the eigenvalues l0, l1,..., ln (for some n) are distinct, then ℙn has a

basis of eigenfunctions and, for reasons of degree, L has (up to a constant) a unique

polynomial of degree r (for each r, 0 ≤ r ≤ n) corresponding to lr as an eigenfunction.

We summarize this in

Proposition 2.1 Let L : ℙ ® ℙ be an operator given by Ly =
N∑
k=1

ak(x)Dky , where ak(x)

is a polynomial of degree at most k. For each k (1 ≤ k ≤ N), let ck be the coefficient of x
k

in ak(x). Then all the eigenvalues of L are in the field F and are ℤ-linear combinations

of the ck. If all the eigenvalues are distinct, then L has, up to a constant, a unique poly-

nomial for each degree as an eigenfunction.

Some observations concerning the eigenvalues and their multiplicity are in order.

First, let

f (x) = c1x + c2x(x − 1) + · · · + cNx(x − 1) · · · (x − N + 1)

where, as in Proposition 2.1, ck = akk is the coefficient of xk in ak(x). Then each

eigenvalue ln of L is just f(n) (n ≥ 0). This immediately gives an (N + 1)-term recur-

rence relation between the eigenvalues, for if E is the shift operator given by Ef(x) = f(x

+1), then (E−1)N+1f(n) = 0. When all the ck are zero (i.e., all eigenvalues are equal to

zero), then f is identically zero and one can get the eigenfunctions of L by considering

the (N − 1)-order operator obtained from L by replacing y by Dy. We therefore assume

that f is not the zero polynomial. Suppose that an eigenvalue is repeated r times, say

λn1 = λn2 = · · · = λnr , where 0 ≤ n1 < n2 < · · · < nr .

In this case, f takes on the same value at r different non-negative integers, and so r ≤

deg (f) ≤ N. Moreover, if the field F = ℝ, it is clear that there is a positive integer u

such that for each integer v ≥ u, the set {n : f(n) = v} is a singleton, meaning that only

finitely many eigenvalues ln of L have multiplicity greater than 1, and, if any exist,

they must all lie between the largest local maximum and the smallest local minimum

of f.

An interesting fact occurs when N = 2. Suppose, as before, that not both coefficients

c1 and c2 are zero and that an eigenvalue has algebraic multiplicity 2, say ln = ln′ for
some non-negative integers n < n′. Then, from Equation 2.1, nc1 + n(n − 1)c2 = n′c1 +

n′(n′ − 1)c2, and, ln+n′ = (n + n′)c1 + (n + n′)(n + n′ − 1)c2 = 0. Since the multiplicity

of the eigenvalue zero cannot exceed 2, we obtain that for each integer k > n + n′, the

eigenvalue lk has multiplicity 1. We also see that if n1 + n2 = n + n′, where n1 < n2,
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then ln1 = ln2, meaning that the number of eigenvalues that have multiplicity 2 is⌈
n + n′

2

⌉
. We thus have

Proposition 2.2 Let the field be ℝ. Then, with the above notation, either all eigenva-

lues of the N th order operator L are equal to 0 or all have multiplicity 1 except for

finitely many of them which will then have multiplicity at most N. In case N = 2, there

will be eigenvalues with multiplicity 2 precisely when a non-negative integer k exists for

which c1 + kc2 = 0, and then the number of such eigenvalues is

⌈
k + 1
2

⌉
.

It is perhaps tempting to think that although the eigenvalues of the operator L may

not be distinct, yet it is still diagonalizable. As Proposition 2.3 shows, this is not always

the case.

We now concentrate on second-order operators. Let L(y) = a(x)y′′ + b(x)y′, where

deg(a) = 2, deg(b) ≤ 1. Following Bochner [2], by scaling and translation, we may

assume that a(x) = x2 − 1, x2 + 1 or x2. We then have the following result.

Proposition 2.3 (i) The equation (x2+ ε)y′′ + (ax + b)y′ + ly = 0, ε = 0, 1, −1 has

unique monic polynomial solutions in every degree if a >0 or if a <0 and it is not an

integer.

If a = −(n + m − 1) for 0 ≤ m ≤ (n − 1), then the eigenvalue l = n(n − 1) + an =

−nm has algebraic multiplicity 2 and eigenpolynomials can only be of degree n or m.

An eigenpolynomial y =
∑n

k=0 akx
k is of degree n if and only if

εam+2(m + 2)(m + 1) + βam+1(m + 1) = 0

in which case the l eigenspace in ℙn is two-dimensional; otherwise the l eigenspace is

one-dimensional.

(ii) The equation xy′′ + (ax + b)y′ + ly = 0 has unique monic polynomial solutions in

every degree if a ≠ 0.

(iii) The equation y′′ +(ax+b)y′ +ly = 0 has unique monic polynomial solutions in

every degree if a ≠ 0.

Proof.

(i) Let L(y) = (x2 + ε)y′′ + (ax + b)y′, where ε = 0, 1,−1. By Proposition 2.1 or noti-

cing that the eigenvalues are given by the coefficients of xn in L(xn), these eigenvalues

are l = n(n − 1) + an. Suppose such an eigenvalue is a repeated eigenvalue. Then, L

(xm) = lxm+ lower degree terms, where m ≠ n. Therefore, n(n − 1) + an = m(m − 1)

+ am which gives a = −(n + m − 1). This means that if a is not an integer or if a is a

positive integer, then the operator L has distinct eigenvalues. In this case, there is up

to a scalar only one polynomial in every degree which is an eigenfunction of L.

Now suppose a = −(n + m − 1) for distinct non-negative integers n,m and l = n(n

−1)+an = −nm. We may assume that n > m. Suppose L(xk) = lxk+ lower degree

terms, with k ≠ n. Then a = −(n + m − 1) = −(n + k − 1) gives k = m. Therefore, if

there is a repeated eigenvalue, it is of multiplicity 2 and eigenpolynomials can only be

of degrees m and n. Moreover, if a = −(n+m−1) = −(i + j − 1) then the eigenvalue −ij

is also repeated.
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Since the algebraic multiplicity of an eigenvalue is always greater than or equal to its

geometric multiplicity, a non-repeated eigenvalue of L has exactly one monic polyno-

mial as an eigenfunction.

Let us now determine the geometric multiplicities of all the eigenvalues in case a is a

non-positive integer.

Let a = −(n + m − 1) where n > m ≥ 0. As seen above the eigenvalue l = n(n − 1) +

an = −nm is of algebraic multiplicity 2 and the corresponding eigenpolynomials can

only be in degrees n and m. If y =
∑n

k=0
akx

k then

L(y) =
n−2∑
k=0

[akk(k − 1) + εak+2(k + 2)(k + 1) + αakk + βak+1(k + 1)] xk

+ [an−1(n − 1)(n − 2) + αan−1(n − 1) + βann]xn−1 + [n(n − 1) + αn] anxn

The solutions of L(y) = ly = (n(n − 1) + an)y = −(nm)y satisfy therefore

akk(k − 1) + εak+2(k + 2)(k + 1) + αakk + βak+1(k + 1) = λak, (k = 0, . . . , n)(2:2)

where an+1 = 0, an+2 = 0 and an ≠ 0. From Equation 2.2 we can solve for ak in terms

of ak+1, ak+2 provided (k(k − 1) + ak − l) ≠ 0. Therefore, we can solve for all ak with k

> m in terms of an. Equation 2.2 for k = m reads

εam+2(m + 2)(m + 1) + βam+1(m + 1) = [λ − m(m − 1) − αm]am = 0. (2:3)

If Equation 2.3 holds then am can be arbitrary and every ak for k < m is determined

in terms of am and an. In this case, the l eigenspace is two-dimensional. If Equation

2.3 does not hold then there is no eigenpolynomial of degree n. In this case, there will

be a unique monic polynomial of degree m.

(ii & iii) Here the proofs follow from the fact that the eigenvalues of the operator L

in both the cases are an so, for a ≠ 0, all the eigenvalues are distinct.

Proposition 2.3 shows, in particular, that for Jacobi-type differential equations, there

are cases where the algebraic and geometric multiplicities are equal to 2 and cases

where the algebraic multiplicity is 2 and the geometric multiplicity is 1 (Cf. [2]).

Corollary 2.4 Let L(y) = x2y′′ + (ax + b)y′.

(i) If a is not a non-positive integer then all the eigenvalues of L are simple.

(ii) If a = −(n + m − 1) where n > m ≥ 0 then all eigenvalues l except l = −nm,

are simple and the eigenvalue −nm has multiplicity 2.

In this case if b = 0 then all the eigenvalues are semisimple with eigenpolynomials k

(k = 0, 1,...).

If b ≠ 0 then the repeated eigenvalue −nm is defective with eigenpolynomial

m∑
l=0

(−β)m
(
m
l

)
(n − m)!
(n − l)!

(
− x

β

)l

Proof. (i) and the first statement of (ii) have already been proved in Proposition 2.3.

Using Equation 2.3 in the proof of Proposition 2.3 with

α = −(n +m − 1) 0 ≤ m ≤ n − 1
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and

λ = n(n − 1) + αn = −nm

we get

(n − k)(k − m)ak = βak+1(k + 1) + εak+2(k + 2)(k + 1).

Therefore, for ε = 0 we get

(n − k)(k − m)ak = βak+1(k + 1) (2:4)

• If b = 0, then (n − k)(k − m)ak = 0. Therefore, all ak are zero except for k = n and

k = m. The general solution is therefore a linear combination of xn and xm. The eigen-

value −nm in this case is of geometric multiplicity 2.

• Assume b ≠ 0. For k = n and k = m Equation 2.4 gives 0 = ban+1(n + 1) and 0 =

bam+1(m + 1). Since an+1 is zero, if there is an eigenpolynomial of degree n then we

must have am+1 = 0. This means that there cannot be an eigenpolynomial of degree n.

Now from Equation 2.4 we get

ak =
βak+1(k + 1)

(n − k)(k − m)
0 ≤ k ≤ m − 1

Taking am = 1 we get

ak−1 =
−βakk

(n − (k − 1))(m − (k − 1))
1 ≤ k ≤ m

This gives recursively

am−k = (−1)kβk
(
m
k

)
(n − m)!

(n − m + k)!

Substituting m − k = l we get

al = (−1)m−lβm−l
(
m
l

)
(n − m)!
(n − l)!

which gives the monic eigenpolynomial of degree l given by

m∑
l=0

(−β)m
(
m
l

)
(n − m)!
(n − l)!

(
− x

β

)l

In Proposition 2.3, there is no claim to any kind of orthogonality properties. Never-

theless, the non-classical functions appearing here are of great interest in Physics and

their properties and applications are investigated in [5,7,10].

Now the equations a(x)y′′ + b(x)y′ + c(x)y = lx can be written as second-order

Sturm-Liouville equations in the sense of [9, p. 291] by multiplying by a suitable

weight function [8, p. 45] and for suitable boundary conditions. A natural question is:

What is the explanation for the weight function and the particular form of the bound-

ary conditions?

The following proposition shows that both the weight and general boundary condi-

tions are forced upon us as soon as we demand that the operator L(y) = a(x)y′′ + b(x)y

′ + c(x)y should be self-adjoint for some weight function p. The weight function can be
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determined from the following well-known proposition whose proof can be found for

example in [3].

Proposition 2.5 Let L be the operator defined by Ly = a(x)y′′ + b(x)y′ + c(x)y on a

linear space C of functions which are at least twice differentiable on a finite interval I.

Define a bilinear function on C by (y, u) =
∫
I
pyudx , where p Î C is non-negative and

does not vanish identically in any open subinterval of I. Then

(Ly, u) − (y, Lu) = pa(uy′ − u′y)|I for all y, u ∈ C if and only if (pa)′ = pb

2.1 Norms of eigenfunctions

The norms of the eigenfunctions relative to the weight p can be obtained using the

well-known three-term recurrence relation for orthogonal polynomials. We include a

proof for the readers’ convenience and because it is the main point in computation of

norms of eigenfunctions.

Proposition 2.6 [8, p. 306] If {Pn}n = 0,1,2 ... is a sequence of orthogonal polynomials,

then in the expression

xPn =
j=n+1∑
j=0

kjPj,

all the coefficients are 0 except for j = n + 1, n, n − 1.

Proof. Denoting the inner product by round brackets, we have

kj(Pj, Pj) = (xPn, Pj) = (Pn, xPj) = 0,

if j + 1 ≤ n − 1 that is, if j ≤ n − 2, which is what we wanted to show.

Now

xPn = kn+1Pn+1 + knPn + kn−1Pn−1 (2:5)

Let us rewrite this equation as

xPn = anPn+1 + bnPn + cnPn−1

As there is only one monic eigenpolynomial in every degree, the differential equation

must determine all the coefficients. We assume that all eigenfunctions are normalized

to be monic.

So Pn = xPn−1 + q(x), where deg(q) ≤ n − 1. Therefore (Pn, Pn) = (xPn−1, Pn) = (Pn−1,

xPn) = (Pn−1, cnPn−1) = cn(Pn−1, Pn−1) –using Equation 2.4 and orthogonality of eigen-

functions of different degrees.

Now, from the differential equation, determining the leading three coefficients of

every Pn and using Equation 2.4 leads to the determination of cn, taking into account

that an = 1. This gives (Pn, Pn) = cncn−1... c1(P0, P0) and (P0, P0) is the integral of the

weight function p over an appropriate interval.

The values of an, bn, cn for classical orthogonal polynomials are given in the table

below.
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3 Canonical forms of self-adjoint second-order equations with polynomial
coefficients
Let us now determine the operators for which there is a basis of orthogonal eigenpoly-

nomials for the weight function determined by the operator. The results of this section

were arrived at independently; however, the authors found later that such a classifica-

tion was done first by Brenke [3].

From Proposition 2.5, the operator L would be self-adjoint if there is no contribution

from the boundary terms: this is ensured if the product a(x)p(x) vanishes at the end

points of the interval–finite or infinite–on which the natural weight function p(x) asso-

ciated to L is integrable on the entire interval.

The integrability of the weight function determines the differential equation and

finiteness of the norm of polynomials ensures that manipulations as in Proposition 2.5

are legitimate. The operator L will then be self-adjoint and it will operate on the vector

space of all polynomials of degree at most n for every non-negative integer n.

As L has a basis of eigenvectors in any finite dimensional subspace on which it oper-

ates, we see that there will be monic polynomial of degree n, which will be an eigen-

function of L, and the corresponding eigenvalues would therefore be determined from

the form of the equation. If these eigenvalues are distinct for different degrees, these

polynomials would automatically be orthogonal.

The operator L can be determined from the following requirements

(1) the leading term a(x) is non-zero and of degree at most 2, the degree of b(x) is

at most 1 and c(x) is a constant;

(2) the natural weight function associated to L is integrable on the interval I deter-

mined by roots of a(x);

(3) a(x)p(x) vanishes at the end points of I and, in case there is an end point at

infinity, the product a(x)p(x)P(x) should vanish at infinity for all polynomials P(x);

(4) all polynomials should have finite norm on the interval I with the weight p(x).

Case I. The polynomial a(x) has two distinct real roots.

By a linear change of variables and scaling, we may assume that the roots are 1 and

−1. Assuming that a(x) is non-negative in the interval [−1, 1], we have a(x) = 1−x2.

Table 1 Leading Terms for Classical Polynomials

Polynomial an bn cn

Legendre 1 0 n2

(2n+1)(2n−1)

Hermite 1 0 n
2

Laguerre 1 2n + 1 n2

Chebychev 1 0 1
4(for n ≥ 2)

Jacobi 1 −β(2+α)
(2n−2−α)(2n−α)

n(n−α−2)(2n−(β+α+2))(2n+(β−α−2))
(2n−α−3)(2n−2−α)2(2n−α−1) (for n ≥ 2)

b1 = β(2+α)
α(2−α) c1 = (α−β)(α+β)

(1−α)α2

: here a <b < - a
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Let b(x) = ax + b so

b(x)
a(x)

=
αx + β

(1 − x)(1 + x)
=

β+α

2

1 − x
+

β−α

2

1 + x
.

So the weight p(x) is

p(x) =
1

1 − x2
e

∫
(

β + α

2
1 − x

+

β − α

2
1 + x

)dx
=
(1 + x)

β − α − 2
2

(1 − x)

β + α + 2
2

The weight is obviously finite in the interval (−1, 1). For p(x) to be integrable we

must have b − a >0 and b + a <0. Thus, a < b < −a, so a <0.

Case II: The polynomial a(x) has repeated real roots. In this case, we can assume

that a(x) = x2. Let b(x) = ax + b. The weight function is now

p(x) =
1
x2

e
∫ αx+β

x2 dx =
|x|α
x2

e−β/x . We may take the interval I = (0, ∞).

In this case a necessary condition for the integrability of the weight is that deg(b)

−deg(a) + 1 >0, so this case does not arise.

Case III: The polynomial a(x) is linear.

In this case, we can take a(x) = x. Let b(x) = ax + b. In this case the weight function

is p(x) =
1
|x|e

∫ αx + β

x
dx

= |x|β−1eαx . This is integrable near zero if and only if b ≥ 1.

Since
∞∫
0
eαxxεdx , where ε >0, is finite only if a ≤ 0 we see that we cannot take the

interval I from −∞ to ∞. Without loss of generality we can take this to be the interval

[0, ∞). So, the weight function is now p(x) = xb−1eax with a <0 and b ≥ 1. All polyno-

mials have finite norm with respect to this weight and for all polynomials p(x) the pro-

duct P(x)p(x) vanishes at 0 and ∞. Therefore, the equation xy“ + (ax + b)y′ + ly = 0

has polynomial solutions for every degree n. The corresponding eigenvalue is l = −an.
Case IV: a(x) = 1

In this case L(y) = y“ + (ax + b)y′ + gy. The weight is
p(x) = e

αx2

2 eβx
. So a must be

negative, for the product P(x)p(x) to vanish at the end points of the interval I for all

polynomials P(x), and therefore I must be (−∞, ∞).

Remark The case of a second degree a(x) with no real roots does not arise, because

of the requirements (3) and (4) above which a weight function must satisfy.

4 Examples
As illustration of the ideas of previous sections, we discuss the Jacobi polynomials and

two non-standard examples including the Romanovski polynomials.

4.1 Jacobi polynomials

First note that for any differentiable function f with f’ continuous, the integral

∫ ε

0

f (x)
xα

dx is finite if a <1–as one sees using integration by parts.
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Consider the equation (1 − x2)y“ + (ax + b)y′ + ly = 0. As above, the weight func-

tion p(x) for the operator

L(y) = (1 − x2)y′′ + (αx + β)y′

is

p(x) =
1

1 − x2
e
(

β + α

2
1 − x

+

β − α

2
1 + x

)dx
=
(1 + x)

β − α − 2
2

(1 − x)

β + α + 2
2

=
1

(1 − x)

β + α + 2
2 (1 + x)

−β + α + 2
2

So
∫ 1
−1 p(x)f (x)dx would be finite if b + a <0 and −b + a <0, that is, if a < b < −a.

The weight is not differentiable at the end points of the interval. So, first consider L

operating on twice differentiable functions on the interval [−1 + ε, 1 − ε]. If u, v are

functions in this class then by Proposition 2.5,

∫ 1−ε

−1+ε

p(x)L(u(x))v(x)dx −
∫ 1−ε

−1+ε

p(x)u(x)L(v(x))dx

= p(x)a(x)(u(x)v′(x) − u′(x)v(x))|1−ε
−1+ε

Moreover,
(1 − x2)p(x) = (1 − x)

−(β + α)
2 (1 + x)

β − α

2
is continuous on the inter-

val [−1, 1] and vanishes at the end-points −1 and 1. Therefore, if we define

(u, v) = lim
ε→0

1−ε∫
−1+ε

p(x)u(x)v(x)dx then L would be a self-adjoint operator on all polyno-

mials of degree n and so, there must be, up to a scalar, a unique polynomial which is

an eigenfunction of L for eigenvalue −n(n − 1) + na.
So, these polynomials satisfy the equation

(1 − x2)y′′ + (αx + β)y′ + (n(n − 1) − nα)y = 0

and this equation has unique monic polynomial eigenfunctions of every degree,

which are all orthogonal.

4.2 The equation t(1 − t)y“ + (1 − t)y + ly = 0

This equation is investigated in [4] and the eigenvalues determined experimentally, by

machine computations. Here, we will determine the eigenvalues in the framework pro-

vided by Propositions 2.1 and 2.5.

Let L(y) = t(1 − t)y“ + (1 − t)y′. Let ℙn be the space of al polynomials of degree at

most n. As L maps ℙn into itself, the eigenvalues of L are given by the coefficient of xn

in L(xn). The eigenvalues turn out to be −n2. As these eigenvalues are distinct, there is,

up to a constant, a unique polynomial of degree n which is an eigenfunction of L.

The weight function is p(t) =
1

|1 − t| =
1

1 − t
on the interval [0, 1] and it is not

integrable. However, as L(y)(1) = 0, the operator maps the space V of all polynomials

that are multiples of (1 − t) into itself. Moreover,
∫ 1
0 p(t)((1 − t)ψ(t))2dt is finite.
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The requirement for L to be self-adjoint on V is t(ξη′ − ξ ′η)|10 = 0 for all ξ, h in V.

As ξ, h vanish at 1, the operator L is indeed self-adjoint on V.

Let Vn = (1 - t)ℙn, where ℙn is the space of all polynomials of degree at most n. As

the codimension of Vn in Vn+1 is 1, the operator L must have an eigenvector in Vn for

all the degrees from 1 to n + 1. If y = (1−t)ψ is an eigenfunction and deg(ψ) = n, then,

by the argument as in the examples above, we see that the corresponding eigenvalue is

l = −(n + 1)2.

Therefore, up to a scalar, there is a unique eigenfunction of degree n + 1 which is a

multiple of 1 − t and all these functions are orthogonal for the weight p(t) =
1

1 − t
.

Using the uniqueness up to scalars of these functions, the eigenfunctions are deter-

mined by the differential equation and can be computed explicitly.

4.3 Romanovski polynomials

These polynomials are investigated in [5,7] and their finite orthogonality is also proved

there. Here, we establish this in the framework of Proposition 2.5.

The Romanovski polynomials are eigenfunctions of the operator L(y) = (1 + x2)y“ +

(ax + b)y′. For a >0, or a <0, a not an integer, there is only one monic polynomial in

every degree which is an eigenfunction of L; for a a non-positive integer, the eigen-

spaces can be two-dimensional for certain values of b (Proposition 2.3).

The formal weight function is p(x) = (x2 + 1)
(

α−2
2

)
eβtan

−1(x) = (x2 + 1)
γ

2 eβtan
−1(x) ,

where g = a−2. Therefore, a polynomial of degree N is integrable over the reals with

weight p if and only if N + g + 1 <0; and if the product of two polynomials P, Q is

integrable, then the polynomials are themselves integrable for the weight p.

As in Proposition 2.5, we find that (LP,Q) − (P, LQ) = (x2 + 1)p(x)(PQ′ − P′Q)|∞−∞ ,

because if deg(P) ≠ deg(Q) then the product (x2 + 1)p(x)(PQ′ − P′Q) is asymptotic to

x2+γ+deg(P)+deg(Q)−1 = xdeg(P)+deg(Q)+γ+1 and deg(P) + deg(Q) + g + 1 <0.

Therefore, if P, Q are integrable eigenfunctions of L with different eigenvalues and

deg(P) + deg(Q) + g + 1) <0, then P, Q are orthogonal.

For several non-trivial applications to problems in Physics, the readers are referred to

[5].
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