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Abstract

Based on a fixed point theorem in a cone, a new sufficient condition for the
existence of a positive periodic solution to a class of higher-order functional
difference equations is established in this article. The result obtained in this article is
different from the existing results in previous literature.
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1 Introduction

The existence of positive periodic solutions of discrete mathematical models such as the
discrete model of blood cell production and the single-species discrete periodic popula-
tion model has been studied extensively in recent years (see [1-8], for example). Most of
these discrete mathematical models are first-order functional difference equations. Rela-
tively, few articles focused on the existence of positive periodic solutions of higher-order
functional difference equations. In 2010, Wang and Chen [9] have studied the existence
of positive periodic solutions for the following general higher-order functional difference
equation

x(n+m+k) —ax(n+m) —bx(n +k) +abx(n) = f(n,x(n — 7(n))) (1)

where a = 1, b = 1 are positive constants, ©: Z — Z and ©(n + 0) = ©(n), fin + o, u) =
fln, u) for any u € R, w, m, k e N where N denotes the set of positive integers. Based
on fixed point theorem in a cone [10,11], some new sufficient conditions on the exis-
tence of positive periodic solutions to the higher-order functional difference equation
(1) are obtained. However, the main results in [9] require that a should be positive

constant, / should satisfy condition / = @ where I= ( ) and (m, o) are the greatest

’

common divisor of m and . In fact, in most cases, m and @ do not satisfy such severe
constraint / = w. In general, / < . In this article, we consider the following higher-
order functional difference equation

x(n+m+k)—a(n+m)x(n+m)—bx(n+k)+a(n)bx(n) =f(n,x(n—1t(n))) ()
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where b = 1 is positive constant, a: Z — R, with a(n) = 1 and a(n + w) = a(n), ©:
Z — Zand t(n + o) = ©(n), fin + o, u) = fin, u) for any u € R, k, o, m € N where N
denotes the set of positive integers.

The purpose of this article is to consider the existence of positive periodic solution
of higher-order functional difference equation (2), we will remove the constrains on a
and [ in [9]. We will replace constant a in [9] with function a(n). At same time, we
will remove the unreasonable assumption / = w. Based on a fixed point theorem in a
cone, a new sufficient condition is established for the existence of positive periodic
solutions for higher-order functional difference equation.

2 Some preparation
Let X be the set of all real w periodic sequences, then X is a Banach space with the
maximum norm |1XIl = neﬂ)l,g)}fl] lx(n)!,

Lemma 1 (Deimling [10]) Let X be a Banach space and K be a cone in X. Suppose
0y and Q, are open subsets of X such that 0 € Q; ¢ Q, C Q,and suppose that

@ :KN(Q\2)— K

is a completely continuous operator such that

() ||@u|| < ||ul|| for u e KN 0Q; and there exists yw € K\{0} such that x = Px + Ay
for x e KN oQ, and A > 0; or

(ii) ||@ul|| < ||u|| for u e KN 0Q, and there exists yw € K\{O} such that x = ®x + Ay
for x e KN oQ, and A > 0.

Then, @ has a fixed point in K N (2,\82)-

Let d € N. Consider the equation

x(n+d) = cx(n) + y(n) 3)

where ye X. Set (d, ) as the greatest common divisor of d and w, p = w/(d, ®).
Lemma 2 [9]Assume that 0 <c = 1, then (3) has a unique periodic solution

p
x(n) =[c? =17 Ty (n+ (i—1)d).

i=1

Let y(n) = x(n + k) - a(n)x(n), a= 12132;“(”)@ = 12}2361(")’ then (2) can be rewrit-

ten as

x(n +k) = ax(n) +y(n) + [a(n) — alx(n),

(4)
y(n+m) =by(n) +f(n, x(n — =(n))).
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w

1)
Let h= (k w)rl = (m, )’ Assume that x € X solution of (2), then y € X. From

Lemma 2, we have

h
x(m)=[a" =171 Y @ Hy(n+ (i = 1)k) + [a(n + (i = D) = alx(n+ (i = Dh)),

i=1

!
y(n) = [b7 = 1]} Zb’if(n +(i—1)mx(n+(—1)m—1t(n+(i—1)m))).

i=1

If fin, x(n - 7(n))) = 0 and 0 <b < 1, then y(n) = 0.

We introduce the following conditions:

(H)O0<a(n) <1,0<b <1, h=wandf R x (0, +o°) — [0, +e0) is continuous.
Define the operator T by

a't/ oL
(Tx)(n) = (1— a1 ) ;471 ;bﬂf(n +({i—-1Dk+({—1)m,
x(n+(i—Dk+(—1)m—t(n+(i—k+(j—1)m)))

ah h

+ (1 ;L_Ih) ;q—i[a(n +(i—1)k) —alx(n+ (i — 1)k).

Define the cone by

K = {x € X, x(n) > §||x||}

where § = a"b'(1 —a")(1 — b)/w.

Lemma 3 Assume that (H) holds and 0 <r, <r,, then T : 1_<r2 \K;, — Kis completely
continuous, where K, = {x € K: ||x|| <r} and K, ={x e K : ||x]| <71}-

Proof Since 0 <a(n) < 1, then 0 < a < 1. Noting that 0 <b < 1 and fin, x(n - 1(n))) =
0, we have y(n) = 0. So (Tx)(n) = 0 on [0, @ - 1]. Since 7(n + w) = ©(n) and fin + w, u)

1)
= fin, u) for any u > 0, (Tx)(n + w) = (Tx)(n) for x € X. Since I = (m, ©) = w we have

1 [5)
Y S+ (= Vmx(n+ (- m—<(n+(—1)m)) <Y f(i.xG - ().

1 1

w
On the other hand, from (H), h = (k, ©) = w, we have

h w
Y fn+(i—Dhx(n+(i—Dk—t(n+(i—1)k)) = > f(i,x(i— (i)

i=1 i=1
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and
h w
Y la(n+ (i = 1)k) — alx(n+ (i — 1)k) = Y [a(i) — alx(i).
i=1 i=1

For any x € K,,\K;,»

a't/ oL
(Tx)(n) = (1— a1 ) ;6}71 Zb*lf(n+ (i—1k+({—1)m,

j=1
x(n+(i—Dk+(—1)ym—c(n+(i—1)k+(j— 1)m)))
ah h

* ¢! ;ah) Zg‘i[a(n + (i = 1)k) — a]x(n + (i — 1)k)
- i=1
ay! hoo
= (1 —any gy Y e (= D G = 1m,
- i=1 j=1

x(n+(i—Dk+(—1)ym—c(n+(i—1)k+(j— 1)m)))}
ah h

+ (1 ;gh)g—hgla(n+ (i—1)k) —alx(n+ (i — 1)k)

qhbl

I h
=G ay gyt Y e = D G- Dy

j=1 i=1
x(n+(i—Dk+(—1)ym—c(n+(i—1)k+(j— 1)m)))}

ah ®

SRS BCORDRD

SRS 3) (R LELTU))

j=1 i=1
gy 2o () (i)
- i=1

<0 gh;“(l b ;m x(i, 7(i)))
1 gy 2o ) = a)x(i)
- i=1

= (1= a1y 20 U T0)) + (0() — a)x(i)
B i=1

So

TS 3 et — ) D= () + (@) ~ (i)
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At the same time

a'vt o1
(Tx)(n) > (1— a1 bl)g_lb_l DD f(n+ (i— Dk (j— 1)m,

i=1 j=1
x(n+(i—Dk+(—1)m—t(n+(i— Dk+(j—1)m)))}
a" h
Ta- ah)‘r1 Y la(n+ (i — 1)k) — alx(n+ (i — 1)k)
- i=1
ahbl

d 1 h
1yt Y (e (= Dk = Dm,

j=1 i=1
x(n+(i—Dk+(—1)m—t(n+(i— Dk+(j—1)m)))}
a" w

1 Z (a(i) — a)x(i)

h
a v

= (1 -y (1 - py 2SO E0)

e
* (1 gy 2 (@) = ()
- i=1

al

a o b - . .
= (1-a") ZI: | (1- bl)f(" x(i, (1)) + (a(i) — a)x()]

> "y " [b'f (i x(i — 7 (i))) + (a(i) — a)x(i)]

i=1

> "'y " [f (i x(i — 7(i))) + (a(i) — a)x(i)].

i=1
We have

(Tx)(n) = S| Tx]|.

Thus T: K,,\K,, — K is well defined. Since X is finite-dimensional Banach space,

one can easily show that 7 is completely continuous. This completes the proof.

We can easily obtain the following result.
Lemma 4 The fixed point of T in K is a positive periodic solution of (2).

3 Main result
Let

@(s) = max{f(n,u),n € [0,w — 1], u € [3s, 5]}

{f(f;u)

¥(s) = min Mmef0,w—1|,ue [85,5]}

a= max a(n),a= min a(n
Let I<nsw (n),a N ( )

Theorem 1 Assume that (H) holds and there exist two positive constants o, 3 with o

= [ such that
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pl@) <(@-1)(b-1a ()= (@-1)(b-1) 7)

Then (2) has at least one positive w-periodic solution x with min{c, B} < ||x|| < max

{a, B}
Proof Without loss of generality, we assume that (H) holds, & <f. Obviously,

0<a<10<a<1.We claim that:
@) || Tx|| < ||x]|, x € 9Ky,
({)x=Tx+A-1,Vxe 0Kg, 1€ Kand A > 0.
From (7), we have that

fnx)<(@-1)(b—-1a, VO<n<w-—1, Vda<x<q, (8)

fnx)=(@—-1)(b—1)x, YVO<n<w-—1, V3B <x<§8. 9)

In order to prove (i), let x € 0Ky, then ||x|| = o and o < x(n) < afor 0 < m < w - 1.

So
a! noooo1
(Tx)(n) = a ) bIf(n+(i—-Dk+(G—1)m,
(1—4”)(1—191)1; ]Xl:
x(n+(i—Dk+(—1)m—t(n+(i—k+(—1)m)))
a o
i (1—ah) Z‘l_l[“(”+ (i— k) —alx(n + (i — 1)k)
=7/ ia
a! neooo1
= (1—a(1-1b") ;q ;b "H@—-1)(b—1)a}
at o
+(1_gh;4 [a — a]llxl|
bl ) ‘ qh h ‘ )
=< (1_bz)(1—b)j=zlb1 (1_4}:);@ {(1—a)a}
at n
T(1-ah géﬁ[ﬁ—@]a
atv o on
- (1-—a") ;4_1[1 —aja
It follows that
[|Tx]| < [lxl[, x € 0Ky 10)

Next, let ¥ = 1 € K in Lemma 1, we prove (ii). If not, there exists u, € dKgand A, >
0 such that

Ug = (Tuo)(l’l) + )\0. (11)

Since u, € 0Kp, then ||u,|| = B and JB < u,(n) < B. Put uy(n) = min{u,()|0 < i< -

1} for some 7 € [0, @ - 1]. Noting that u,(n) > 0 and 0 <a < 1, we have
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up(n) = (Tuo)(n) + Ao
hbl h

= (a1 b 2 Za“Zb Tf(n+ (i—1k+(j—1)m,

j=1
un+({(—Dk+(—1)m—ct(n+(i—1)k+(j— 1)m)))
ah h

a2 Za la(n+ (i — 1)k) — aluo(n + (i — 1)k) + Ao

ab! !

= (1 —a)(1 - b)) Z“"Zb T+ (i = D+ (- 1)m,

i=1 j=1
ug(n+(if1)k+(]fl)mfr(n+(if1)k+(jfl)m))) + Ao
a't!

Z (1—ad(1-b) 2 Za"Zb—J(a — )b = uo(n+ (i — Dk

j=1
+(—1m—tn+(i—k+(G—1)m))+Aro

> uo(n) + )\.0

which implies that u,(n) >u.(n), a contradiction.
Therefore, by Lemma 1, T has a fixed point x € Kg\K,. Furthermore, o < [|x]| < 3
and x(n) > do, which means that x is one positive periodic solution of (2). The proof is

completed.

4 Example
Now, an example is given to demonstrate our result.

Example 1 Consider the difference equation
x(n+m+k)—a(n+m)x(n+m)—bx(n+k)+a(n)bx(n) = f(n,x(n — t(n))) (12)

where b =1/2, m =3, k=5 0 =6, Z— Z and 1(n + w) = t(n), a: Z — R, with
1 1 nmw 7 1,5 1 , . TU
a(n) = 2+ 165 3 Jfnu)=(1- 16)(1 — 2)u [1+ 2(—1) cos |B
Obviously, a(n + ) = a(n + 6) = a(n), fin + 0, u) = fin + 6, u) = fin, u) for any u €
w 6 w 6

9
- - - 61 = - -2.a-= Ja =
(ko) ~ (56) mao  (3,6) a= maxan) = .4

h
i nin a(n) = 176'8 ) (176>6<§>2 [1 - (176)6} [1 B G) }/6

1
Let @« = , then
2

p(a) = (;)

(%))

So p(a) <(a—1)(b— 1.
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Let B = ; If u € [0B,B], then u > 2. Furthermore,

e (- 2) (=) )]
B
> (1_ 176> (1_;)

So ¥(B) = (a—1)(b—1).

By Theorem 1 in this article, (12) has at least one positive 6-periodic solution.
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