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Abstract

Galilean invariance for general conservative finite difference schemes is presented in
this article. Two theorems have been obtained for first- and second-order
conservative schemes, which demonstrate the necessity conditions for Galilean
preservation in the general conservative schemes. Some concrete application has
also been presented.
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1. Introduction
For gas dynamics, the non-invariance relative to Galilean transformation of a difference

scheme which approximates the equations results in non-physical fluctuations, that has

been marked in the 1960s of the past century [1]. In 1970, Yanenko and Shokin [2]

developed a method of differential approximations for the study of the group proper-

ties of difference schemes for hyperbolic systems of equations. They used the first dif-

ferential approximation to perform a group analysis. A more recent series of articles

was devoted to the Lie point symmetries of differential difference equations on [3]. In

a series of more recent articles, the author of this article has used Lie symmetry analy-

sis method to investigate some noteworthy properties of several difference schemes for

nonlinear equations in shock capturing [4,5].

It is well known that as for Navier-Stokes equations, the intrinsic symmetries, except

for the scaling symmetries, are just macroscopic consequences of the basic symmetries

of Newton’s equations governing microscopic molecular motion (in classical approxi-

mation). Any physical difference scheme should inherit the elementary symmetries (at

least for Galilean symmetry) from the Navier-Stokes equations. This means that Gali-

lean invariance has been an important issue in computational fluid dynamics (CFD).

Furthermore, we stress that Galilean invariance is a basic requirement that is

demanded for any physical difference scheme. The main purpose of this article is to

make differential equations discrete while preserving their Galilean symmetries.

Two important questions on numerical analysis, especially important for shock cap-

turing methods, are discussed from the point view of group theory below.

(1) Galilean preservation in first- second-order conservative schemes;

(2) Galilean symmetry preservation and Harten’s entropy enforcement condition [6].

The structure of this article is as follows. First, the general remarks on scalar conser-

vation law and its numerical approximation are very briefly discussed in Section 2,
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while Section 3 is devoted to the theory of symmetries of differential equations. The

following sections are devoted to a complete development of Lie symmetry analysis

method proposed here and its application to some special cases of interest. The final

section contains concluding remarks.

2. Scalar conservation laws and its numerical approximation
In this article, we consider numerical approximations to weak solutions of the initial

value problem (IVP) for hyperbolic systems of conservation laws [6,7]

ut + f (u)x = 0, u(x, 0) = u0(x),−∞ < x < +∞. (2:1)

where u(x, t) is a column vector of m unknowns, and f(u), the flux, is a scalar valued

function. Equation 2.1 can be written as

ut + a(u)ux = 0, a(u) =
df
du

, (2:2)

which asserts that u is constant along the characteristic curves x = x(t), where

dx
dt

= a (u) . (2:3)

The constancy of u along the characteristic combined with (2.3) implies that the

characteristics are straight lines. Their slope, however, depends upon the solution and

therefore they may intersect, and where they do, no continuous solution can exist. To

get existence in the large, i.e., for all time, we admit weak solutions which satisfy an

integral version of (2.1)∫ ∞

0

∫ ∞

−∞

[
wtu + wxf (u)

]
dxdt +

∫ ∞

−∞
w (x, 0) u0 (x) dx = 0. (2:4)

for every smooth test function w(x, t) of compact support.

If u is piecewise continuous weak solution, then it follows from (2.4) that across the

line of discontinuity the Rankine-Hugoniot relation

f (uR) − f (uL) = s (uR − uL) . (2:5)

holds, where s is the speed of propagation of the discontinuity, and uL and uR are the

states on the left and on the right of the discontinuity, respectively.

The class of all weak solutions is too wide in the sense that there is no uniqueness

for the IVP, and an additional principle is needed for determining a physically relevant

solution. Usually this principle identifies the physically relevant solution as a limit of

solutions with some dissipation, namely

ut + f (u)x = ε[β (u) ux]x. (2:6)

Oleinik [8] has shown that discontinuities of such admissible solutions can be char-

acterized by the following condition:

f (u) − f (uL)
u − uL

≥ s ≥ f (u) − f (uR)
u − uR

. (2:7)

for all u between uL and uR; this is called the entropy condition, or Condition E.

Oleinik has shown that weak solutions satisfying Condition E are uniquely determined
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by their initial data. We shall discuss numerical approximations to weak solutions of

(2.1) which are obtained by (2K+1) -point explicit schemes in conservation form

un+1j = unj − λ

⎛
⎜⎝f̄ n

j+
1
2

− f̄ n

j−
1
2

⎞
⎟⎠ , (2:8)

where

f̄ n

j+
1
2

= f̄
(
unj−K+1, ..., u

n
j+K

)
.

(2:9)

where unj = u
(
j�x,n�t

)
, and f̄ is a numerical flux function. We require the numeri-

cal flux function to be consistent with the flux f(u) in the following sense:

f̄ (u, ..., u) = f (u) . (2:10)

We note that f̄ is a continuous function of each of its arguments. Let

fr =
∂f
∂ur

, r = −K + 1, ...,K (2:11)

f̄−K = 0, (2:12)

f̄k+1 = 0. (2:13)

Equation 2.8 can be written as follows:

un+1j = unj − λ

⎛
⎜⎝f̄ n

j+
1
2

− f̄ n

j−
1
2

⎞
⎟⎠ ≡ G

(
unj−K , ..., u

n
j+K

)
. (2:14)

It follows from (2.14) that

G
(
unj , ..., u

n
j

)
= unj − λ

(
f
(
unj

)
− f

(
unj

))
= unj . (2:15)

Suppose that G is a smooth function of its all arguments, then

Gr =
∂G
∂ur

, (2:16)

Grs =
∂2G

∂ur∂us
. (2:17)

At last, one can derive the conservation form scheme approximation solutions of the

viscous modified equation [9,10]
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ut + f (u)x =
1
2

�t
∂

∂x
[β (u,λ) ux] . (2:18)

where

β (u,λ) =
1
λ2

K∑
r=−K

r2Gr−
(

∂f
∂u

)2

. (2:19)

We claim that, except in a trivial case, b(u, l) ≥ 0 and b(u, l) ≠ 0; this shows that

the scheme in conservative form is of first-order accuracy [9-11].

3. Mathematical preliminaries on Lie group analysis
All the problems to be addressed here can be described by a general system of non-

linear differential equations of the nth order

�ν

(
x, u(n)) = 0, (3:1)

where v = 1,...,l and x = (x1,...,xp) Î X are independent variables, u = (u1,...,uq) Î U

are dependent variables, and Δv(x, u
(n)) = (Δ1(x, u

(n)),..., Δl(x, u
(n))) is a smoothing func-

tion that depends on x, u and derivatives of u up to order n with respect to x1,...,xp. If

we define a jet space X × U(n) as a space whose coordinates are independent variables,

dependent variables and derivatives of dependent variables up to order n then Δ is a

smoothing mapping

� : X × U(n) → Rl. (3:2)

Before studying the symmetries of difference schemes, let us briefly review the theory

of symmetries for differential equations. For all details, proofs, and further information,

we refer to the many excellent books on the subject, e.g., [12-14]. Here, we follow the

style of [12], but the Lie symmetry description is made concise by emphasizing the sig-

nificant points and results. In order to provide the reader with a relatively quick and

painless introduction to Lie symmetry theory, some important concepts must be

introduced.

The main tool used in Lie group theory and working with transformation groups is

“infinitesimal transformation”. In order to present this, we need first to develop the

concept of a vector field on a manifold. We begin with a discussion of tangent vectors.

Suppose C is a smooth curve on a manifold M, parameterized by

φ : I → M, (3:3)

where I is a subinterval of R. In local co-ordinates x = x1,...,xp, C is given by p

smoothing functions

φ (ε) =
(
φ1 (ε) , ...,φp (ε)

)
, (3:4)

of the real variable ε. At each point x = j(ε) of C the curve has a tangent vector,

namely the derivative

.
φ =

dφ
dε

=
(
dφ1

dε
, ...,

dφp

dε

)
. (3:5)
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In order to distinguish between tangent vectors and local coordinate expressions for

a point on the manifold, we adopt the notation

V =
dϕ
dε

=
dϕ1

dε
· ∂

∂x1
+ ... +

dϕp

dε
· ∂

∂xp
(3:6)

for the vector tangential to C at x = j(ε) The collection of all tangent vectors to all

possible curves passing through a given point x in M is called the tangent space to M

at x, and is denoted by TM. A vector field V on M assigns a tangent vector V Î TM

to each point x Î M, with V varying smoothly from point to point. In local coordi-

nates, a vector field has the form

V = ξ1 (x) · ∂

∂x1
+ ... + ξ p (x) · ∂

∂xp
. (3:7)

where each ζi(x) is a smoothing function of x.

If V is a vector field, we denote the parameterized maximal integral curve passing

through x in M by Ψ(ε, x) and call Ψ the flow generated by V. Thus for each x in M,

and ε in some interval Ix containing 0, Ψ(ε, x) is a point on the integral curve passing

through x in M. The flow of a vector field has the basic properties:

� (δ,� (ε, x)) = � (δ + ε, x) , (3:8)

for all δ, ε Î R such that both sides of equation are defined,

� (0, x) = x, (3:9)

and

d
dε

� (ε, x) = V (3:10)

for all ε where defined. We see that the flow generated by a vector field is the same

as a local group action of the Lie group on the manifold M, often called a ‘one para-

meter group of transformations’. The vector field V is called the infinitesimal generator

of the action since by Taylor’s theorem, in local coordinates

� (ε, x) = x + εξ (x) +O
(
ε2

)
, (3:11)

where ζ = (ζ1,..., ζp) are the coefficients of V. The orbits of the one-parameter group

action are the maximal integral curves of the vector field V.

Definition 1: A symmetry group of Equation 3.1 is a one-parameter group of trans-

formations G, acting on X × U, such that if u = f(x) is an arbitrary solution of (3.1)

and gε Î G then gε·f(x) is also a solution of (3.1).

The infinitesimal generator of a symmetry group is called an infinitesimal symmetry.

Infinitesimal generators are used to formulate the conditions for a group G to make it

a symmetry group. Working with infinitesimal generators is simple. First, we define a

prolongation of a vector field. The symmetry group of a system of differential equa-

tions is the largest local group of transformations acting on the independent and

dependent variables of the system such that it can transform one system solution to

another. The main goal of Lie symmetry theory is to determine a useful, systematic,

computational method that explicitly determines the symmetry group of any given
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system of differential equations. The search for the symmetry algebra L of a system of

differential equations is best formulated in terms of vector fields acting on the space X

× U of independent and dependent variables. The vector field tells us how the variables

x, u transform. We also need to know how the derivatives, that is ux, uxx,..., transform.

This is given by the prolongation of the vector field V. Combining these, we have

[[12], p. 110, Theorem 2.36].

Theorem 1

Let

V =
p∑
i=1

ξ i (x, u) ∂xi +
q∑

a=1

ηa (x, u) ∂ua

be a vector defined on an open subset M ⊂ X × U. The nth prolongation of the ori-

ginal vector filed is the vector field:

pr(n)V = V +
q∑

a=1

∑
J

ηJ
a

(
x, u(n)) ∂

∂uaJ

defined on the corresponding jet space M(n) ⊂ X × U(n). The second summation here

is over all (unordered) multi-indices J = (j1, j2,...,jk), with 1 ≤ jk ≤ p, 1 ≤ k ≤ n,. The

coefficient functions φJ
a of pr

(n)V are given by the following formula:

ηJ
a

(
x, u(n)) = DJ

(
ηa −

p∑
i=1

ξ iuai

)
+

p∑
i=1

ξ iuaJ,i

where uai =
∂ua

∂xi
, and uaJ,i =

∂uaJ
∂xi

, and DJ are the total derivative of h with respect to

xj.

In the following analysis, we only deal with one-dimensional scalar differential equa-

tions that are assumed to be differentiable up to the necessary order.

Consider the special case, where p = 2, q = 1 in the prolongation formula, so that we

are looking at a partial differential equation involving the function u = f(x, t). A general

vector field on X × U ≅ R2 × R then takes the form [[12], p. 114]

V = ξ (x, t, u)
∂

∂x
+ τ (x, t, u)

∂

∂t
+ η (x, t, u)

∂

∂u
(3:12)

The first prolongation of V is the vector field:

pr(1)V = V + [ηx]
∂

∂ux
+ [ηt]

∂

∂ut
(3:13)

where

[ηx] = ηx + (ηu − ξx)ux − τxut − ξuu
2
x − τuuxut

and

[ηt] = ηt + (ηu − τt)ut − ξtux − τuu
2
t − ξuuxut
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The subscripts on h, ζ, τ denote partial derivatives. Similarly,

pr(2)V = pr(1)V + [ηxx]
∂

∂uxx
+ [ηxt]

∂

∂uxt
+ [ηtt]

∂

∂utt
(3:14)

where

[ηxx] = ηxx + (2ηxu − ξxx)ux − τxxut + (ηuu − 2ξxu)u2x − 2τxuuxut − ξuuu3x
−τuuu2x ut + (ηu − 2ξx)uxx − 2τxuxt − 3ξuuxxux − τuuxxut − 2τuuxtut

[ηxt] = ηxt + (ηxu − τtx)ut + (ηtu − ξtx)ux − τxuu2t + (ηuu − ξxu − τut)uxut

− ξtuu2x − τuuuxu2t − ξuuutu2x − τxutt + (ηu − ξx − τt)uxt − ξtuxx − 2τuutuxt
− 2ξuuxuxt − τuuxutt − ξuutuxx

[ηtt] = ηtt + (2ηtu − τtt)ut − ξttux + (ηuu − 2τtu)u2t − 2ξtuuxut − τuuu3x
−τuuu2t ux + (ηu − 2τt)utt − 2ξtuxt − 3τuuttut − ξuuttux − 2ξuuxtut

From here on analysis of difference equations only concerns modified equations,

which have third prolongation of the vector field. From work in CFD, we know that

the right-hand side of the modified equation is written entirely in terms of x deriva-

tives. So, investigation can be limited to the terms of the spatial derivatives in the fol-

lowing analysis. The coefficients of the various monomials in the third-order partial

derivatives of u are given in the following:

pr(3)V = pr(2)V + [ηxxx]
∂

∂uxxx
+ [ηxxt]

∂

∂uxxt
+ [ηxtt]

∂

∂uxtt
+ [ηttt]

∂

∂uttt
(3:15)

where,

[ηxxx] = ηxxx + (3ηxxu − ξxxx)ux − τxxxut + 3(ηxuu − ξxxu)ux2 − 3τxxuuxut

+ (ηuuu − 3ξxuu)(ux)3 + 3(ηxu − ξxx)uxx − 3τxxuxt − 3τxuu(ux)2ut
+ 3(ηuu − 3ξxu)uxuxx − 3τxuutuxx − 6τxuuxtux − 3τxuxxt + (ηu − 3ξx)uxxx

− ξxxx(ux)4 − 6ξuu(ux)2uxx − 3τuu(ux)2uxt − τuuu(ux)3ut − 3ξu(uxx)2

− 3τuuxxtux − 3τuuxtuxx − 3τuuuxxuxut − 4ξuuxxxux − τuuxxxut

Suppose we are given an nth order system of differential equations, or, equivalently, a

subvariety of the jet space M(n) ⊂ X × U(n). A symmetry group of this system is a local

transformation G acting on M ⊂ X × U. which transforms solutions of the system to

other solutions. We can reduce the important infinitesimals condition for a group G to

be a symmetry group of a given system of differential equations. The following theo-

rem [[12], p. 104, Theorem 2.31] provides the infinitesimal conditions for a group G to

be a symmetry group.

Theorem 2

Suppose

�ν

(
x, u(n)) = 0, ν = 1, 2, ..., l

is a system of differential equations of maximal rank defined over M ⊂ X × U. If G is

a local group of transformations acting on M, and

Ran Advances in Difference Equations 2011, 2011:53
http://www.advancesindifferenceequations.com/content/2011/1/53

Page 7 of 16



pr(n)V ◦ [
�ν

(
x, u(n))] = 0, ν = 1, 2, ..., l

whenever

�ν

(
x, u(n)) = 0,

for every infinitesimal generator V of G, then G is a symmetry group of the system.

In the following sections, this theorem is used to deduce explicitly different infinitesi-

mal conditions for specific problems. It must be remembered, however, that, in all

cases, though only the scalar differential problem is being discussed, Δv is still used to

denote different differential equations.

4. Galilean group and its prolongation
It is well known that as for Navier-Stokes equations, the intrinsic symmetries, except for

the scaling symmetries, are just macroscopic consequences of the basic symmetries of

Newton’s equations governing microscopic molecular motion (in classical approxima-

tion). Any physical difference scheme should inherit the elementary symmetries (at least

for Galilean symmetry) from the Navier-Stokes equations. This means that Galilean

invariance has been an important issue in CFD. Furthermore, we stress that Galilean

invariance is a basic requirement that is demanded for any physical difference scheme.

We have the Galilean transformation⎧⎪⎨
⎪⎩
x′ = x + tε

t′ = t

u′ = u + ε

(4:1)

Thus, the vector of the Galilean transformation is

V = t∂x + ∂u (4:2)

According to Theorem 1, we have

pr(1)V = V − ρx
∂

∂ρt
− ux

∂

∂ut
− px

∂

∂pt
(4:3)

pr(2)V = pr(1)V − ρxx
∂

∂ρxt
− uxx

∂

∂uxt
− pxx

∂

∂pxt
(4:4)

5. Galilean invariance of first-order conservative form scheme
The main prototype equation here is the modified equation. Equation 2.18 can be

recast into

�1 ≡ ut + uux − 1
2

�tβ (u,λ) uxx − 1
2

�tβuuxux = 0. (5:1)

Based on the prolongation formula presented in Section 4, the Galilean invariance

condition reads

�1 = 0. (5:2)
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pr(2)V ◦ �1 = 0. (5:3)

Before beginning the group analysis, some detailed but mechanical calculations must

be performed:

d1 = ∂u ◦ �1 = ux − 1
2

�tβuuxx − 1
2

�tβuuuxux. (5:4)

d2 = ∂ut ◦ �1 = 1. (5:5)

With these formulas, it is clear from Equation 5.3 that the invariance condition

reduces into

βuuxx + βuuuxux = 0. (5:6)

Hence, we have

uxux = − βu

βuu
uxx. (5:7)

we can then write the model equation as

ut + uux − 1
2

�t
[
β − βuβu

βuu

]
uxx = 0. (5:8)

with

1
2

�t
[
β − βuβu

βuu

]
= ν1. (5:9)

This manipulation yields the Burgers equation as following

ut + uux = ν1uxx. (5:10)

where v1 = constant.

Based on the analysis of Equation 5.9, one have

β = β0 exp (αu) +
2ν1

�t
. (5:11)

where b0, a are some parameters.

Here, it is useful to list some well-known first-order conservative schemes to show

their unified character.
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5.1. Lax-Friedrichs scheme

f̄ n

j+
1
2

=
1
2

[
f
(
unj+1

)
+ f

(
unj

)
− 1

λ

(
unj+1 − unj

)]
. (5:12)

G1 =
1
2

[
1 − λ

∂f
∂u

]
, (5:13)

G−1 =
1
2

[
1 + λ

∂f
∂u

]
. (5:14)

β (u,λ) =
1
λ2

−
(

∂f
∂u

)2

=
1
λ2

− u2.

(5:15)

5.2. 3-point monotonicity scheme (Godunov, 1959)

un+1j =
K∑

r=−K

Clunj+r , (5:16)

Gr = Cr (5:17)

β (u,λ) =
1
λ2

K∑
r=−K

r2Gr −
(

∂f
∂u

)2

=
1
λ2

K∑
r=−K

r2Cr − u2.

(5:18)

5.3. General 3-point conservation scheme

f̄
(
uj, uj+1

)
=
1
2

⎡
⎣f

(
uj

)
+ f

(
uj+1

) − 1
λ
Q

⎛
⎝λā

j+
1
2

⎞
⎠�

j+
1
2

u

⎤
⎦ , (5:19)

where

ā
j+
1
2

=
f
(
uj+1

) − f
(
uj

)
�

j+
1
2

u
, when �

j+
1
2

u �= 0,

ā
j+
1
2

= a
(
uj

)
, when �

j+
1
2

u = 0,

Here Q(x) is some function, which is often referred to as the coefficient of numerical

viscosity.

Harten’s lemma. Let Q(x) in (5.19) satisfy the inequalities

| x |≤ Q (x) ≤ 1 for 0 ≤| x |≤ μ ≤ 1;
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then finite-difference scheme is TVNI under the CFL-like restriction
λmax

j
| ā

j+
1
2

|≤ μ.

The coefficient of numerical viscosity could be expressed in terms of the b as follows

β (u,λ) =
1
2

[
Q (u) − u2

]
. (5:20)

Therefore, one can have

Q (u) = u2 + 2β0 exp (αu) +
4ν1

�t
. (5:21)

If we choose

β0 << 1 (5:22)

Then Equation 5.21 is consistence with the results of Harten’s. In summary, we

obtain

Theorem 3

If we let the coefficients in (2.18) satisfy the equality

β = β0 exp (αu) +
2ν1

�t
.

where b0, a is a dimensionless constant, then the first-order conservative finite dif-

ferent scheme satisfies Galilean invariant condition.

6. Galilean invariance of second-order conservative scheme
The same manipulation could be conducted for the case of the second-order conserva-

tive scheme. The main prototype equation here is [15]

�1 ≡ ut + uux =
1
6

�t3
∂

∂x
[γ (u,λ) uxx + δ (u,λ) uxux] . (6:1)

where

γ (u,λ) =
1
λ3

K∑
r=−K

r3Gr +
(

∂f
∂u

)3

, (6:2)

δ (u,λ) =
1
λ3

K∑
r,s=−K

1
4

(r + s)
[
2rs − (r − s)2Grs

]
+ 3

(
∂f
∂u

)2 (
∂2f
∂u2

)
. (6:3)

According to Theorem 2, one have

�2 ≡ ut + uux − 1
6

�t3
[
γ uxxx + (γu + 2δ) uxuxx + δu(ux)3

]
. (6:4)

Before beginning the group analysis, some detailed but mechanical calculations must

be performed:

d1 = ∂u ◦ �2 = ux − 1
6

�t3
[
γuuxxx + (γuu + 2δu) uxuxx + δuu(ux)3

]
. (6:5)
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d2 = ∂ut ◦ �2 = 1. (6:6)

pr(3)V = t∂x + ∂u − ux∂ut . (6:7)

The corresponding Galilean invariant condition reads:

�2 = 0. (6:8)

pr(3)V ◦ �2 = 0. (6:9)

The substitution leads

ux − 1
6

�t3
[
γuuxxx + (γuu + 2δu) uxuxx + δuu(ux)3

] − ux = 0 (6:10)

Hence, we have

γuuxxx + (γuu + 2δu) uxuxx + δuu(ux)
3 = 0. (6:11)

It is clear that

uxuxx = − δuu

γuu + 2δu
· (ux)

3 − γu

γuu + 2δu
· uxxx. (6:12)

After some manipulation, one could obtain the model equation as follows

�2 ≡ut + uux − 1
6

�x3
(

γ − γu + 2δ

γuu + 2δu
· γu

)
.uxxx

− 1
6

�x3
(

δu − γu + 2δ

γuu + 2δu
· δuu

)
(ux)3.

(6:13)

In order to obtain the non-oscillation solution of shock, we could let the term of (ux)
3 to be zero, then we have

δu − γu + 2δ

γuu + 2δu
· δuu = 0. (6:14)

This equation can be rewritten as below

δuu

δu
=

γuu + 2δu

γu + 2δ
(6:15)

d
du

[
ln δu

]
=

d
du

[
ln (γu + 2δ)

]
. (6:16)

δu = γu + 2δ. (6:17)

or

γu = δu + 2δ. (6:18)
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The coefficient of the term of uxxx could be rewritten as

γ − γu + 2δ

γuu + 2δu
· γu

= γ − δu

δuu
· γu

= γ − δu

δuu
· (δu − 2δ)

. (6:19)

If we set

δ = aun + b (6:20)

where a, b, m are some parameters. It is easy to show that

γ =
an

n − 1
un − 2a

n − 1
un+1 − 2b

n − 1
u + γ0. (6:21)

where g0 = constant. In summary, we obtain

Theorem 4

If we let the coefficients in (6.1) satisfy the equality

δ (u,λ) = aun + b,

γ (u,λ) =
an

n − 1
un − 2a

n − 1
un+1 − 2b

n − 1
u + γ0.

where a, b, n, g0 is a dimensionless constant, then the second-order conservative

finite different scheme satisfies Galilean invariant condition.

Here, we could give the details of the corresponding analysis by using the Lax-

Wendroff scheme. It is well known that the Lax-Wendroff difference approximation to

(2.1) is defined by

un+1j − unj
�t

+
f (unj+1) − f (unj−1)

2�x
=
1
2

�t

a2

j+
1
2

(unj+1 − unj ) − a2

j−
1
2

(unj − unj−1)

�x2
(6:22)

where

unj = u
(
n�t, j�x

)

a (u) =
∂f (u)

∂u

a
j+
1
2

= a(un

j+
1
2

)

un

j+
1
2

=
1
2
(unj+1 + unj )

It is well known that the Lax-Wendroff scheme was designed to have the following

desirable computational features [16-18]: conservation of form; to have a three-point
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scheme; second-order accuracy on smooth solutions. Numerical spikes and down-

stream oscillations are generated in the vicinity of the shock.

The numerical flux for Lax-Wendroff scheme can be written as

f̄ n

j+
1
2

=
1
2

⎡
⎢⎣f

(
unj+1

)
+ f

(
unj

)
− �t

�x
a2

j+
1
2

(
unj+1 − unj

)⎤
⎥⎦ . (6:23)

Using the general method presented in Section 2, one can obtain

G1 = −1
2

λ
∂f
∂u

+
1
2

λ2
(

∂f
∂u

)2

(6:24)

G−1 =
1
2

λ
∂f
∂u

+
1
2

λ2
(

∂f
∂u

)2

(6:25)

G11 = −λ

2

(
1 − 2λ

∂f
∂u

)
∂2f
∂u2

, (6:26)

G00 = −2λ2 ∂f
∂u

∂2f
∂u2

, (6:27)

G−1,−1 =
λ

2

(
1 + 2λ

∂f
∂u

)
∂2f
∂u2

. (6:28)

and for the other case of the index r, s

Grs = 0. (6:29)

γ LW (u,λ) = − 1
λ2

(
1 − λ2

(
∂f
∂u

)2
)

∂f
∂u

, (6:30)

δLW (u,λ) = − 1
λ2

(
1 − 3λ2

(
∂f
∂u

)2
)

∂2f
∂u2

, (6:31)

γ LW (u,λ) = − 1
λ2

u + u3, (6:32)

δLW (u,λ) = − 1
λ2

+ 3u2. (6:33)

Using the results of Theorem 4, we have

δG (u,λ) = aun + b = δLW . (6:34)

This leads the following corresponding relation for Lax-Wendroff scheme

n = 2, (6:35)
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a = 3, b = − 1
λ2

. (6:36)

γ G (u,λ) =
an

n − 1
un − 2a

n − 1
un+1 − 2b

n − 1
u + γ0

= 6u2 − 6u3 +
2
λ2

u + γ0.
(6:37)

The comparison of Equations 6.32 and 6.37 help us to draw some conclusion as fol-

lows: based on this analysis, we have known that the well-known Lax-Wendroff

scheme can recover the Galilean symmetry approximately.

7. Conclusions
It is known that the numerical solutions calculated by finite difference schemes are

always associated with numerical dissipation and dispersion. Such errors can lead to

undesirable numerical effects, especially for shock capturing. A full understanding of

the nature of this odd numerical phenomenon is still lacking. Regardless of definition,

spurious oscillations and overshoots are the most common symptoms of numerical sta-

bility. In one natural interpretation, these numerical phenomena are due to nonlinear

stability, which links some symmetry breaking. This article uses a Lie symmetry analy-

sis method to investigate Galilean invariance properties of several difference schemes

for nonlinear equations. Two theorems have been obtained, which have demonstrated

that the properties of Galilean invariance from a modification equation, can serve as

the positive constrain condition for general conservative finite difference schemes.

It should be pointed out that the conclusions presented in this article have prelimin-

ary character and demand further study.
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