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Abstract

We reformulate the following additive functional equation with n-independent
variables

nf

(
n∑
i=1

xi

)
=

n∑
i=1

f (xi) +
∑

1≤i<j≤n

f (xi + xj)

as the equation for the spaces of generalized functions. Making use of the
fundamental solution of the heat equation we solve the general solutions and the
stability problems of this equation in the spaces of tempered distributions and
Fourier hyperfunctions. Moreover, using the regularizing functions, we extend these
results to the space of distributions.
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1. Introduction
A function f : ℝ ® ℝ is called an additive function if and only if it satisfies the Cauchy

functional equation

f (x + y) = f (x) + f (y) (1:1)

for all x, y Î ℝ. It is well-known that every measurable solution of (1.1) is of the

form f(x) = ax for some constant a. In 1941, Hyers proved the stability theorem of

(1.1) as follows:

Theorem 1.1 [1]. Let E1 be a normed vector space, E2 a Banach space. Suppose that f

: E1 ® E2 satisfies the inequality

‖ f (x + y) − f (x) − f (y) ‖ ≤ ε

for all x, y Î E1. Then, there exists the unique additive mapping g : E1 ® E2 such

that

‖ f (x) − g(x) ‖ ≤ ε

for all x Î E1.

The above stability theorem was motivated by Ulam [2]. Forti [3] noticed that the

theorem of Hyers is still true if E1 is replaced by an arbitrary semigroup. In 1978,
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Rassias [4] generalized Hyers’ result to the unbounded Cauchy difference. Thereafter,

many authors studied the stability problems of (1.1) in various settings (see [5-7]).

During the last decades, stability problems of various functional equations have been

extensively studied and generalized by a number of authors (see [8-13]). Among them,

the following additive functional equation with n-independent variables:

nf

(
n∑
i=1

xi

)
=

n∑
i=1

f (xi) +
∑

1≤i<j≤n

f (xi + xj) (1:2)

was proposed by Nakmahachalasint [14], where n is a positive integer with n > 1. He

proved that (1.2) is equivalent to (1.1). For that reason, we say that (1.2) is a generali-

zation of the Cauchy functional equation. The stability theorem of (1.2) was also

proved.

In this article, in a similar manner as in [15-19], we solve the general solutions and

the stability problems of (1.2) in the spaces of generalized functions such as the space

S ′(�m) of tempered distributions, the space F ′(�m) of Fourier hyperfunctions and

the space D′(�m) of distributions. Using the notions as in [15-19], we first reformulate

(1.2) and the related inequality in the spaces of generalized functions as follows:

nu ◦ A =
n∑
i=1

u ◦ Pi +
∑

1≤i<j≤n

u ◦ Bij, (1:3)

∥∥∥∥∥∥nu ◦ A =
n∑
i=1

u ◦ Pi −
∑

1≤i<j≤n

u ◦ Bij,

∥∥∥∥∥∥ ≤ ε, (1:4)

where A, Pi and Bij are the functions defined by

A(x1, ..., xn) = x1 + · · · + xn,

Pi(x1, ..., xn) = xi, 1 ≤ i ≤ n,

Bij(x1, ..., xn) = xi + xj, 1 ≤ i < j ≤ n.

Here, ○ denotes the pullback of generalized functions and the inequality ||v|| ≤ ε in

(1.4) means that | 〈v,ϕ〉 |≤ ε ‖ ϕ‖L1 for all test functions �.

In Section 2, we prove that every solution u in F ′(�m) or S ′(�m) of the equation

(1.3) has the form

u = a · x,

where a ∈ �m . Also, we prove that every solution u in S ′(�m) or F ′(�m) of the

inequality (1.4) can be written uniquely in the form

u = a · x + μ(x),

where a ∈ �m and μ is a bounded measurable function such that ‖ μ | |L∞ ≤ 2ε
n .

Subsequently, in Section 3, these results are extended to the space D′(�m).

2. Stability in F ′

We first introduce the spaces of tempered distributions and Fourier hyperfunctions.

Here, we use the m-dimensional notations, |a| = a1 + ... + am, a! = a1! ... am!,

Lee Advances in Difference Equations 2011, 2011:50
http://www.advancesindifferenceequations.com/content/2011/1/50

Page 2 of 11



α = (α1, . . . ,αm) ∈ �m
0 and ∂α = ∂

α1
1 · · · ∂

αm
m , for ζ = (ζ1, ..., ζm) Î ℝm,

α = (α1, . . . ,αm) ∈ �m
0 , where N0 is the set of non-negative integers and ∂j = ∂

∂ζj
.

Definition 2.1 [20,21]. We denote by S(�m) the Schwartz space of all infinitely dif-

ferentiable functions � in ℝm satisfying

‖ ϕ‖α,β = sup
x∈Rm

| xα∂βϕ(x) |< ∞ (2:1)

for all α,β ∈ �m
0 . A linear functional u on S(�m) is said to be tempered distribution

if there exists constant C ≥ 0 and nonnegative integer N such that

| 〈u,ϕ〉 |≤ C
∑

|α|,|β|≤N

sup
x∈�m

| xα∂βϕ |

for all ϕ ∈ S(�m) . The set of all tempered distributions is denoted by S ′(�m) .

Note that tempered distributions are generalizations of Lp-functions. These are very

useful for the study of Fourier transforms in generality, since all tempered distributions

have a Fourier transform. Imposing the growth condition on ||·||a,b in (2.1) a new

space of test functions has emerged as follows:

Definition 2.2 [22]. We denote by F(�m) the set of all infinitely differentiable func-

tions � in ℝm such that

‖ ϕ | |A,B = sup
x,α,β

|xα∂βϕ(x)|
A|α|B|β|α!β! < ∞ (2:2)

for some positive constants A, B depending only on �. The strong dual of F(�m) ,

denoted by F ′(�m) , is called the Fourier hyperfunction.

It can be verified that the seminorm (2.2) is equivalent to

‖ ϕ | |h,k = sup
x,α

| ∂αϕ(x) | exp k | x |
h|α|α!

< ∞

for some constants h, k > 0. It is easy to see the following topological inclusions:

F(Rm) ↪→ S(Rm), S ′(Rm) ↪→ F ′(Rm). (2:3)

In order to solve the general solutions and the stability problems of (1.2) in the

spaces F ′(�m) and S ′(�m) we employ the m-dimensional heat kernel, fundamental

solution of the heat equation,

Et(x) = E(x, t) =
{
(4π t)−m/2 exp(−|x|2/4t), x ∈ Rm, t > 0,
0, x ∈ Rm, t ≤ 0.

Since for each t > 0, E(·, t) belongs to the space F(�m) , the convolution

ũ(x, t) = (u ∗ E)(x, t) = 〈uy,Et(x − y)〉, x ∈ �m, t > 0

is well-defined for all u in F ′(�m) , which is called the Gauss transform of u. Subse-

quently, the semigroup property

(Et ∗ Es)(x) = Et+s(x), x ∈ �m, t, s > 0
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of the heat kernel is very useful to convert Equation (1.3) into the classical functional

equation defined on upper-half plane. We also use the following famous result, so-

called heat kernel method, which states as follows:

Theorem 2.3 [23]. Let u ∈ S ′(�m) . Then, its Gauss transform ũ is a C∞-solution of

the heat equation

(∂
/
∂t − 
)ũ(x, t) = 0

satisfying

(i) There exist positive constants C, M and N such that

| ũ(x, t) |≤ Ct−M(1 + | x |)N in �m × (0, δ). (2:4)

(ii) ũ(x, t) → uas t ® 0+ in the sense that for every ϕ ∈ S(�m) ,

〈u,ϕ〉 = lim
t→0+

∫
ũ(x, t)ϕ(x)dx.

Conversely, every C∞-solution U(x, t) of the heat equation satisfying the growth condi-

tion (2.4) can be uniquely expressed as U(x, t) = ũ(x, t) for some u ∈ S ′(�m) .

Similarly, we can represent Fourier hyperfunctions as a special case of the results as

in [24]. In this case, the estimate (2.4) is replaced by the following:

For every ε > 0, there exists a positive constant Cε such that

| ũ(x, t) |≤ Cε exp(ε(| x | +1
/
t)) in �m × (0, δ).

We are now going to solve the general solutions and the stability problems of (1.2)

in the spaces of F ′(�m) and S ′(�m) . Here, we need the following lemma.

Lemma 2.4. Suppose that f : �m × (0,∞) → � is a continuous function satisfying

nf

(
n∑
i=1

xi,
n∑
i=1

ti

)
=

n∑
i=1

f (xi, ti) +
∑

1≤i<j≤n

f (xi + xj, ti + tj) (2:5)

for all x1, ..., xn Î ℝm, t1, ..., tn > 0. Then, the solution f has the form

f (x, t) = a · x + bt,

where a ∈ �m , b ∈ �.
Proof. Putting (x1, ..., xn) = (0, ..., 0) in (2.5) gives

nf

(
0,

n∑
i=1

ti

)
=

n∑
i=1

f (0, ti) +
∑

1≤i<j≤n

f (0, ti + tj) (2:6)

for all t1, ..., tn > 0. In view of (2.6), we see that

c := lim sup
t→0+

f (0, t)

exists. Letting t1 = ... = tn ® 0+ in (2.6) we have c = 0. Replacing (x3 , ..., xn) = (0, ...,

0) and letting t3 = ... = tn ® 0+ in (2.5) yields

f (x1 + x2, t1 + t2) = f (x1, t1) + f (x2, t2) (2:7)
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for all x1, x2 Î ℝm, t1, t2 > 0. Given the continuity, the solution f of (2.7) has the

form

f (x, t) = a · x + bt,

where a ∈ �m , b ∈ �. □
From the above lemma, we can find the general solutions of (1.2) in the spaces of

F ′(�m) and S ′(�m) . Taking the inclusions of (2.3) into account, it suffices to consider

the space F ′(�m) .

Theorem 2.5. Every solution u in F ′(�m) (or S ′(�m) , resp.) of the equation (1.3) has

the form

u = a · x,

where a ∈ �m .

Proof. Convolving the tensor product Et1 (x1) · · · Etn(xn) of the heat kernels on both

sides of (1.3) we have

[(u ◦ A) ∗ (Et1(x1) · · · Etn(xn))](ξ1, . . . , ξn)
=

〈
u ◦ A,Et1 (ξ1 − x1) · · ·Etn(ξn − xn)

〉
=

〈
u,

∫
· · ·

∫
Et1 (ξ1 − x1 + x2 + · · · + xn)Et2 (ξ2 − x2) · · · Etn(ξn − xn) dx2 · · · dxn

〉

=
〈
u,

∫
· · ·

∫
Et1 (ξ1 + · · · + ξn − x1 − · · · − xn)Et2 (x2) · · · Etn(xn) dx2 · · · dxn

〉
=

〈
u, (Et1 ∗ · · · ∗ Etn)(ξ1 + · · · + ξn − x1)

〉
=

〈
u,Et1+···+tn(ξ1 + · · · + ξn)

〉
= ũ(ξ1 + · · · + ξn, t1 + · · · + tn),

[(u ◦ Pi) ∗ (Et1(x1) · · ·Etn(xn))](ξ1, . . . , ξn) = ũ(ξi, ti),

[(u ◦ Bij) ∗ (Et1(x1) · · ·Etn(xn))](ξ1, . . . , ξn) = ũ(ξi + ξj, ti + tj),

where ũ is the Gauss transform of u. Thus, (1.3) is converted into the following clas-

sical functional equation:

n ũ

(
n∑
i=1

xi,
n∑
i=1

ti

)
=

n∑
i=1

ũ(xi, ti) +
∑

1≤i<j≤n

ũ(xi + xj, ti + tj) (2:8)

for all x1, ..., xn Î ℝm, t1, ..., tn > 0. It follows from Lemma 2.4 that the solution ũ of

(2.8) has the form

ũ(x, t) = a · x + bt, (2:9)

where a ∈ �m , b ∈ �. Letting t ® 0+ in (2.9) we obtain

u = a · x.

This completes the proof. □
In what follows, we denote B, P and Q are the functions defined by

B(x, y) = x + y, P(x1, x2) = x1, Q(x1, x2) = x2, x, y ∈ �
m.

From the above theorem, we have the general solution of (1.1) in the spaces of

F ′(�m) and S ′(�m) immediately.
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Corollary 2.6. Every solution u in F ′(�m) (or S ′(�m) , resp.) of the equation

u ◦ B = u ◦ P + u ◦ Q (2:10)

has the form

u = a · x,

where a ∈ �m .

We are going to prove the stability theorem of (1.2) in the spaces of F ′(�m) and

S ′(�m) as follows:

Theorem 2.7. Suppose that u in F ′(�m) (or S ′(�m) , resp.) satisfies the inequality

(1.4). Then, there exists a unique a ∈ �m such that

‖ u − a · x ‖≤ 2ε

n
.

Proof. Convolving the tensor product Et1 (x1) · · · Etn(xn) of the heat kernels on both

sides of (1.4) we have∣∣∣∣∣∣nf
(

n∑
i=1

xi,
n∑
i=1

ti

)
−

n∑
i=1

f (xi, ti) −
∑

1≤i<j≤n

f (xi + xj, ti + tj)

∣∣∣∣∣∣ ≤ ε (2:11)

for all x1, ..., xn Î ℝm, t1, ..., tn > 0, where f is the Gauss transform of u. Putting (x1 ,

..., xn) = (0, ..., 0) in (2.11) yields∣∣∣∣∣∣nf
(
0,

n∑
i=1

ti

)
−

n∑
i=1

f (0, ti) −
∑

1≤i<j≤n

f (0, ti + tj)

∣∣∣∣∣∣ ≤ ε (2:12)

for all t1, ..., tn > 0. In view of (2.12), we see that

c := lim sup
t→0+

f (0, t)

exists. Letting t1 = ... = tn ® 0+ in (2.12) gives

| c |≤ 2ε

n2 − n
. (2:13)

Setting (x3 , ..., xn) = (0, ..., 0), t3 = ... = tn ® 0+ in (2.11) and using (2.13) we obtain

| f (x1 + x2, t1 + t2) − f (x1, t1) − f (x2, t2) | ≤ 2ε

n
(2:14)

for all x1, x2 Î ℝm, t1, t2 > 0. Putting (x1, x2) = (x, x), (t1, t2) = (t, t) in (2.14) and

dividing the result by 2 we have∣∣∣∣ f (2x, 2t)2
− f (x, t)

∣∣∣∣ ≤ ε

n

for all x Î ℝm, t > 0. Making use of the induction argument yields∣∣∣∣∣ f (2
kx, 2kt)
2k

− f (x, t)

∣∣∣∣∣ ≤ 2ε

n

(
1 − 1

2k

)
(2:15)
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for all k Î N, x Î ℝm, t > 0. Replacing x, t by 2lx, 2lt in (2.15), respectively, and

dividing the result by 2l we can see that 2-k f(2kx, 2kt) is a Cauchy sequence which con-

verges uniformly. Now let

A(x, t) := lim
k→∞

2−kf (2kx, 2kt).

Then, we verify that A(x, t) is the unique mapping in ℝm × (0, ∞) satisfying the equa-

tion

nA

(
n∑
i=1

xi,
n∑
i=1

ti

)
=

n∑
i=1

A(xi, ti) +
∑

1≤i<j≤n

A(xi + xj, ti + tj) (2:16)

for all x1, ..., xn Î ℝm, t1, ..., tn > 0 and the inequality

| f (x, t) − A(x, t) | ≤ 2ε

n
(2:17)

for all x Î ℝm, t > 0. Given the continuity, the solution A(x, t) of (2.16) is of the

form

A(x, t) = a · x + bt,

where a ∈ �m , b ∈ �. Letting t ® 0+ in (2.17) we obtain

‖ u − a · x ‖≤ 2ε

n
. (2:18)

Now inequality (2.18) implies that u - a · x belongs to (L1)’ = L∞. Thus, all the solu-

tion u in F ′ can be written uniquely in the form u = a · x + h(x), where

‖ h | |L∞ ≤ 2ε
n . □

From the above theorem, we shall prove the stability theorem of (1.1) in the spaces

of F ′(�m) and S ′(�m) as follows:

Corollary 2.8. Suppose that u in F ′(�m) (or S ′(�m) , resp.) satisfies the inequality

‖ u ◦ B − u ◦ P − u ◦ Q ‖≤ ε. (2:19)

Then, there exists a unique a ∈ �m such that

‖ u − a · x ‖≤ ε.

3. Stability in D′

In this section, we shall extend the previous results to the space of distributions. Recall

that a distribution u is a linear functional on C∞
c (�m) of infinitely differentiable func-

tions on ℝm with compact supports such that for every compact set K ⊂ ℝm there

exist constants C > 0 and N Î N0 satisfying

| 〈u,ϕ〉 |≤ C
∑

|α|≤N

sup | ∂αϕ |
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for all ϕ ∈ C∞
c (�m) with supports contained in K. The set of all distributions is

denoted by D′(�m). It is well-known that the following topological inclusions hold:

C∞
c (Rm) ↪→ S(Rm), S ′(Rm) ↪→ D′(Rm).

As we seen in [15,16,19], by the semigroup property of the heat kernel, Equation

(1.3) can be controlled easily in the spaces F ′(�m) and S ′(�m) . But we cannot employ

the heat kernel in the space D′(�m). Instead of the heat kernel, we use the function

ψt(x) := t−mψ( xt ) , x Î ℝm, t > 0, where ψ(x) ∈ C∞
c (�m) such that

ψ(x) ≥ 0, supp ψ(x) ⊂ {x ∈ �m :| x |≤ 1},
∫

ψ(x)dx = 1.

For example, let

ψ(x) =
{
A exp(−(1 − | x | 2)−1), | x |< 1,
0, | x |≥ 1,

where

A =
(∫

|x|<1
exp(−(1 − | x|2)−1

)dx
)−1

,

then it is easy to see ψ(x) is an infinitely differentiable function with support {x : |x|

≤ 1}. Usually, we call ψ(x) to the regularizing function. If u ∈ D′(�m) , then for each t

> 0, (u * ψt)(x) = 〈uy, ψt(x - y)〉 is a smooth function in ℝm and (u* ψt)(x) ® u as t ®

0+ in the sense of distributions, that is, for every ϕ ∈ C∞
c (�m)

〈u,ϕ〉 = lim
t→0+

∫
(u ∗ ψt)(x)ϕ(x)dx.

Making use of the regularizing functions we can find the general solution of (1.2) in

the space D′(�m) as follows:

Theorem 3.1. Every solution u in D′(�m)of Equation (1.3) has the form

u = a · x,

where a ∈ �m .

Proof. Convolving the tensor product ψt1 (x1) · · · ψtn(xn) of the regularizing functions

on both sides of (1.3) we have

[(u ◦ A) ∗ (ψt1(x1) · · · ψtn(xn))](ξ1, . . . , ξn)

=
〈
u ◦ A,ψt1 (ξ1 − x1) · · · ψtn(ξn − xn)

〉
=

〈
u,

∫
· · ·

∫
ψt1 (ξ1 − x1 + x2 + · · · + xn)ψt2 (ξ2 − x2) · · · ψtn(ξn − xn) dx2 · · · dxn

〉

=
〈
u,

∫
· · ·

∫
ψt1 (ξ1 + · · · + ξn − x1 − · · · − xn)ψt2 (x2) · · · ψtn(xn) dx2 · · · dxn

〉
=

〈
u, (ψt1 ∗ · · · ∗ ψtn)(ξ1 + · · · + ξn − x1)

〉
= (u ∗ ψt1 ∗ · · · ∗ ψtn)(ξ1 + · · · + ξn),

[(u ◦ Pi) ∗ (ψt1(x1) · · · ψtn(xn))](ξ1, . . . , ξn) = (u ∗ ψti)(ξi),

[(u ◦ Bij) ∗ (ψt1(x1) · · · ψtn(xn))](ξ1, . . . , ξn) = (u ∗ ψti ∗ ψtj)(ξi + ξj).
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Thus, (1.3) is converted into the following functional equation:

n(u ∗ ψt1 ∗ · · · ∗ ψtn)(x1 + · · · + xn)

=
n∑
i=1

(u ∗ ψti)(xi) +
∑

1≤i<j≤n

(u ∗ ψti ∗ ψtj)(xi + xj)
(3:1)

for all x1, ..., xn Î ℝm, t1, ..., tn > 0. In view of (3.1), it is easy to see that

f (x) := lim sup
t→0+

(u ∗ ψt)(x)

exists. Putting (x1, ..., xn) = (0, ..., 0) and letting t1 = ... = tn ® 0+ in (3.1) yields f(0) =

0. Setting (x1, x2, x3, ... xn) = (x, y, 0, ..., 0), (t1, t2) = (t, s) and letting t3 = ... = tn ® 0+

in (3.1) we have

(u ∗ ψt ∗ ψs)(x + y) = (u ∗ ψt)(x) + (u ∗ ψs)(y) (3:2)

for all x, y Î ℝm, t, s > 0. Letting t ® 0+ in (3.2) gives

(u ∗ ψs)(x + y) = f (x) + (u ∗ ψs)(y) (3:3)

for all x, y Î ℝm, s > 0. Putting y = 0 in (3.3) yields

f (x) = (u ∗ ψs)(x) − (u ∗ ψs)(0) (3:4)

for all x Î ℝm, s > 0. Applying (3.4) to (3.3) we see that f satisfies the Cauchy func-

tional equation

f (x + y) = f (x) + f (y)

for all x, y Î ℝm. Since f is a smooth function in view of (3.4), it follows that f(x) = a

· x, where a ∈ �m . Thus, from (3.4), we have

(u ∗ ψs)(x) = a · x + (u ∗ ψs)(0). (3:5)

Letting s ® 0+ in (3.5) we finally obtain

u = a · x.

This completes the proof. □
In a similar manner, we have the following corollary immediately.

Corollary 3.2. Every solution u in D′(�m)of Equation (2.10) has the form

u = a · x,

where a ∈ �m .

Using the regularizing functions, Chung [17] extended the stability theorem of the

Cauchy functional equation (1.1) to the space D′(�m). Similarly, we shall extend the

stability theorem of (1.2) mentioned in the previous section to the space D′(�m).

Theorem 3.3. Suppose that u in D′(�m)satisfies the inequality (1.4). Then, there

exists a unique a ∈ �m such that

‖ u − a · x ‖≤ 2ε

n
.
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Proof. It suffices to show that every distribution satisfying (1.4) belongs to the space

S ′(�m) . Convolving the tensor product ψt1 (x1) · · · ψtn(xn) on both sides of (1.4) we

have ∣∣∣∣∣n(u ∗ ψt1 ∗ · · · ∗ ψtn)(x1 + · · · + xn)

−
n∑
i=1

(u ∗ ψti)(xi) −
∑

1≤i<j≤n

(u ∗ ψti ∗ ψtj)(xi + xj)

∣∣∣∣∣∣ ≤ ε

(3:6)

for all x1, ..., xn Î ℝm, t1, ..., tn > 0. In view of (3.6), it is easy to see that for each

fixed x,

f (x) := lim sup
t→0+

(u ∗ ψt)(x)

exists. Putting (x1, ..., xn) = (0, ..., 0) and letting t1 = ... = tn ® 0+ in (3.6) yields

| f (0) | ≤ 2ε

n2 − n
. (3:7)

Setting (x1, x2, x3, ..., xn) = (x, y, 0, ..., 0), (t1, t2) = (t, s), t3 = ... = tn ® 0+ in (3.6), and

using (3.7), we have

| (u ∗ ψt ∗ ψs)(x + y) − (u ∗ ψt)(x) − (u ∗ ψs)(y) |≤ 2ε

n
(3:8)

for all x, y Î ℝm, t, s > 0. Putting y = 0 in (3.8) we obtain

| (u ∗ ψt ∗ ψs)(x) − (u ∗ ψt)(x) − (u ∗ ψs)(0) |≤ 2ε

n
(3:9)

for all x Î ℝm, t, s > 0. Letting t ® 0+ in (3.9) gives

| (u ∗ ψs)(x) − f (x) − (u ∗ ψs)(0) |≤ 2ε

n
(3:10)

for all x Î ℝm, s > 0. From (3.8) and (3.10), we have

| f (x + y) − f (x) − f (y) | ≤ 6ε

n

for all x, y Î ℝm. According to the result as in [1], there exists a unique function

g : �m → � satisfying the equation

g(x + y) = g(x) + g(y)

for all x, y Î ℝm such that

| f (x) − g(x) | ≤ 6ε

n
(3:11)

for all x Î ℝm. It follows from (3.10) and (3.11) that

| (u ∗ ψs)(x) − g(x) − (u ∗ ψs)(0) |≤ 12ε

n
(3:12)
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for all x Î ℝm, s > 0. Letting s ® 0+ in (3.12) we obtain

‖ u − g(x) ‖≤ 2(6n − 5)ε
n2 − n

. (3:13)

Inequality (3.13) implies that h(x) : = u - g(x) belongs to (L1)’ = L∞. Thus, we con-

clude that u = g(x) + h(x) ∈ S ′(�m) . □
From the above theorem, we have the following corollary.

Corollary 3.4. Suppose that u in D′(�m)satisfies the inequality (2.19). Then, there

exists a unique a ∈ �m such that

‖ u − a · x ‖≤ ε.
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