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Abstract

In this paper, we establish sufficient conditions for the existence of a unique solution
for a class of nonlinear non-autonomous system of Riemann-Liouville fractional
differential systems with different constant delays and non-local condition is. The
stability of the solution will be proved. As an application, we also give some
examples to demonstrate our results.
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1 Introduction
Here we consider the nonlinear non-local problem of the form

D%x;(t) = fi(t, x1(t), ..., x0(t)) + Gi(t, x1(t —71), .., %u(t — 1)), t € (0, T), T < o0, (1)
x(t)=®(t) for t<O0and llir(r)l_ o(t) =0, ()
I'"*x(t) =0 = 0, 3)

where D* denotes the Riemann-Liouville fractional derivative of order o € (0, 1), x(¢)
= (x1(8), x5(8), ..., x,(t))’, where ‘ denote the transpose of the matrix, and f;, g; : [0, T] x
R" — R are continuous functions, ®(¢) = (¢;(t)),, . 1 are given matrix and O is the zero
matrix, r; > 0, j = 1, 2, ..., n, are constant delays.

Recently, much attention has been paid to the existence of solution for fractional dif-
ferential equations because they have applications in various fields of science and engi-
neering. We can describe many physical and chemical processes, biological systems,
etc., by fractional differential equations (see [1-9] and references therein).

In this work, we discuss the existence, uniqueness and uniform of the solution of sta-
bility non-local problem (1)-(3). Furthermore, as an application, we give some exam-
ples to demonstrate our results.

For the earlier work we mention: De la Sen [10] investigated the non-negative solu-
tion and the stability and asymptotic properties of the solution of fractional differential
dynamic systems involving delayed dynamics with point delays.
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El-Sayed [11] proved the existence and uniqueness of the solution u(t) of the pro-
blem

‘Du(t) + C°DPu(t —r) = Au(t) + Bu(t —1), 0<p<a<]1,
u(t)=g(1), tela—ral r>0

by the method of steps, where A, B, C are bounded linear operators defined on a
Banach space X.

El-Sayed et al. [12] proved the existence of a unique uniformly stable solution of the
non-local problem

Dxi(t) = Y ag(t)xi(t) + D by(0)xi(t — 1) + hi(t), >0,

j=1 j=1
x(t) = ®(t) fort < 0, lirgl ®(t)=0 and IPx(t)|<0 =0, Be(0,1).
t—0—

Sabatier et al. [6] delt with Linear Matrix Inequality (LMI) stability conditions for
fractional order systems, under commensurate order hypothesis.

Abd El-Salam and El-Sayed [13] proved the existence of a unique uniformly stable
solution for the non-autonomous system

‘Dx(t) = A()x(t) + f(t), x(0) =x°, t >0,

where ‘DY is the Caputo fractional derivatives (see [5-7,14]), A(¢) and f(¢) are contin-
uous matrices.

Bonnet et al. [15] analyzed several properties linked to the robust control of frac-
tional differential systems with delays. They delt with the BIBO stability of both
retarded and neutral fractional delay systems. Zhang [16] established the existence of a

unique solution for the delay fractional differential equation
D%x(t) = Aox(t) + Awx(t — 1) +f(t), t>0, x(t)=¢(t), te[-r0]

by the method of steps, where Ay, A; are constant matrices and studied the finite
time stability for it.

2 Preliminaries
Let Ly[a, b] be the space of Lebesgue integrable functions on the interval [a, b], 0 < a
<b < e with the norm ||x||;, = fab lx(t)|dt.

Definition 1 The fractional (arbitrary) order integral of the function fit) € L;[a, b] of
order o € R is defined by (see [5-7,14,17])

t _ el
- [0 e

where I (.) is the gamma function.
Definition 2 The Caputo fractional (arbitrary) order derivatives of order a, n <ot <n
+ 1, of the function f{¢) is defined by (see [5-7,14]),

i) =100 = L [ s celan)
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Definition 3 The Riemann-liouville fractional (arbitrary) order derivatives of order ¢,
n <o <n + 1 of the function f (¢) is defined by (see [5-7,14,17])

n

D) = g 0= L [ (- s el

(
The following theorem on the properties of fractional order integration and differen-
tiation can be easily proved.
Theorem 1 Let o, f € R*. Then we have

(i) I3 : L1 — Ly, and if fit) € L, then 12 I f(1) = I*F f(1).
(i) im I = I3, » = 1,2,3,... uniformly.

(t—a)™

(i) () = 00— 1 Y

df
dt

f(a), @ e (0,1), f(¢) is absolutely continuous.
(iv) lim °D%f(t) = ; #lim D*f(t) @ € (0,1), f(¢) is absolutely continuous.
a—1 a—1

3 Existence and uniqueness

Let X = (C,(I), || . ||1), where C, (I) is the class of all continuous column n-vectors
function. For x € C, [0, 7], the norm is defined by |x[|1 = }_i_; sup,jo,rj{e " 1xi(2)1},
where N > 0.

Theorem 2 Let f;, g; : [0, T] x R" — R be continuous functions and satisfy the

Lipschitz conditions

n
|f1(t/ Uy, ... run) _ft(t/ Vi,... rvn) = ZhU'u] - vj'/
j=1

n
|gi(t,u1, ce /un) _gi(t/ Viseoo /Vn)| = ZkU'uj - v]"
-1

and h =Y, [hil = YL, maxvilhgl k= Y71 [kil = YL, maxy kil
Then there exists a unique solution x € X of the problem (1)-(3).
Proof Let t € (0, T). Then equation (1) can be written as

c(ljtll""x,-(t) = fi(t,x1(t), ... %0 (1)) + gt x1(t —11), - - X0 (E — 1).
Integrating both sides, we obtain

I () =% (6) =0 = /Ot{fi(t,xl(t), o xn(0)+ it X1 (E=11), ..., xn(E—14)))ds.
From (3), we get

I'%x(t) = ‘/0[ {fi(t, x1(2), ..., xn (1)) + &i(t, x1(t —11), ..., Xu(t — 11))}ds.

Operating by I” on both sides, we obtain

Ixi(t) = I‘”l{fi(t, x1(0), ..., xn(t)) + it x1(t —11), ..., xn(t — 1))}
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Differentiating both side is, we get
xi(t) = {fi(t %1 (t), - . %0 () + Gi(E 01 (E —11), . xn(t— 1))}, i=1,2,...,n (4)
Now let F : X — X, defined by

Fxi = I*{fi(t, x1(£), .- ., xn (1)) + Gi(t, x1(t — 11), - ., %0 (t — 1))}

then
i = Bl = 31 (050 (0) = (6110 (0)
+giltxi(t =) (=) = &Gl yi(t =m) oyt = 1))
t el
[ B9 A )
t(t_s)oz—l
Tl T(e) I8i(s, %1 (s = 71) .o %n(s = 10)) = Gils,ya(s =11, yu(s — 7)) Ids
t(p_ -1 1
5/ (tr(S) > hilxi(s) = y;(s)1ds
0 a) =
Ly _ a—1 1
+/° (tr(j) ;k"jlxj(s’rf)*w(sfrj)lds
and

=Nt [y . . : ' (t - S)a71 —N(t—s) ,—Ns|... )
e N|Fxi — Fyil <hi ) - e e ™ 1xi(s) — y;(s)Ids
= Jo (@)

. l(t_s)a71 —N(t—s+1j) ,—N(s—1})
s [y e s =) (s s

j=1 0
n t (t _S)cxfl (=)
<) sup{e™™Mxi(t) — yi(t |}/ e NI g
1].:21 [p ]( ) y]( ) o F(O{)
n t (t _ S)ct—l
+ki Zsup{e_Nllxj(t) —yi(0)e™i / e Ni=)ds
I t 7 F(O[)
n 1 Nt ye—lp—u
<h ) sup{e ™Mxi(t) — yi(t f du
< hi ) suple ™M) =y |

j=1

n —Nr;  pN(t—15) ye—leu
kS suple Mxi(6) =y f du
]Zl tple (1) = y(O1 ")

i

ki . —Nt
< — () —y(t
< g+ ]2:1 sgp{e % () — y;(O)1}

<Mk
.
= N Yl
and

" " hi+ ki

||Fx — Fyl|1 = ngpe‘Nﬂin =Pl <) =il
i=1 i=1
h+k
< e =yl
h+k

Now choose N large enough such that < 1, so the map F: X — X is a contrac-

ND(
tion and hence, there exists a unique column vector x € X which is the solution of the

integral equation (4).
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Now we complete the proof by proving the equivalence between the integral equa-
tion (4) and the non-local problem (1)-(3). Indeed:

Since x € C, and I x(t) € C,(I), and f,, g; € C(I) then I'™ f(t), I"* g(t) € C(I).
Operating by I'"* on both sides of (4), we get

I'x;(t) = IO {fi(t, %1 (2), - .., %a(0)) + it 21 (E —11), ..., X0 (t — 1))}
= I{fi(t, x1(2), ..., %0 (1)) + Gi(t, x1(t — 11), ..., xu(t — 1))}

Differentiating both sides, we obtain

DI'™x;(t) = DI{fi(t, x1 (1), . . ., xa(£)) + &i(t, %1 ( = 71), ..., %0 ( — 1))},
which implies that

D%x;(t) = fi(t, x1(8), - .., %0 () + gi(t, x1(t —11), ..., x0(t — 1)), t>0,

which completes the proof of the equivalence between (4) and (1).

Now we prove that lim;_,o- x; = 0. Since fi(¢, x1(2), ..., x,,(2)), gi(t, x1(t - 1), .r x,(¢ -
r,)) are continuous on [0, 7] then there exist constants /;, L;, m; M; such that [; < fi(t,
%1(2), «r %,(t)) < L; and m; < gL, x1(t - 1) ), wor %,(¢ - 1)) < M, and we have

— 5)“*

1
r) fi(s, x1(5), ..., xn(s))ds,

Iaﬁ(t,xl(t),...,xn(t))=/0 (t

which implies

=T e
I; A r'() ds < I°fi(t, x1(t), ..., xa(t)) < Li A

It Lit*

Mo+ 1) < Ifi(t x1(8), - . ., x0(2) < Fa+1)

and
Lim Ifi(t, x1(), - % (6)) = O

Similarly, we can prove

]iI})l Igi(t, x1(t —71), ..., %u(t — 1)) = 0.
t—0*

Then from (4),lim;_, ¢+ x;(t) = 0. Also from (2), we have lim,_,o- ®(t) = O.
Now for t € (-e0, T], T < oo, the continuous solution x(f) € (-e, T] of the problem
(1)-(3) takes the form

oi(t), t<0
x(t) = 0, t=0
t(t—s)""

0 Ta) 1 {fi(s, x1(5) - -, xn(8)) + i(S, x1(s — 11), .., X0 (s — 14))}ds, £ > 0.

4 Stability

In this section we study the stability of the solution of the non-local problem (1)-(3)
Definition 5 The solution of the non-autonomous linear system (1) is stable if for

any ¢ > 0, there exists 0 > 0 such that for any two solutions x(¢) = (x1(£), x5(2), ..., x,,(2))’

and  X(t) = (%1(t), X2(t), ..., Xu(t)) with the initial conditions (2)-(3) and
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llx(t) — %(t)|l1 < erespectively, one has ||®(t) — ®(t)||; < & then ||x(t) —X(t)ll1 <&

for all £ > 0.
Theorem 3 The solution of the problem (1)-(3) is uniformly stable.
Proof Let x(t) and X(t) be two solutions of the system (1) under conditions (2)-(3)

and {IPX(t)|=0 = 0, X(t) = ®(t), t < 0 and lim,_, o (t) = O}, respectively. Then for ¢ > 0,
we have from (4)

i — Xif = [I{filt, %1 (2), ., xu () = filt, X1 (1), - -, (1))

it (=), %= 1)) = g6 (=), = )
f (tF(S)) fi(sx1(s)s -~ xa()) — fils, y1(8), - yu(s))1ds
+ e ;(2; I8i(s, %1 (s =71), - Xn(s = 7)) = &ils, Er(s = 11)s ., Zu(s — 7))l ds
Ot 1 n
/ (t— F( ) Zhij\xj(s) — %j(s)Ids
j=1
t (t— S)u—l n

| r) ;kiﬂxj(sfrj)f&j(sfrj)\ds

and

_Nt — & <h Z/ (t ;(50){) _N(t—s)e—NS|xj(s) — &i(s)|ds

o Z i (t—s)*" 7N(Lfs+r,>)e*N(5*Ti)|¢j(s —1;) — ¢j(s —1j)lds

t—s)*t ) — N(s—r ~
+k-z B F(i) e N NET (s — 1) — (s — 1) Ids

Tj
Nt uafl e U

< hj;nxj(t)—%;(t)nlfo ra) &

o N
—Nt
+ki ;sup{e () — ¢’1(t)|} fN(”]) ()

Nt ua—le—u

du

N(t—r;) ye—lo—u

+k; Zsup{e‘Ntlx](t) —xJ(t)|} e /0 I'(«) du

||x,(t) 5Ol + o Ze i SUP “Nxi(e) — X(0)1}

j=1
k N —Nt
Ze suplelgi (1) = (01}
j=1
h +k; i ~
N I ;||<1>—<1>||1.
Then we have,
n n
- hi +k; 5 k; -
R N T D L
i=1 i=1

+k - k -
< [lx = X[l + . ||® — Pl
N« N«

. h+k = - k h+k\™! -
Le. <1 Ne >le—x||1_ o [1® — ®lliand |\x—x||15Na<1— NO‘) [|® — D[]
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- -1
Therefore, for d > 0 s.t||® — ®||; <§ we can find &= % (1_}['\’]“5) 8 s.t.

[lx — X||; < ewhich proves that the solution x(¢) is uniformly stable.

5 Applications
Example 1 Consider the problem

Dxi(t) = ) ag(0)x(6) + gLt —1), >0
j=1 j=1
x(t) = ®(t)fort < Oand lir(r)l () =0
t—0—
" *x(t)]=0 = O,

where A(t) = (a;(t)xn and (it x1(t —11), .. 2t — 1)) = (321, &t xi(t — 17))
are given continuous matrix, then the problem has a unique uniformly stable solution
xe Xon (-0, T], T < o

Example 2 Consider the problem

Dxi(t) = ) fi(tx(0) + ) b(0)x(t—1), >0
j=1 j=1
x(t) = ®(t)for t < 0and tli1(1)1_ (1) =0

I"*x(t)=0 = O,

where B(t) = (b;(£)) x and (fi(t, x1(1), ..., xa(1)))" = (Z]'-ilfij(t, xj(t))) are given con-
tinuous matrices, then the problem has a unique uniformly stable solution x € X on
(-0, T], T < o0

Example 3 Consider the problem (see [12])

Dxi(t) = Y a(t)xi(t) + Y by(t)xi(t — 1) + hi(1),  £> 0

j=1 j=1
x(t) = @(t) for t < Oand liI(I)l () =0
t—0~

I"*%(6)]1z0 = O,

where A(2) = (a;j(£))uxn B(t) = (b;j(£)nxn and H(t) = (h;(t)),x1 are given continuous
matrices, then the problem has a unique uniformly stable solution x € X on (-0, T], T
< oo,
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