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Abstract

In this paper, we consider the rule of trajectory structure for a kind of second-order
rational difference equation. With the change of the initial values, we find the
successive lengths of positive and negative semicycles for oscillatory solutions of this
equation, and the positive equilibrium point 1 of this equation is proved to be
globally asymptotically stable.
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1 Introduction and preliminaries
Motivated by those work [1-17], especially [10], we consider in this paper the following

second-order rational difference equation

xn+1 =
1 + xknx

l
n−1 + a

xkn + xln−1 + a
,n = −1, 0, 1, . . . , (1:1)

the initial values x-1, x0 Î (0, +∞), a Î (0, +∞) and k, l Î (-∞, +∞).

Mainly, by analyzing the rule for the length of semicycle to occur successively, we

describe clearly out the rule for the trajectory structure of its solutions and further

derive the global asymptotic stability of positive equilibrium of Equation (1.1).

It is easy to see that the positive equilibrium x̄ of Equation (1.1) satisfies

x̄ =
1 + x̄k+l + a

x̄k + x̄l + a
.

From this, we see that Equation (1.1) possesses a positive equilibrium x̄ = 1. In this

paper, our work is only limited to positive equilibrium x̄ = 1.

Here, for readers’ convenience, we give some corresponding definitions.

Definition 1.1. A positive semicycle of a solution {xn}∞n=−1of Equation (1.1) consists of

a string of terms {xr, xr+1, ..., xm}, all greater than or equal to the equilibrium x̄, with r

≥ -1 and m ≤ ∞ such that

either r = −1 or r > −1 and xr−1 < x̄
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and

either m = ∞ or m < ∞ and xm+1 < x̄.

A negative semicycle of a solution {xn}∞n=−1of Equation (1.1) consists of a string of

terms {xr, xr+1, ..., xm}, all less than the equilibrium x̄, with r ≥ -1 and m ≤ ∞ such that

either r = −1 or r > −1 and xr−1 ≥ x̄

and

either m = ∞ or m < ∞ and xm+1 ≥ x̄.

The length of a semicycle is the number of the total terms contained in it.

Definition 1.2. A solution {xn}∞n=−1of Equation (1.1) is said to be eventually positive if

xn is eventually greater than x̄ = 1. A solution {xn}∞n=−1of Equation (1.1) is said to be

eventually negative if xn is eventually smaller than x̄ = 1.

Definition 1.3. We can divide the solutions of Equation (1.1) into two kinds of types:

trivial ones and nontrivial ones. A solution {xn}∞n=−1of Equation (1.1) is said to be even-

tually trivial if xn is eventually equal to x̄ = 1; otherwise, the solution is said to be

nontrivial.

If the solution is a nontrivial solution, then we can further divide the solution into two

cases: non-oscillatory solution and oscillatory solution. A nontrivial solution {xn}∞n=−1of

Equation (1.1) is regarded as non-oscillatory solution if xn is eventually positive or nega-

tive; otherwise, the nontrivial solution is oscillatory.

For the other concepts in this paper, see Refs.[1,2].

2 Trajectory structure rule
The solutions of Equation (1.1) include trivial ones, non-oscillatory ones and oscillatory

ones, and their trajectory structure rule of the solutions is as follows.

2.1 Nontrivial solution

Theorem 2.1. A positive solution {xn}∞n=−1of Equation (1.1) is eventually trivial if and

only if

(x−1 − 1)(x0 − 1) = 0. (2:1)

Proof. Sufficiency. Assume that Equation (2.1) holds. Then according to Equation

(1.1), we know that the following conclusions are true:

(i) If x-1 = 1, then xn = 1 for n ≥ 1.

(ii) If x0 = 1, then xn = 1 for n ≥ 1.

Necessity. Conversely, assume that

(x−1 − 1)(x0 − 1) �= 0. (2:2)

Then, we can show xn ≠ 1 for any n ≥ 1. For the sake of contradiction, assume that

for some N ≥ 1,

xN = 1 and that xn �= 1 for any − 1 ≤ n ≤ N − 1. (2:3)

Clearly,

1 = xN =
1 + xkN−1x

l
N−2 + a

xkN−1 + xlN−2 + a
.
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From this, we can know that

0 = xN − 1 =
(xkN−1 − 1)(xlN−2 − 1)

xkN−1 + xlN−2 + a
,

which implies xN-1 = 1, or xN-2 = 1. This contradicts with Equation (2.3).

Remark 2.2. Theorem 2.1 actually demonstrates that a positive solution {xn}∞n=−1of

Equation (1.1) is eventually nontrivial if (x-1 - 1)(x0 - 1) ≠ 0. So, if a solution is a non-

trivial one, then xn ≠ 1 for any n ≥ -1.

2.2 Non-oscillatory solution

Lemma 2.3. Let {xn}∞n=−1be a positive solution of Equation (1.1) which is not eventually

equal to 1, then the following conclusion is true:

(A) If kl < 0, then (xn+1 - 1)(xn - 1)(xn-1 - 1) < 0, for n ≥ 0;

(B) If kl > 0, then (xn+1 - 1)(xn - 1)(xn-1 - 1) > 0, for n ≥ 0;

Proof. First, we consider (A). According to Equation (1.1), we have that

xn+1 − 1 =
(xkn − 1)(xln−1 − 1)

xkn + xln−1 + a
,n = 0, 1, ....

Considering kl < 0,

(xn+1 − 1)(xn − 1)(xn−1 − 1) < 0.

Noting that kl < 0, that is k Î (-∞, 0) and l Î (0, +∞), or k Î (0, +∞ -∞, 0), and l Î

(-∞, 0), one has (xkn − 1)(xn − 1) > 0, (xln−1 − 1)(xn−l − 1) < 0, or

(xln−1 − 1)(xn−l − 1) > 0, (xln−1 − 1)(xn−l − 1) > 0. From those, one can get the result

easily.

The proof of (B) is similar to (A).

Theorem 2.4. Let kl < 0, there exist non-oscillatory solutions of Equation (1.1) with x-

1, x0 Î (0, 1), which must be eventually negative. There do not exist eventually positive

non-oscillatory solutions of Equation (1.1).

Proof. Consider a solution of Equation (1.1) with

x−1, x0 ∈ (0, 1).

We then know from Lemma 2.3 (A) that 0 <xn < 1 for n Î N, where N Î 1, 2, 3, ....

So, this solution is just a non-oscillatory solution and furthermore eventually negative.

Suppose that there exists eventually positive non-oscillatory of Equation (1.1). Then,

there exists a positive integer N such that xn > 1 for n ≥ N. Thereout, for n ≥ N + 1,

(xn+1 − 1)(xn − 1)(xn−1 − 1) ≥ 0.

This contradicts Lemma 2.3. So, there do not exist eventually positive non-oscillatory

of Equation (1.1), as desired.

From Lemma 2.3 (B), we can get the result as follows, also.

Theorem 2.5. Let kl > 0, there exist non-oscillatory solutions of Equation (1.1) with x-

1, x0 Î (1, +∞), which must be eventually positive. There do not exist eventually nega-

tive non-oscillatory solutions of Equation (1.1).
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2.3 Oscillatory solution

Theorem 2.6. Let kl < 0, and {xn}∞−1be a strictly oscillatory of Equation (1.1), then the

rule for the lengths of positive and negative semicycles of this solution to occur succes-

sively is ..., 2+, 1-, 2+, 1-, ....

Proof. By Lemma 2.3, one can see that the length of a negative semicycle is at most

3, and a positive semicycle is at most 2. On the basis of the strictly oscillatory charac-

ter of the solution, we see that, for some integer p ≥ 0, one of the following 32 cases

must occur:

case 1: xp < 1, xp+1 < 1;

case 2: xp > 1, xp+1 < 1;

case 3: xp < 1, xp+1 > 1;

case 4: xp > 1, xp+1 > 1.

case 1 cannot occur. Otherwise, the solution is a non-oscillatory solution of Equa-

tion (1.1).

If Case 2 occurs, it follows from Lemma 2.3 that xp+2 > 1, xp+3 > 1, xp+4 < 1, xp+5 >

1, xp+6 > 1, xp+7 < 1, xp+8 > 1, xp+9 > 1, xp+10 < 1, ....

This means that rule for the lengths of positive and negative semicycles of the solu-

tion of Equation (1.1) to occur successively is ..., 2+, 1-, 2+, 1-, .... The proof for other

cases, except Case 1, is completely similar to that of Case 2. So, the proof for this theo-

rem is complete.

Theorem 2.7. Let kl > 0, and {xn}∞−1be a strictly oscillatory of Equation (1.1), then the

rule for the lengths of positive and negative semicycles of this solution to occur succes-

sively is ..., 1+, 2-, 1+, 2-, ....

The proof of theorem (2.7) is similar to that of theorem (2.6).

3 Local asymptotic stability and global asymptotic stability

Before stating the oscillation and non-oscillation of solutions, we need the following

key lemmas. For any integer a, denote Na = {a, a + 1, ...,}.

3.1 Four Lemmas

Lemma 3.1. Let k Î (0, 1], and {xn}∞n=−1be a positive solution of Equation (1.1) which is

not eventually equal to 1, then the following conclusions are valid:

(a) (xn+1 - xn)(xn - 1) < 0, for n ≥ 0;

(b) (xn+1 - xn-1)(xn-1 - 1) < 0, for n ≥ 0.

Proof. First, we consider (a). From Equation (1.1), we obtain

xn+1 − xn =
1 − xk+1n + xln−1xn(x

k−1
n − 1) + a(1 − xn)

xkn + xln−1 + a
,

From k Î (0, 1] and {xn}∞n=−1 not eventually equal to 1, one can see that

(1 − xk+1n )(1 − xn) > 0, (1 − x1−k
n )(1 − xn) ≥ 0, xkn + xln−1 > 0.

This teaches us that (xn+1 - xn)(1 - xn) > 0, n = 0, 1, .... That is to say, (xn+1 - xn)(xn -

1) < 0, n = 0, 1, .... So, the proof of (a) is complete.
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Second, one investigates (b). From Equation (1.1), one has

xn+1 − xn−1 =
1 − xknxn−1 + xln−1(x

k
n − xn−1) + a(1 − xn)

xkn + xln−1 + a
, (3:1)

From Equation (1.1), one gets

1 − xnx
1
k
n−1 =

xkn−1

(
1 − x

1
k2
n−1

)

xkn−1 + xln−2 + a
,

(3:2)

According to k Î (0, 1] and {xn}∞n=−1 not eventually equal to 1, one arrives at(
1 − x

1
k2
n−1

)
(1 − xn−1) ≥ 0. (3:3)

From Equations (3.2) and (3.3), we know

(
1 − xnx

1
k
n−1

)
(1 − xn−1) > 0. So, we can

get immediately(
1 − xknxn−1

)
(1 − xn−1) > 0. (3:4)

From Equation (1.1), one can have

xn − x
1
k
n−1 =

xk+ln−1

(
1 − x

1
k2
n−1

)

xkn−1 + xln−2 + a
,

(3:5)

According to k Î (0, 1] and {xn}∞n=−1 not eventually equal to 1, one arrives at(
1 − x

1
k2
n−1

)
(1 − xn−1) ≥ 0. (3:6)

From Equations (3.5), (3.6), we can obtain that

(
xn − x

1
k
n−1

)
(1 − xn−1) > 0, i.e.,

(
xkn − xn−1

)
(1 − xn−1) > 0. (3:7)

By virtue of Equations (3.1), (3.4), (3.7), we see that (b) is true.

The proof for Lemma (3.1) is complete.

Lemma 3.2. Let {xn}∞n=−1be a positive solution of Equation (1) which is not eventually

equal to 1, then (xn+1 - xn-2)(xn-2 - 1) < 0, for n ≥ 1.

Proof. By virtue of Equation (1.1), one gets

xn+1 − xn−2 =
(1 − xknxn−2) + (xkn − xn−2)xln−1 + a(1 − xn−2)

xkn + xln−1 + a
,n = 0, 1, .... (3:8)

By virtue of Equation (1.1), one obtains that

xn−1 − x
1
k2
n−2 =

(
1 − x

k3+1
k2

n−2

)
+ a

(
1 − x

1
k2
n−2

)
+ xln−3x

k
n−2

(
1 − x

1
k3
n−2

)

xkn−2 + xln−3 + a
.

(3:9)
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According to k Î (0, 1] and {xn}∞n=−1 not eventually equal to 1, we get(
1 − x

k3+1
k2

n−2

)
(1−xn−2) > 0,

(
1 − x

1
k2
n−2

)
(1−xn−2) > 0,

(
1 − x

1
k3
n−2

)
(1−xn−2) > 0.

So, (
xn−1 − x

1
k2
n−2

)
(1 − xn−2) > 0. (3:10)

That is(
xkn−1 − x

1
k
n−2

)
(1 − xn−2) > 0. (3:11)

By virtue of Equation (1.1), we can know

1 − xnx
1
k
n−2 =

(
xkn−1 − x

1
k
n−2

)
+ xln−2

(
1 − x

k+ 1k
n−1

)
+ a

(
1 − x

1
k
n−2

)

xkn−1 + xln−2 + a
.

(3:12)

Utilizing (3.11),(3.12), adding

(
1 − x

k+ 1k
n−1

)
(1 − xn−2) > 0,

(
1 − x

1
k
n−2

)
(1 − xn−2) > 0

when k Î (0, 1], we know the following is true(
1 − xnx

1
k
n−2

)
(1 − xn−2) > 0.

So, (
1 − xknxn−2

)
(1 − xn−2) > 0. (3:13)

Similar to (3.13), we know this is true(
xn − x

1
k
n−2

)
(1 − xn−2) > 0.

So, (
xkn − xn−2

)
(1 − xn−2) > 0. (3:14)

From (3.8),(3.13)and (3.14), one obtains that the following is true

(xn − xn−2)(1 − xn−2) > 0.

This shows Lemma (3.2) is true.

Lemma 3.3. Let x-1, x0 Î (0, 1), then the following conclusions are true:

(a) If l > 0 and -1 <k < 0 or l < 0 and 0 <k <1, then (xn+1 - xn) < 0, for n ≥ 0;

(b) If k > 0 and -1 <l < 0 or k < 0 and 0 <l < 1, then (xn+1 - xn-1) < 0, for n ≥ 0.

The proof of lemma (3.3) can be completed by Equation (1.1), theorem 2.4 and prop-

erties of power function easily.

Lemma 3.4. Let x-1, x0 Î (1, ∞), then the following conclusions are true:
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(a) If l > 0 and 0 <k < 1 or l < 0 and -1 <k < 0, then (xn+1 - xn) < 0, for n ≥ 0;

(b) If k > 0 and 0 <l < 1 or k < 0 and -1 <l < 0, then (xn+1 - xn-1) < 0, for n ≥ 0.

The proof of lemma (3.4) can be completed by Equation (1.1), theorem 2.5 and prop-

erties of power function easily.

First, we consider the local asymptotic stability for unique positive equilibrium point

x̄ of Equation (1.1). We have the following results.

3.2 Local asymptotic stability

Theorem 3.5. The positive equilibrium point of Equation (1.1) is locally asymptotically

stable.

Proof. The linearized equation of Equation (1.1) about the positive equilibrium point

x̄ is

yn+1 = 0 · yn + 0 · yn−1,n = 0, 1, . . . ,

and so it is clear from the paper [[2], Remark 1.3.7] that the positive equilibrium

point x̄ of Equation (1.1) is locally asymptotically stable. The proof is complete.

We are now in a position to study the global asymptotically stability of positive equi-

librium point x̄.

3.3 Global asymptotic stability of oscillatory solution

Theorem 3.6. The positive equilibrium point of Equation (1.1) is globally asymptoti-

cally stable when k Î (0, 1] and l Î (0, +∞).

Proof We must prove that the positive equilibrium point x̄ of Equation (1.1) is both

locally asymptotically stable and globally attractive. Theorem 3.5 has shown the local

asymptotic stability of x̄. Hence, it remains to verify that every positive solution
{xn}∞n=−1 of Equation (1.1) converges to x̄ as n ® ∞. Namely, we want to prove

lim
n→∞ xn = x̄ = 1. (3:15)

Consider now {xn} to be non-oscillatory about the positive equilibrium point x̄ of

Equation (1.1). By virtue of Lemma 3.1(a), it follows that the solution is monotonic

and bounded. So, limn®∞ xn exists and is finite. Taking limits on both sides of Equa-

tion (1.1), one can easily see that (3.15) holds.

Now let {xn} be strictly oscillatory about the positive equilibrium point of Equation

(1.1). By virtue of Theorem 2.6, one understands that the rule for the lengths of posi-

tive and negative semicycles occurring successively is ..., 2+, 1-, 2+, 1-, 2+, 1-, .... For

simplicity, for some nonnegative integer p, we denote by {xp, xp+1}
+ the terms of a

positive semicycle of length two, followed by {xp+2}
-, a negative semicycle with semi-

cycle length one, then a positive semicycle of length two and a negative semicycle of

length one, and so on. Namely, the rule for the lengths of positive and negative semi-

cycles to occur successively can be periodically expressed as follows:

{xp+3n, xp+3n+1}+, {xp+3n+2}−, {xp+3n+3, xp+3n+4}+, {xp+3n+5}−,n = 0, 1, 2, ....

Lemma (3.1) (a), (b) and Lemma (3.2) teaches us that the following results are true:

(A) xp+3n >xp+3n+1 >xp+3n+3 >xp+3n+4, n = 0, 1, 2, ....

(B) xp+3n+2 <xp+3n+5 <xp+3n+8, n = 0, 1, 2, ....
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So, from (A) one can see that {xp+3n}∞n=0 is decreasing with lower bound 1. So, the

limit S = limn®∞ xp+3n exists and is finite.

Furthermore, From (A) one can further obtain

S = lim
n→∞ xp+3n+1

Similarly, by (B) one can see that {xp+3n+2}∞n=0 is increasing with upper bound 1. So,

the limit T = limn®∞xp+3n+2 exists and is finite.

Now, it suffices to prove S = T = 1.

Noting that

xp+3n+2 =
1 + xkp+3n+1x

l
p+3n + a

xkp+3n+1 + xlp+3n + a
, (3:16)

xp+3n+3 =
1 + xkp+3n+2x

l
p+3n+1 + a

xkp+3n+2 + xlp+3n+1 + a
, (3:17)

Taking limits on both sides of the Equations (3.16) and (3.17), respectively, we get

T =
sk+l + 1 + a

sk + sl + a
, (3:18)

S =
sk + Tl + 1 + a

skTl + a
, (3:19)

From this one can see S = 1. Again, by Equation (3.18), we have T = 1, too. These

show that (3.15) is true. The proof for Theorem 3.6 is complete.

Theorem 3.7. The positive equilibrium point of Equation (1.1) is globally asymptoti-

cally stable when k Î (0, 1] and l Î (-∞, 0).

The proof of theorem 3.7 is similar to that of theorem 3.6 by virtue of theorem 3.5,

theorem 2.7, Lemma (3.1), Lemma (3.2) and Equation (1.1).

3.4 Global asymptotic stability of non-oscillatory solution

Theorem 3.8. The positive equilibrium point of Equation (1.1) is globally asymptoti-

cally stable when x-1, x0 Î (0, 1) and one of the following conditions is satisfied:

(a) -1 <k < 0 and l > 0;

(b) 0 <k < 1 and l < 0;

(c) k > 0 and -1 <l < 0;

(d) k < 0 and 0 <l < 1.

The proof of theorem 3.8 is similar to that of theorem 3.6 by virtue of theorem 2.4,

theorem 3.5, Lemma (3.3) and Equation (1.1).

Theorem 3.9. The positive equilibrium point of Equation (1.1) is globally asymptoti-

cally stable when x-1, x0 Î (1, +∞) and one of the following conditions is satisfied:

(a) -1 <k < 0 and l < 0;

(b) 0 <k < 1 and l > 0;

(c) k < 0 and -1 <l < 0;
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(d) k > 0 and 0 <l < 1.

The proof of theorem 3.9 is similar to that of theorem 3.6 by virtue of theorem 2.5,

theorem 3.5, Lemma (3.4) and Equation (1.1).
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