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1. Introduction
The neutral differential equations find numerous applications in natural science and

technology. For example, they are frequently used for the study of distributed networks

containing lossless transmission lines, see Hale [1]. In the past few years, many studies

have been carried out on the oscillation and nonoscillation of solutions of various

types of neutral functional differential equations. We refer the reader to the papers

[2-22] and the references cited therein.

In this work, we restrict our attention to the oscillation of higher-order quasi-linear

neutral differential equation of the form

{
r(t)

[
(x(t) + p(t)x(τ (t)))(n−1)

]γ }′
+ q(t)xγ (σ (t)) = 0, n ≥ 2. (1:1)

Throughout this paper, we assume that:

(C1) g ≤ 1 is the quotient of odd positive integers;

(C2) p Î C ([t0, ∞), [0, ∞));

(C3) q Î C ([t0, ∞), [0, ∞)), and q is not eventually zero on any half line [t*, ∞) for

t* ≥ t0;

(C4) r, τ, s Î C1([t0, ∞), ℝ), r(t) > 0, r’(t) ≥ 0, limt®∞ τ(t) = limt®∞ s(t) = ∞, s-1

exists and s-1 is continuously differentiable, where s-1 denotes the inverse function

of s.

We consider only those solutions x of equation (1.1) which satisfy sup {|x(t)| : t ≥ T}

> 0 for all T ≥ t0. We assume that equation (1.1) possesses such a solution. As usual, a

solution of equation (1.1) is called oscillatory if it has arbitrarily large zeros on [t0, ∞);

otherwise, it is called nonoscillatory. Equation (1.1) is said to be oscillatory if all its

solutions are oscillatory.
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Regarding the oscillation of higher-order neutral differential equations, Agarwal et al.

[3,4], Li et al. [13], Tang et al. [16], Zafer [19], Zhang et al. [21,22] studied the oscilla-

tory behavior of even-order neutral differential equation

[x(t) + p(t)x(τ (t))](n) + q(t)f (x(σ (t))) = 0.

Karpuz et al. [9] examined the oscillation of odd-order neutral differential equation

[x(t) + p(t)x(τ (t))](n) + q(t)x(σ (t)) = 0, 0 ≤ p(t) < 1.

Li and Thandapani [14], Yildiz and Öcalan [18] investigated the oscillatory behavior

of the odd-order nonlinear neutral differential equations

[x(t) + p(t)x(a + bt)](n) + q(t)xα(c + dt) = 0, 0 ≤ p(t) ≤ P0 < ∞
and

[x(t) + p(t)x(τ (t))](n) + q(t)xα(σ (t)) = 0, 0 ≤ p(t) ≤ P1 < 1,

respectively.

So far, there are few results on the oscillation of equation (1.1) under the condition p

(t) ≥ 1; see, e.g., [3,4,13-15]. In this note, we will use some different techniques for

studying the oscillation of equation (1.1).

Remark 1.1. All functional inequalities considered in this paper are assumed to hold

eventually; that is, they are satisfied for all t large enough.

Remark 1.2. Without loss of generality, we can deal only with the positive solutions

of (1.1).

2. Main results
In this section, we will establish some new oscillation theorems for equation (1.1).

Below, for the sake of convenience, f-1 denotes the inverse function of f, and we let z(t)

:= x(t) + p(t)x(τ(t)), and Q(t) := min{q(s-1(t)), q(s-1(τ(t)))}.
Lemma 2.1. (Kneser’s theorem) [[2], Lemma 2.2.1] Let f Î Cn([t0, ∞), ℝ) and its deri-

vatives up to order (n - 1) are of constant sign in [t0, ∞). If f
(n) is of constant sign and

not identically zero on a sub-ray of [t0, ∞), and then, there exist m Î ℤ and t1 Î [t0,

∞) such that 0 ≤ m ≤ n - 1, and (-1)n+mff(n) ≥ 0,

f f (j) > 0 for j = 0, 1, . . . ,m − 1 when m ≥ 1

and

(−1)m+jf f (j) > 0 for j = m,m + 1, . . . ,n − 1 when m ≤ n − 1

hold on [t1, ∞).

Lemma 2.2. [[2], Lemma 2.2.3] Let f be a function as in Kneser’s theorem and f(n)(t)

≤ 0. If limt®∞ f(t) ≠ 0, then for every l Î (0, 1), there exists tl Î [t1, ∞) such that

|f | ≥ λ

(n − 1)!
tn−1|f (n−1)|

holds on [tl, ∞).

In order to prove our theorems, we will use the following inequality.

Lemma 2.3. [23] Assume that 0 <g ≤ 1, x1, x2 Î [0, ∞). Then,

x1γ + x2γ ≥ (x1 + x2)
γ . (2:1)
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The following lemmas are very useful in the proofs of the main results.

Lemma 2.4. Assume that r’(t) ≥ 0 and

∞∫
t0

1
r1/γ (t)

dt = ∞. (2:2)

If x is a positive solution of (1.1), then z satisfies

z(t) > 0, (r(t)(z(n−1)(t))γ )′ ≤ 0, z(n−1)(t) > 0, z(n)(t) ≤ 0

eventually.

Proof. Due to r’(t) ≥ 0, the proof is simple and so is omitted. □
Lemma 2.5. Assume that (2.2) holds, n is even and r’(t) ≥ 0. If x is a positive solution

of (1.1), then z satisfies

z(t) > 0, z′(t) > 0, (r(t)(z(n−1)(t))γ )′ ≤ 0, z(n−1)(t) > 0, z(n)(t) ≤ 0

eventually.

Proof. Due to r’(t) ≥ 0 and Lemma 2.1, the proof is easy and hence is omitted.

Now, we give our results. Firstly, we establish some comparison theorems for the

oscillation of (1.1).

Theorem 2.6. Let n be odd, 0 ≤ p(t) ≤ p0 < ∞, (s-1(t))’ ≥ s0 > 0 and τ’(t) ≥ τ0 > 0.

Assume that (2.2) holds. If the first-order neutral differential inequality

(
y(σ−1(t))

σ0
+

p0γ

σ0τ0
y(σ−1(τ (t)))

)′

+Q(t)
(

λ0tn−1

(n − 1)!r1/γ (t)

)γ

y(t) ≤ 0

(2:3)

has no positive solution for some l0 Î (0, 1), then every solution of (1.1) is oscillatory

or tends to zero as t ® ∞.

Proof. Let x be a nonoscillatory solution of (1.1) and limt®∞ x(t) ≠ 0. Then limt®∞ z

(t) ≠ 0. It follows from (1.1) that

(r(σ−1(t))(z(n−1)(σ−1(t)))γ )′

(σ−1(t))′
+ q(σ−1(t))xγ (t) = 0. (2:4)

Thus, for all sufficiently large t, we have

(r(σ−1(t))(z(n−1)(σ−1(t)))γ )′

(σ−1(t))′

+p0γ (r(σ
−1(τ (t)))(z(n−1)(σ−1(τ (t))))γ )′

(σ−1(τ (t)))′

+q(σ−1(t))xγ (t) + p0γ q(σ−1(τ (t)))xγ (τ (t)) = 0.

(2:5)

Note that

q(σ−1(t))xγ (t) + p0γ q(σ−1(τ (t)))xγ (τ (t)) ≥ Q(t)[xγ (t) + p0γ xγ (τ (t))]

≥ Q(t)[x(t) + p0x(τ (t))]γ

≥ Q(t)zγ (t)

(2:6)
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due to (2.1) and the definition of z and Q. It follows from (2.5) and (2.6) that

(r(σ−1(t))(z(n−1)(σ−1(t)))γ )′

(σ−1(t))′

+p0γ (r(σ
−1(τ (t)))(z(n−1)(σ−1(τ (t))))γ )′

(σ−1(τ (t)))′
+Q(t)zγ (t) ≤ 0.

(2:7)

In view of (s-1(t))’ ≥ s0 > 0 and τ’(t) ≥ τ0 > 0, we get

(r(σ−1(t))(z(n−1)(σ−1(t)))γ )′

σ0

+p0γ (r(σ
−1(τ (t)))(z(n−1)(σ−1(τ (t))))γ )′

σ0τ0
+Q(t)zγ (t) ≤ 0.

(2:8)

On the other hand, by Lemma 2.2 and Lemma 2.4, we have

z(t) ≥ λ

(n − 1)!r1/γ (t)
tn−1r1/γ (t)z(n−1)(t). (2:9)

Therefore, setting r(t)(z(n-1)(t))g = y(t) in (2.8) and utilizing (2.9), one can see that y is

a positive solution of (2.3). This contradicts our assumptions, and the proof is

complete.

Applying additional conditions on the coefficients of (2.3), we can deduce from The-

orem 2.6 various oscillation criteria for (1.1).

Theorem 2.7. Let n be odd, 0 ≤ p(t) ≤ p0 < ∞, (s-1(t))’ ≥ s0 > 0, τ’(t) ≥ τ0 > 0 and τ(t)

≤ t. Assume that (2.2) holds. If the first-order differential inequality

w′(t) +
1

1
σ0

+ p0γ

σ0τ0

Q(t)
(

λ0tn−1

(n − 1)!r1/γ (t)

)γ

w(τ−1(σ (t))) ≤ 0 (2:10)

has no positive solution for some l0 Î (0, 1), then every solution of (1.1) is oscillatory

or tends to zero as t ® ∞.

Proof. We assume that x is a positive solution of (1.1) and limt®∞ x(t) ≠ 0. Then

Lemma 2.4 and the proof of Theorem 2.6 imply that y(t) = r(t)(z(n-1)(t))g > 0 is nonin-

creasing and it satisfies (2.3). Let us denote

w(t) =
y(σ−1(t))

σ0
+

p0γ

σ0τ0
y(σ−1(τ (t))).

It follows from τ(t) ≤ t that

w(t) ≤ y(σ−1(τ (t)))
(

1
σ0

+
p0γ

σ0τ0

)
.

Substituting these terms into (2.3), we get that w is a positive solution of (2.10). This

contradiction completes the proof.

Corollary 2.8. Let n be odd, 0 ≤ p(t) ≤ p0 < ∞, (s-1(t))’ ≥ s0 > 0, τ’(t) ≥ τ0 > 0 and τ(t)

≤ t. Assume that (2.2) holds. If τ-1(s(t)) <t and

lim inf
t→∞

t∫
τ−1(σ (t))

Q(s)(sn−1)γ

r(s)
ds >

(
1
σ0

+ p0γ

σ0τ0

)
((n − 1)!)γ

e
, (2:11)
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then every solution of (1.1) is oscillatory or tends to zero as t ® ∞.

Proof. According to [[10], Theorem 2.1.1], the condition (2.11) guarantees that (2.10)

has no positive solution. The proof of the corollary is complete.

Theorem 2.9. Let n be odd, 0 ≤ p(t) ≤ p0 < ∞, (s-1(t))’ ≥ s0 > 0, τ’(t) ≥ τ0 > 0 and τ(t)

≤ t. Assume that (2.2) holds. If the first-order differential inequality

w′(t) +
1

1
σ0

+ p0γ

σ0τ0

(
λ0tn−1

(n − 1)!r1/γ (t)

)γ

w(σ (t)) ≤ 0 (2:12)

has no positive solution for some l0 Î (0, 1), then every solution of (1.1) is oscillatory

or tends to zero as t ® ∞.

Proof. We assume that x is a positive solution of (1.1) and limt®∞ x(t) ≠ 0. Then

Lemma 2.4 and the proof of Theorem 2.6 imply that y(t) = r(t)(z(n-1)(t))g > 0 is nonin-

creasing and it satisfies (2.3). We denote

w(t) =
y(σ−1(t))

σ0
+

p0γ

σ0τ0
y(σ−1(τ (t))).

In view of τ(t) ≥ t, we obtain

w(t) ≤ y(σ−1(t))
(

1
σ0

+
p0γ

σ0τ0

)
.

Substituting these terms into (2.3), we get that w is a positive solution of (2.12). This

is a contradiction, and the proof is complete.

Corollary 2.10. Let n be odd, 0 ≤ p(t) ≤ p0 < ∞, (s-1(t))’ ≥ s0 > 0, τ’(t) ≥ τ0 > 0 and

τ(t) ≤ t. Assume that (2.2) holds. If s(t) <t and

lim inf
t→∞

t∫
σ (t)

Q(s)(sn−1)γ

r(s)
ds >

(
1
σ0

+ p0γ

σ0τ0

)
((n − 1)!)γ

e
, (2:13)

then every solution of (1.1) is oscillatory or tends to zero as t ® ∞.

Proof. The proof of the corollary is similar to the proof of Corollary 2.8 and so it is

omitted.

Example 2.11. Consider the odd-order neutral differential equation

[
x(t) +

17
18

x
(
t
e

)](n)

+
q0
tn
x
(

t
e2

)
= 0, n ≥ 3, q0 > 0, t ≥ 1. (2:14)

Using result of [[9], Example 1], every solution of (2.14) is oscillatory or tends to

zero as t ® ∞, if

q0 > 9(n − 1)!e2n−3.

Applying Corollary 2.8, we have that every solution of (2.14) is oscillatory or tends to

zero as t ® ∞, when

q0 > (n − 1)!
(
e2n−3 +

17e2n−2

18

)
.

It is easy to see that our result improves those of [9].
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From the above results on the oscillation of odd-order differential equation and

Lemma 2.5, we can easily obtain the following results regarding the oscillation of even-

order neutral differential equations.

Theorem 2.12. Let n be even, 0 ≤ p(t) ≤ p0 < ∞, (s-1(t))’ ≥ s0 > 0 and τ’(t) ≥ τ0 > 0.

Assume that (2.2) holds. If the first-order neutral differential inequality (2.3) has no

positive solution for some l0 Î (0, 1), then every solution of (1.1) is oscillatory.

Theorem 2.13. Let n be even, 0 ≤ p(t) ≤ p0 < ∞, (s-1(t))’ ≥ s0 > 0, τ’(t) ≥ τ0 > 0 and

τ(t) ≤ t. Assume that (2.2) holds. If the first-order differential inequality (2.10) has no

positive solution for some l0 Î (0, 1), then every solution of (1.1) is oscillatory.

Corollary 2.14. Let n be even, 0 ≤ p(t) ≤ p0 < ∞, (s-1(t))’ ≥ s0 > 0, τ’(t) ≥ τ0 > 0 and

τ(t) ≤ t. Assume that (2.2) holds. If (2.11) holds and τ-1(s(t)) <t, then every solution of

(1.1) is oscillatory.

Theorem 2.15. Let n be even, 0 ≤ p(t) ≤ p0 < ∞, (s-1(t))’ ≥ s0 > 0, τ’(t) ≥ τ0 > 0 and

τ(t) ≤ t. Assume that (2.2) holds. If the first-order differential inequality (2.12) has no

positive solution for some l0 Î (0, 1), then every solution of (1.1) is oscillatory.

Corollary 2.16. Let n be even, 0 ≤ p(t) ≤ p0 < ∞, (s-1(t))’ ≥ s0 > 0, τ’(t) ≥ τ0 > 0 and

τ(t) ≤ t. Assume that (2.2) holds. If (2.13) holds and s(t) <t, then every solution of (1.1)

is oscillatory.

Example 2.17. Consider the even-order neutral differential equation

[
x(t) +

7
8
x
(
t
e

)](n)

+
q0
tn
x
(

t
e2

)
= 0, n ≥ 4, q0 > 0, t ≥ 1. (2:15)

Using results of [[9], Example 1], [[21,22], Corollary 1], we find that every solution of

(2.15) is oscillatory if

q0 > 4(n − 1)!e2n−3.

Using [[19], Theorem 2], we can obtain that (2.15) is oscillatory when

q0 > 4(n − 1)2(n−1)(n−2)e2n−3.

Applying Corollary 2.14 in this paper, we see that (2.15) is oscillatory when

q0 > (n − 1)!
(
e2n−3 +

7e2n−2

8

)
.

Hence, we can see that our results are better than [9,19,21,22].

3. Further results
In Section 2, we establish some oscillation criteria for (1.1) for the case when (s-1(t))’ ≥
s0 > 0, τ’(t) ≥ τ0 > 0 and 0 ≤ p(t) ≤ p0 < ∞, which can restrict our applications. For

example, if τ (t) =
√
t, then results in Section 2 fail to apply. Below, we try to weak the

above restrictions. In the following, we shall continue use the notation Q as in Section

2, and we let H(t) := max{1/(s-1(t))’, pg(t)/(s-1(τ(t)))’}.
Theorem 3.1. Let n be odd, (s-1(t))’ > 0 and τ’(t) > 0. Assume that (2.2) holds. If the

first-order neutral differential inequality

(
y(σ−1(t)) + y(σ−1(τ (t)))

)
+
Q(t)
H(t)

(
λ0tn−1

(n − 1)!r1/γ (t)

)γ

y(t) ≤ 0 (3:1)
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has no positive solution for some l0 Î (0, 1), then every solution of (1.1) is oscillatory

or tends to zero as t ® ∞.

Proof. Let x be a nonoscillatory solution of (1.1) and limt®∞ x(t) ≠ 0. Then limt®∞ z

(t) ≠ 0. From (1.1), we obtain (2.4). Thus, for all sufficiently large t, we have

(r(σ−1(t))(z(n−1)(σ−1(t)))γ )′

(σ−1(t))′

+pγ (t)
(r(σ−1(τ (t)))(z(n−1)(σ−1(τ (t))))γ )′

(σ−1(τ (t)))′

+q(σ−1(t))xγ (t) + pγ (t)q(σ−1(τ (t)))xγ (τ (t)) = 0.

(3:2)

Note that

q(σ−1(t))xγ (t) + pγ (t)q(σ−1(τ (t)))xγ (τ (t))

≥ Q(t)[xγ (t) + pγ (t)xγ (τ (t))]

≥ Q(t)[x(t) + p(t)x(τ (t))]γ

= Q(t)zγ (t)

(3:3)

due to (2.1) and the definition of z. It follows from (3.2) and (3.3) that

(r(σ−1(t))(z(n−1)(σ−1(t)))γ )′

(σ−1(t))′
+ pγ (t)

(r(σ−1(τ (t)))(z(n−1)(σ−1(τ (t))))γ )′

(σ−1(τ (t)))′

+Q(t)zγ (t) ≤ 0.

Therefore, we get
(
r(σ−1(t))(z(n−1)(σ−1(t)))γ + r(σ−1(τ (t)))(z(n−1)(σ−1(τ (t))))γ

)′

+
Q(t)
H(t)

zγ (t) ≤ 0.
(3:4)

On the other hand, by Lemma 2.2 and Lemma 2.4, we have (2.9). Thus, setting r(t)(z
(n-1)(t))g = y(t) in (3.4) and utilizing (2.9), one can see that y is a positive solution of

(3.1). This contradicts our assumptions and the proof is complete.

Applying additional conditions on the coefficients of (3.1), we can deduce from The-

orem 3.1 various oscillation criteria for (1.1).

Theorem 3.2. Let n be odd, (s-1(t))’ > 0, τ’(t) > 0 and τ(t) ≤ t. Assume that (2.2)

holds. If the first-order differential inequality

w′(t) +
Q(t)
2H(t)

(
λ0tn−1

(n − 1)!r1/γ (t)

)γ

w(τ−1(σ (t))) ≤ 0 (3:5)

has no positive solution for some l0 Î (0, 1), then (1.1) is oscillatory or tends to zero

as t ® ∞.

Proof. We assume that x is a positive solution of (1.1) and limt®∞ x(t) ≠ 0. Then

Lemma 2.4 and the proof of Theorem 3.1 imply that y(t) = r(t)(z(n-1)(t))g > 0 is nonin-

creasing and it satisfies (3.1). Let us denote

w(t) = y(σ−1(t)) + y(σ−1(τ (t))).

It follows from τ(t) ≤ t that

w(t) ≤ 2y(σ−1(τ (t))).
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Substituting these terms into (3.1), we get that w is a positive solution of (3.5). This

contradiction completes the proof.

Corollary 3.3. Let n be odd, (s-1(t))’ > 0, τ’(t) > 0 and τ(t) ≤ t. Assume that (2.2)

holds. If τ-1(s(t)) <t and

lim inf
t→∞

t∫
τ−1(σ (t))

Q(s)
H(s)

(sn−1)γ

r(s)
ds >

2((n − 1)!)γ

e
, (3:6)

then every solution of (1.1) is oscillatory or tends to zero as t ® ∞.

Proof. According to [[10], Theorem 2.1.1] the condition (3.6) guarantees that (3.5)

has no positive solution. The proof of the corollary is complete.

Theorem 3.4. Let n be odd, (s-1(t))’ > 0, τ’(t) > 0 and τ(t) ≥ t. Assume that (2.2)

holds. If the first-order differential inequality

w′(t) +
Q(t)
2H(t)

(
λ0tn−1

(n − 1)!r1/γ (t)

)γ

w(σ (t)) ≤ 0 (3:7)

has no positive solution for some l0 Î (0, 1), then every solution of (1.1) is oscillatory

or tends to zero as t ® ∞.

Proof. We assume that x is a positive solution of (1.1) and limt®∞ x(t) ≠ 0. Then

Lemma 2.4 and the proof of Theorem 3.1 imply that y(t) = r(t)(z(n-1)(t))g > 0 is nonin-

creasing and it satisfies (3.1). We denote

w(t) = y(σ−1(t)) + y(σ−1(τ (t))).

In view of τ(t) ≥ t, we obtain

w(t) ≤ 2y(σ−1(t)).

Substituting these terms into (3.1), we get that w is a positive solution of (3.7). This

is a contradiction and the proof is complete.

Corollary 3.5. Let n be odd, (s-1(t))’ > 0, τ’(t) > 0 and τ(t) ≥ t. Assume that (2.2)

holds. If s(t) <t and

lim inf
t→∞

t∫
σ (t)

Q(s)
H(s)

(sn−1)γ

r(s)
ds >

2((n − 1)!)γ

e
, (3:8)

then (1.1) is oscillatory or tends to zero as t ® ∞.

Proof. The proof of the corollary is similar to the proof of Corollary 3.3 and so it is

omitted.

From the above results on the oscillation of odd-order differential equation and

Lemma 2.5, we can easily derive the following results on the oscillation of even-order

neutral differential equations.

Theorem 3.6. Let n be even, (s-1(t))’ > 0 and τ’(t) > 0. Assume that (2.2) holds. If the

first-order neutral differential inequality (3.1) has no positive solution for some l0 Î (0, 1),

then every solution of (1.1) is oscillatory.

Theorem 3.7. Let n be even, (s-1(t))’ > 0, τ’(t) > 0 and τ(t) ≤ t. Assume that (2.2)

holds. If the first-order differential inequality (3.5) has no positive solution for some l0
Î (0, 1), then (1.1) is oscillatory.
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Corollary 3.8. Let n be even, (s-1(t))’ > 0, τ’(t) > 0 and τ(t) ≤ t. Assume that (2.2)

holds. If (3.6) holds and τ-1(s(t)) <t, then every solution of (1.1) is oscillatory.

Theorem 3.9. Let n be even, (s-1(t))’ > 0, τ’(t) > 0 and τ(t) ≥ t. Assume that (2.2)

holds. If the first-order differential inequality (3.7) has no positive solution for some l0
Î (0, 1), then every solution of (1.1) is oscillatory.

Corollary 3.10. Let n be even, (s-1(t))’ > 0, τ’(t) > 0 and τ(t) ≥ t. Assume that (2.2)

holds. If (3.8) holds and s(t) <t, then (1.1) is oscillatory.

For some applications of the above results, we give the following examples.

Example 3.11. Consider the odd-order neutral differential equation

[
x(t) + t2x(t2)

](n)
+

q0
t(n−1)/4

x(
√
t) = 0, n ≥ 3, t ≥ 1. (3:9)

It is easy to verify that all conditions of Corollary 3.5 are satisfied. Hence, every solu-

tion of (3.9) is oscillatory or tends to zero as t ® ∞.

Example 3.12. Consider the even-order neutral differential equation (2.15).

Applying Corollary 3.8, we know that (2.15) is oscillatory when

q0 >
7
4
e2n−2(n − 1)!.

Note that result in the section 2 is better than this. However, they are different in

some cases. Therefore, they are significative for theirs existence.

4. Summary
In this note, we consider the oscillatory behavior of higher-order quasi-linear neutral

differential equation (1.1) for the case when g ≤ 1. Regarding the results for the case

when g ≥ 1, we can replace Q(t) with Q(t)/2g-1. Since

x1γ + x2γ ≥ 1
2γ−1

(x1 + x2)γ , x1, x2 ∈ [0,∞)

for g ≥ 1.
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