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Abstract

In this article, we define the fractional differentiation Dδ of order δ, δ > 0, induced by
the Laguerre operator L and associated with respect to the Haar measure dma. We
obtain a characterization of the Bessel potential space Lpδ(K) using Dδ and different
equivalent norms.
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1 Introduction
During the second half of the twentieth century (until the 1990s), the Continuous

Time Random Walk (CTRW) method was practically the only tool available to

describe subdiffusive and/or superdiffusive phenomena associated with complex sys-

tems for many groups of research. The main reason behind the usefulness of fractional

derivatives have been until this moment the close link that exists between fractional

models and the so called Jump stochastic models, such as the CTRW or those of the

multiple trapping type.

Note that fractional operators also provide a method for reflecting the memory prop-

erties and non-locality of many anomalous processes. In any case, at the moment it is

not clear what is the best fractional time derivative or the spatial fractional derivative

to be used in the different models.

Fractional calculus deals with the study of so-called fractional order integral and

derivative operators over real or complex domains and their applications.

Since 1990, there has been a spectacular increase in the use of fractional models to

simulate the dynamics of many different anomalous processes, especially those invol-

ving ultraslow diffusion. We hereby propose a few examples of fields where the frac-

tional models have been used: materials theory, transport theory, fluid of contaminant

flow phenomena through heterogeneous porous media, physics theory, electromagnetic

theory, thermodynamics or mechanics, signal theory, chaos theory and/or fractals, geol-

ogy and astrophysics, biology and other life sciences, economics or chemistry, etc.

As one would expect, since a fractional derivative is a generalization of an ordinary

derivative, it is going to lose many of its basic properties. For example, it loses its geo-

metric or physical interpretation but the index law is only valid when working on very

specific function spaces and the derivative of the product of two functions is difficult

to obtain and the chain rule is not straightforward to apply.
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It is natural to ask then, what properties fractional derivatives have that make them

so suitable for modeling certain complex systems. The answer lies in the property

exhibited by many of the aforementioned systems of non-local dynamics, that is, the

processes dynamics have a certain degree of memory. While fractional operators natu-

rally incorporate the interesting property of no locality. They do lose some of the typi-

cal, basic properties of ordinary differential operators. The ordinary derivative is

clearly, by definition, local [1].

According to the ideas presented by Stein [2], the fundamental operators of the har-

monic analysis (fractional integrals, Riesz transformation, g-functions, ...) can be con-

sidered in the context of the Laguerre operator L.

It is important to mention that this way of describing harmonic operators in the

Laguerre context was initiated by Muckenhoupt [3].

The organization of the article is as follows. Section 2 contains some basic facts

needed in the sequel about the Laguerre hypergroup. Section 3 is devoted to some

generation and representation for the semigroups also we define the fractional power,

the heat-diffusion and the Poisson-Laguerre semigroups based on a Laguerre operator.

Finally, Sect. 4 is devoted to proving the main result of this article (Theorem 1) where

we establish that ||Dδf||p and ||f||δ,p are equivalent when the fractional differentiation

Dδ is defined for δ > 0.

2 Preliminary
In this section we set some notations and we recall some basic results in harmonic

analysis related to Laguerre hypergroups (see [4-6]).

First we begin with some notation.

• We denote by K = [0,∞] × R equipped with the weighted Lebesgue measure ma

on K given by

dmα(x, t) =
x2α+1dxdt
π�(α + 1)

, α ≥ 0.

For every 1 ≤ p ≤ ∞,we denote by Lp(K) = Lp(K, dmα) the spaces of complex-valued

functions f, measurable on K such that:

||f ||Lp(K) = (
∫

K

|f (x, t)|pdmα(x, t))

1
p < ∞, if p ∈ [1,∞[.

and

||f ||L∞(K) = ess sup
(x,t)∈K

|f (x, t)|.

• D(K) the subspace of S(K) of functions ψ satisfying the following:

(i) There exists m0 Î N satisfying ψ(l, m) = 0, for all (λ,m) ∈ K such that m > m0.

(ii) for all m ≤ m0, the function l ↦ ψ(l,m) is C∞ on ℝ with compact support and

vanishes in a neighborhood of zero.

• D′(K) the topological dual space of D(K).

• K̂ = R × N the dual space of K.
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• Lp(K̂) = Lp(K̂), dγα) the spaces of complex-valued functions f, measurable on K̂ such

that:

||f ||Lp(K̂) = (
∫

K̂

|f (λ,m)|pdγα(λ,m))

1
p < ∞, if 1 ≤ p < ∞

and

||f ||L∞(K̂) = ess sup
(λ,m)∈K̂

|f (λ,m)|

where dga(l, m) being the positive measure defined on K̂ by:

∫

K̂

f (λ,m)dγα(λ,m) =
∞∑
m=0

L(α)m (0)
∫

R

f (λ,m)|λ|α+1dλ.

For (x, t) ]0, ∞[×ℝ and a Î [0, ∞[, we consider the following partial differential

operator, named the Laguerre operator:

L =
∂2

∂x2
+
2α + 1

x
∂

∂x
+ x2

∂2

∂t2
(1)

Remark 1. For a = n - 1, n Î N*, the operator L is the radial part of the sublapla-

cian on the Heisenberg group ℍn.

For (λ,m) ∈ K̂ and (x, t) ∈ K, we put ϕλ,m(x, t) = eiλtL(α)
m (|λ|x2), where L(α)

m is the

Laguerre function defined on [0, ∞] by L(α)
m (x) = e

−x

2 L(α)m (x)/L(α)m (0)
and L(α)m is the

Laguerre polynomial of degree m and order a.
Proposition 1. For (λ,m) ∈ K̂, the function �l,m, is the unique solution of the follow-

ing problem:
⎧⎨
⎩
Lu = −4|λ|(m + α+1

2 )u,
u(0, 0) = 1,

∂xu(0, t) = 0, ∀t ∈ R,

We denote by: cλ,m = 4|λ|(m + α+1
2 ) = |(λ,m)|K̂.

Definition 1. (i) The generalized Fourier transform F is defined on L1(K)by:

F(f )(λ,m) =
∫

K

f (x, t)ϕ−λ,m(x, t)dmα(x, t), (λ,m) ∈ K̂

(ii) We have also the inverse formula of the generalized Fourier transform F-1 on

by:

F−1(f )(x, t) =
∫

K̂

f (λ,m)ϕλ,m(x, t)dγα(λ,m), (x, t) ∈ K.

For (λ,m) ∈ K̂, we denote by: P(l,m)f = F(f)(l, m)�l,m.
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3 The heat-diffusion and the Poisson-Laguerre semigroups
3.1 The heat-diffusion semigroup

The heat-diffusion semigroup {Tt}t≥0, associated to (-L), is then defined by

Ttf (y, s) := e−tLf (y, s)

=
∫

K̂

e−tcλ,mP(λ,m)f (y, s)dγα(λ,m)

=
∫

K̂

∫

K

e−tcλ,mf (u, v)ϕ−λ,m(u, v)ϕλ,m(y, s)dmα(u, v)dγα(λ,m)

=
∫

K

f (u, v)[
∫

K̂

e−tcλ,mϕ−λ,m(u, v)ϕλ,m(y, s)dγα(λ,m)]dmα(u, v)

=
∫

K

f (u, v)Tt((u, v), (y, s))dmα(u, v).

where

Tt((u, v), (y, s)) =
∫

K̂

e−tcλ,mϕ−λ,m(u, v)ϕλ,m(y, s)dγα(λ,m)

is the heat kernel of the integral representation Ttf.

Proposition 2. This semigroup {Tt}t≥0 is a strongly continuous semigroup on

Lp(K)with infinitesimal generator L(see [7]).

Proof. Let f ∈ Lp(K) then

lim
s→t

||T(s)f−T(t)f ||Lp(K) = lim
s→t

||T(s)−T(t))f ||Lp(K) ≤ lim
s→t

||T(s)−T(t)||Lp(K)||f ||Lp(K) = 0.

By the definition of the heat-diffusion semigroup {Tt}t≥0, we establish the following

result.

Corollary 1. For (μ, η) ∈ K̂, we have

Ttϕμ,η(y, s) = e−tcμ,ηϕμ,η(y, s),

Proof. we have

Ttϕμ,η(y, s) =
∫

K̂

∫

K

e−tcλ,mϕμ,η(u, v)ϕ−λ,m(u, v)ϕλ,m(y, s)dmα(u, v)dγα(λ,m)

=
∫

K

ϕμ,η(u, v)(
∫

K̂

e−tcλ,mϕ−λ,m(u, v)ϕλ,m(y, s)dγα(λ,m))dmα(u, v)

=
∫

K

ϕμ,η(u, v)F−1(e−tc.,.ϕ− .,.(u, v))(y, s)dmα(u, v)

= F(F−1(e−tc.,.ϕ.,.(y, s)))(−μ, η)

= e−tcμ,ηϕμ,η(y, s).

3.2 The fractional power

For δ > 0, the negative power L-δ of L with respect to the measure dma is defined, as

in [8], by

L−δf (y, s) :=
∫

K̂

P(λ,m)f (y, s)

cδλ,m
ϕλ,m(y, s)dγα(λ,m), f ∈ L2(K, dmα).
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It is not hard to prove that L-δ can be expressed, for f ∈ L2(K, dmα), by means of the

following integral

L−δf (y, s) =
1

�(δ)

∞∫

0

tδ−1Ttf (y, s)dt.

L-δ is also called δth fractional integral associated with L. This kind of fractional inte-

grals has been investigated by several authors ([9-12]).

Corollary 2. If f(y, s) = �l,m(y, s), we have:

L−δϕλ,m(y, s) =
1

cδλ,m
ϕλ,m(y, s).

Proof. The proof is trivial by using �(δ) =
∫ ∞
0 tδ−1e−tdt and the change of variable

u = t
√
cλ,m.

3.3 The Poisson-Laguerre semigroup

The Poisson-Laguerre semigroup {Pt}t≥0, associated to (-L), is given by

Ptf (y, s) := e−tL1/2 f (y, s)

=
∫

K̂

e−tc1/2λ,m[P(λ,m)f ](y, s)dγα(λ,m).

where L1/2 is defined by using the spectral theorem.

Now, by using the Bochner subordination formula

e−β =
β√
4π

∞∫

0

s−3/2e−se−β2/4sds.

After the change of variable w = t2cλ,m
4s

, we obtain:

Ptf (y, s′) =
1√
π

∞∫

0

e−w

√
w
T t2

4w

f (y, s′)dw.

Proposition 3. This semigroup {Pt}t≥0 is also a strongly continuous semigroup on

Lp(K),with infinitesimal generator L1/2.

Proof. We use the fact that T t2
4w

is strongly continuous.

By the definition of the Poisson-Laguerre semigroup {Pt}t≥0 ,we establish also the fol-

lowing result

Corollary 3. For (μ, η) ∈ K̂, we have

Ptϕμ,η(y, s) = e−t
√
cμ,ηϕμ,η(y, s).

Proof. We replace cμ ,h by
√
cμ,η in the proof of Corollary 1, then the result is

immediate.

3.4 The Riesz potential

For δ > 0, the Riesz potential of order δ, Iδ, with respect to the measure dma is defined,

as in the classical case [13], by

Iδ := (−L)−δ/2.
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Proposition 4. The Riesz potential can be also writed as

Iδf (y, s) =
1

�(δ)

∞∫

0

tδ−1Ptf (y, s)dt.

Proof. By using (-L)-δ, we have

Iδ/2f (y, s) =
1

�(δ/2)

∞∫

0

tδ/2−1Ttf (y, s)dt.

After to replace Ptf(y, s) with his expression, the change of variable t′ = t2

4u
and the

property of the function Gamma, we obtain:

1
�(δ/2)

∞∫

0

tδ/2−1Ttf (y, s)dt − 1
�(δ)

∞∫

0

tδ−1Ptf (y, s)dt = 0.

Corollary 4. If f(y, s) = �l,m(y, s), we have

Iδϕλ,m(y, s) =
1

cδ/2λ,m

ϕλ,m(y, s).

Proof. The proof is trivial by using �(δ) =
∫ ∞
0 tδ−1e−tdt and the change of variable

u = t
√
cλ,m.

4 Characterization of the potential spaces Lpδ(K)
4.1 The fractional differentiation

Following the classical case, the fractional differentiation Dδ of order δ > 0 on the

Laguerrre hypergroup is defined formally by

Dδ := (−L)

δ

2 .

Corollary 5. In the case of 0 <δ < 1, we have

Dδϕλ,m(y, s) = cδ/2λ,mϕλ,m(y, s).

Proof. In the case of 0 <δ < 1, we can write using [13] that

Dδf (y, s) =
1
cδ

∞∫

0

t−δ−1(Ptf − f )(y, s)dt. (2)

where

cδ =

∞∫

0

u−δ−1(e−u − 1)du.

By a change of variable u = t
√
cλ,m and the definition of cδ, we have again:

Dδϕλ,m(y, s) = cδ/2λ,mϕλ,m(y, s).

Remark 2. Observe that:

Iδ(Dδf ) = Dδ(Iδf ) = f .
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As an application of the operator fractional derivative Dδ, we will give a characteriza-

tion of the potential spaces Lpδ(K), which is simpler and more powerful, valid for any 1

<p < ∞ and δ ≥ 0.

4.2 Bessel potential space on K
We mention that the Laguerre potential spaces is defined as

Lpδ(K) := {f : (I − L)δ/2f ∈ Lp(K), 1 < p < ∞, δ ≥ 0}

equipped with the norm

||f ||p,δ = ||(I − L)δ/2f ||Lp(K).

Let us define the Laguerre Bessel operator as

(I − L)−δ/2f (y, s) :=
∫

K̂

(1 + cλ,m)
−δ/2P(λ,m)f (y, s)dγα(λ,m)

where cl,m is the homogenous norm of (λ,m) ∈ K̂

Proposition 5. If 0 ≤ δ1 <δ2 then Lpδ2(K) ⊂ Lpδ1(K)for each 1 <p < ∞

Proof. We have

||f ||p,δ1 =
∫

K

|
∫

K̂

(1 + cλ,m)
δ1/2P(λ,m)f (y, s)dγα(λ,m)|pdmα(y, s)

≤
∫

K

|
∫

K̂

(1 + cλ,m)
δ2/2|P(λ,m)f (y, s)|dγα(λ,m)|pdmα(y, s)

= ||f ||p, δ2.

Now, let us establish a relation among different norms of potential spaces.

Proposition 6. Given 1 <p < ∞ and δ ≥ 1, if f ∈ Lpδ(K)then

(i) f ∈ Lpδ−1(K).

(ii) Lf ∈ Lpδ−1(K).

Moreover,

||f ||p,δ−1 + ||Lf ||p,δ−1 ≤ Cp||f ||p,δ.

Proof. (i) is immediate, since Lpδ2 ⊂ Lpδ1 such that δ1 <δ2.

(ii) We use the fact that L is symmetric, F(Lf) = -cl ,mF(f) = -cl,mF(f) and

Lpδ+1(K) ⊂ Lpδ(K), then:

||Lf ||pp,δ−1 = ||(I − L)(δ−1)/2Lf ||pp,δ−1

=
∫

K

|(I − L)(δ−1)/2Lf |pdmα

=
∫

K

|
∫

K̂

(1 + cλ,m)
(δ−1)/2P(λ,m)(Lf )dγα(λ,m)|pdmα(x, t)

=
∫

K

|
∫

K̂

(1 + cλ,m)
(δ−1)/2F(Lf )(λ,m)ϕλ,m(x, t)dγα(λ,m)|pdmα(x, t)

=
∫

K

|
∫

K̂

(1 + cλ,m)
(δ−1)/2cλ,mF(f )(λ,m)ϕλ,m(x, t)dγα(λ,m)|pdmα(x, t)

≤
∫

K

|
∫

K̂

(1 + cλ,m)
(δ−1)/2F(f )(λ,m)ϕλ,m(x, t)dγα(λ,m)|pdmα(x, t)

=
∫

K

|
∫

K̂

(1 + cλ,m)
(δ−1)/2P(λ,m)(f )(x, t)dγα(λ,m)|pdmα(x, t)

= ||Lf ||pp,δ+1
≤ ||f ||pp,δ.
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Then, we get

||f ||p,δ−1 + ||Lf ||p,δ−1 ≤ Cp||f ||p,δ .

Next we show that if f ∈ Lpδ(K) is equivalent to Dδf ∈ Lp(K). The main tool is

Meyer’s multiplier theorem and let us underline that the definition of Dδ on all the

spaces Lpδ(K), 1 <p < ∞, is also based on an application of Meyer’s theorem [13].

Theorem 1. Let δ ≥ 0 and 1 <p < ∞, we have:

f ∈ Lpδ(K)if and only if Dδf ∈ Lp(K)Moreover, there exist a constant Bp,δ and Ap,δ such

that:

Bp,δ||f ||p,δ ≤ ||Dδf ||p(K) ≤ Ap,δ||f ||p,δ .

To prove this result we need the following lemma.

Lemma 1. Let f ∈ Lpδ(K)and ψ = (I - L)δ/2f, for δ ≥ 0 and 1 <p < ∞, then:

(i) Pλ,mDδf = cδ/2λ,mPλ,mf .

(ii) Pl,mψ = (1 + cl,m)
-δ/2 Pl,mf.

Proof.

(i) We have

F(Dδf ) = F((−L)δ/2f )

=< (−L)δ/2f ,ϕ−λ,m > dmα

=< f , (−L)δ/2ϕ−λ,m > dmα

= cδ/2λ,mF(f ).

Then

Pλ,m(Dδf ) = cδ/2λ,mPλ,mf .

(ii) We know that

ψ = (I − L)δ/2f

= F−1[(1 + cλ,m)−δ/2F(f )]

then

F(ψ) = (1 + cλ,m)−δ/2F(f ).

Using the definition of Pl,m, we obtain

Pλ,mψ = (1 + cλ,m)−δ/2Pλ,mf .

Now let to prove the Theorem 1

Proof. Let f ∈ Lpδ(K) and ψ = (I - L)δ/2f, then:

Dδf =
∫

K̂

cδ/2λ,mPλ,mfdγα(λ,m)

=
∫

K̂

(
cλ,m

1 + cλ,m
)
δ/2

Pλ,mψdγα(λ,m).
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Since ||f||p,δ = ||ψ||p, by Meyer’s multipliers theorem and using the multipliers h(z) =

(1 + z)-δ/2, we obtain that:

||Dδf ||p ≤ Ap,δ ||ψ ||p = Ap,δ ||f ||p,δ.

To prove the converse, suppose Dδf ∈ Lp(K) and consider

ψ = (I − L)δ/2f

=
∫

K̂

(1 + cλ,m)
δ/2Pλ,mfdγα(λ,m)

=
∫

K̂

(
1 + cλ,m
cλ,m

)
δ/2

Pλ,m(Dδf )dγα(λ,m).

so by Meyer’s multipliers theorem, using the multiplier h(z) = (z + 1)δ/2, we have:

||f ||p,δ = ||ψ ||p ≤ Bp,δ ||Dδf ||p.

Finally, we can write that

Lpδ(K) = {f : Dδf ∈ Lp(K), δ ≥ 0, 1 < p < ∞}.
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