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Abstract

This article studies the boundary value problems for the third-order nonlinear
singular difference equations

�3u(i − 2) + λa(i)f (i, u(i)) = 0, i ∈ [2,T + 2],

satisfying five kinds of different boundary value conditions. This article shows the
existence of positive solutions for positone and semi-positone type. The nonlinear
term may be singular. Two examples are also given to illustrate the main results. The
arguments are based upon fixed point theorems in a cone.
MSC [2008]: 34B15; 39A10.
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1. Introduction
In this article, we consider the following dynamic equations:

�3u(i − 2) + λa(i)f (i, u(i)) = 0, i ∈ [2,T + 2], (1)

satisfying one of the following boundary value conditions:

u(0) = u(1) = u(T + 3) = 0, (2)

u(0) = u(1) = �u(T + 2) = 0, (3)

u(0) = u(1) = �2u(T + 1) = 0, (4)

u(0) = �2u(0) = �u(T + 2) = 0, (5)

�u(0) = �2u(0) = u(T + 3) = 0, (6)

where a Î C([2, T + 2], (0, + ∞)).

The existence of positive solutions for nonlinear boundary value problems of differ-

ence equation have been studied by several authors. We refer the reader to [1-20] and

references therein. In [16], the authors studied the following boundary value problem:
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�3u(i − 2) + a(i)f (i, u(i)) = 0, i ∈ [2,T + 2] (7)

satisfying one of the boundary value conditions (k) (k = 2, 3, ..., 6) with no singular-

ity. The Green functions are constructed carefully, and some verifiable criteria for the

existence of at least one positive solution and two positive solutions are obtained by

using fixed point theorem.

Recently, some authors studied semi-positone boundary value problem of difference

equations, for instance, see [17-20]

The author [17], studied the following second-order semi-positone boundary value

problems:{
�2u(i − 1) + λf (u(i)) = 0, i ∈ [1, T],

u(0) = u(T + 1) = 0,
(8)

where l > 0 is a parameter, with no singularity, and where f (t, u) ≥ -M with M

being a positive constant. They obtained nonexistence and multiplicity results on sub-

linear nonlinearities and an existence result on superlinear nonlinearities for (8),

respectively.

In [18], the authors are concerned with the discrete third-order three-point boundary

value problem:{
�3u(i) = λg(i)f (u(i)), i = 0, 1, ...,n − 2,

u(0) = �u(p) = �2u(n − 1) = 0,
(9)

where f : (0, ∞) ® (0, ∞) is a continuous function, and p and n are positive integers.

The existence of positive solutions corresponding to the first eigenvalue of the problem

is established, and an interval estimate for the first eigenvalue is obtained. In the non-

linear case, sufficient conditions for the existence and nonexistence of positive solu-

tions are obtained.

It is noted that the boundary value problem (1) with boundary value condition (k)

can be viewed as the discrete analogue of the following boundary value problems for

ordinary differential equation:

u(3)(t) + λa(t)f (t, u(t)) = 0, t ∈ (0, 1), (10)

respectively satisfying the following boundary value conditions

u(0) = u′(0) = u(1) = 0, (11)

u(0) = u′(0) = u′(1) = 0, (12)

u(0) = u′(0) = u′′(1) = 0, (13)

u(0) = u′′(0) = u′(1) = 0, (14)

u′(0) = u′′(0) = u(1) = 0. (15)

In engineering, the equation (10) describes an elastic beam in an equilibrium state

both the ends of which are simply supported.
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Motivated by the results above mentioned, we study the boundary value problems

(1), in which nonlinear term may be singularity. In this article, we shall prove our two

existence results for the problem (1) using Krasnosel’skii’s fixed point theorem. This

article is organized as follows. In section 2, starting with some preliminary lemmas, we

state the Krasnosel’skii’s fixed point theorem. In Section 3, we give the sufficient condi-

tions which state the existence of multiple positive solutions to the positone boundary

value problem (1). In Section 4, we give the sufficient conditions which state the exis-

tence of at least one positive solutions to the semi-positone boundary value problem

(1).

2. Preliminaries
In this section, we state the preliminary information that we need to prove the main

results. From Definition 2.1 in [10], we have the following lemmas.

Lemma 2.1 u(i) is a solution of equation (1) with boundary value condition (k) if

only and if

u(i) =
T+2∑
j=2

Gk(i, j)a(j)f (j, u(j)), i ∈ [0,T + 3]; (16)

where k = 2, ..., 6, and

G2(i, s) =

⎧⎨
⎩

i(i−1)(T+3−j)(T+4−j)
2(T+3)(T+2) − (i−j)(i−j+1)

2 , 0 ≤ j < i,

i(i−1)(T+3−j)(T+4−j)
2(T+3)(T+2) , i ≤ j ≤ T + 3;

G3(i, j) =

⎧⎨
⎩

i(i−1)(T+3−j)
2(T+2) − (i−j)(i−j+1)

2 , 0 ≤ j < i,

i(i−1)(T+3−j)
2(T+2) , i ≤ j ≤ T + 3;

G4(i, j) =

{ i(i−1)
2 − (i−s)(i−j+1)

2 , 0 ≤ j < i,
i(i−1)

2 , i ≤ j ≤ T + 3;

G5(i, j) =

{
i(T + 3 − j) − (i−j)(i−j+1)

2 , 0 ≤ j < i,

i(T + 3 − j), i ≤ j ≤ T + 3;

G6(i, j) =

{ (T+3−j)(T+4−j)
2 − (i−j)(i−j+1)

2 , 0 ≤ j < i,
(T+3−j)(T+4−j)

2 , i ≤ j ≤ T + 3.

Lemma 2.2 [10] For k = 2, ..., 6, we have the conclusions:

0 ≤ Gk(i, j) ≤ gk(j), (i, j) ∈ [0,T + 3] × [2,T + 2],

Gk(i, j) ≥ Mkgk(j), (i, j) ∈ [2,T + 2] × [2,T + 2],

where

g2(j) = G2(τ (j), j), τ (s) = [4T
2+28T+48−4j
8T+24−4j ], M2 = 2

(T+1)(T+2) ,

g3(j) =
(T+3−j)(j−1)

2 , M3 = 2
(T+1)(T+2) ,

g4(j) =
(2T+6−j)(j−1)

2 , M4 = 1
(T+1)(T+2) ,

g5(j) =
(T+3−j)(T+2+j)

2 , M5 = 2
T+2 ,

g6(j) =
(T+3−j)(T+4−j)

2 , M6 = 2
(T+2) .
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From Lemma 2.2, it is easy to verify the following lemma.

Lemma 2.3 For k = 2, ..., 6, the Green’s function Gk(i, j) has properties

0 < M0hk(i)gk(j) ≤ Gk(i, j) ≤ hk(i), (i, j) ∈ [0,T + 3] × [2,T + 2],

where M0 = min
2≤k≤6

{M∗
k} and

h2(i) = i(i− 1), M∗
2 = M2

(T+3)2
,

h3(i) = i(i− 1), M∗
3 = M3

(T+3)2
,

h4(i) = i(i− 1), M∗
4 = M4

(T+3)2
,

h5(i) = (T + 3)i, M∗
5 = M5

T+3 ,

h6(i) = (T + 4)(T + 3 − i), M∗
6 = M6

T+4 .

For our constructions, we shall consider the Banach space E = C[0, T + 3] equipped

with the standard norm‖u‖ = max
0≤i≤T+3

∣∣u(i)∣∣ , u ∈ E. We define a cone Pk (k = 2, ..., 6) by

Pk = {u ∈ X
∣∣u(i) ≥ M0hk(i) ‖u‖ , i ∈ [0,T + 3]}.

We note that u(i) is a solution of (1) with boundary value condition (k) (k = 2, ..., 6)

if and only if

u(i) = λ

T+2∑
j=2

Gk(i, j)a(j)f (j, u(j)). (17)

The following theorems will play major role in our next analysis.

Theorem 2.4 [21] Let X be a Banach space, and let P ⊂ X be a cone in X. Let Ω1,

Ω2 be open subsets of X with 0 Î Ω1 ⊂ �̄1 ⊂ �2, and let S : P ® P be a completely

continuous operator such that, either

1. ||Sw|| ≤ ||w||, w Î P ∩ ∂Ω1, ||Sw|| ≥ ||w||, w Î P ∩ ∂Ω2, or

2. ||Sw|| ≥ ||w||, w Î P ∩ ∂Ω1, ||Sw|| ≤ ||w|| w Î P ∩ ∂Ω2.

Then S has a fixed point in P ∩ �̄2\�1.

3. Singular positone problems
Theorem 3.1 Let us assume that the following conditions are satisfied,

(H1) f Î C([2, T + 2] × (0, +∞), [0, +∞));

(H2) f (i, u) ≤ K(i)(g(u) + h(u)) on [2, T + 2] × (0, ∞) with g > 0 continuous and non-

increasing on (0, ∞), h ≥ 0 continuous on [0, ∞] and h
g non-decreasing on (0, ∞), ∃ K0

with g(xy) ≤ K0g(x)g(y) ∀x > 0, y > 0;

(H3) There exists [a, b] ⊂ [2, T + 2] such that lim
u→+∞ inf f (i,u)

u = +∞ for i Î [a, b];

and

(H4) There exists [a1, b1] ⊂ [2, +2] such that lim
u→0+

inf f (i,u)
u = +∞ for i Î [a1, b1].

Then for each r > 0, there exists a positive number l* such that the problem (1) with

boundary value condition (k) (k = 2, ..., 6) has at least two positive solutions for 0 <l
<l*.
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Proof. Now, we let k Î [2,6] and define the integral operator Tk : Pk ® E by

Tku(i) = λ

T+2∑
j=2

Gk(i, j)a(j)f (j, u(j)),

where Pk = {u Î X | u(i) ≥ M0hk(i)||u||, i Î [0, T + 3]}.

It is easy to check that Tk(Pk) ⊂ Pk. In fact, for each u Î Pk, we have by Lemma 2.2

that

Tku(i) ≤ λ

T+2∑
j=2

gk(j)a(j)f (j, u(j)).

This implies ||Tku|| ≤ λ
T+2∑
j=2

gk(j)a(j)f (u(j)). On the other hand, we have

Tku(i) ≥ M0hk(i)λ
T+2∑
j=2

gk(j)a(j)f (j, u(j)).

Thus we have Tk(Pk) ≥ Pk. In addition, standard argument show that Tk is completely

continuous.

For any r > 0 given, and take Ωr = {u Î E | ||u|| <r}. Choose

λ∗ =
r

K2
0g(M0)

T+2∑
j=2

gk(j)a(j)K(j)g(hk(j))(g(r) + h(r))

.
(18)

For u Î P ∩ ∂Ωr. From (H2) and (18), we have

Tku(i) = λ

T+2∑
j=2

Gk(i, j)a(j)f (j, u(j))

≤ λ

T+2∑
j=2

gk(j)a(j)K(j)g(u)(1 + h(u)
g(u) )

≤ λ

T+2∑
j=2

gk(j)a(j)K(j)g(M0hk(j)r)(1 + h(r)
g(r) )

≤ λK2
0g(M0)

T+2∑
j=2

gk(j)a(j)K(j)g(hk(j))(g(r) + h(r))

< r.

Thus,

||Tku|| < ||u||for u ∈ Pk ∩ ∂�r . (19)

Further, choose a constant M* > 0 satisfying that

λM∗M0σ max
0≤i≤T+3

{
β∑
j=α

Gk(i, j)a(j)} > 1, (20)

where σ = min
α≤i≤β

{hk(i)}.
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From lim
u→+∞ inf f (i,u)u = +∞for i Î [a, b], namely (H3), there is a constant L >r such

that

f (i, x) ≥ M∗x, ∀x ≥ L, i ∈ [α, β].

Let R = r + L
M0σ

and ΩR = {u Î E | ||u|| <R}. For u Î Pk ∩ ∂ΩR, we have that

u(i) ≥ M0hk(i)||u|| ≥ M0Rhk(i) ≥ M0Rσ ≥ L, i ∈ [α,β].

It follows that

f (i, u(i)) ≥ M∗u(i) ≥ M∗M0Rσ , i ∈ [α, β].

Then, for u Î P ∩ ∂ΩR, we have

||Tku|| = λ max
0≤i≤T+3

{
T+2∑
j=2

Gk(i, j)a(j)f (j, u(j))}

≥ λ max
0≤i≤T+3

{
β∑
j=α

Gk(i, j)a(j)f (j, u(j))}

≥ λ max
0≤i≤T+3

{
β∑
j=α

Gk(i, j)a(j)M∗M0Rσ }

≥ λM∗M0Rσ max
0≤i≤T+3

{
β∑
j=α

Gk(i, j)a(j)}

≥ R.

Therefore, by the first part of the Fixed Point Theorem 2.4, Tk has a fixed point u2
with r ≤ ||u2|| ≤ R.

Finally, choose a constant M* > 0 satisfying that

λM∗M0 max
0≤i≤T+3

{
β1∑
j=α1

Gk(i, j)a(j)hk(j)} > 1. (21)

By (H4), i.e., lim
u→0+

inf f (i,u)u = +∞ for i Î [a1, b1], there is a constant δ > 0 and δ <r

such that

f (i, u) ≥ M∗u, ∀u ≤ δ, i ∈ [α1, β1].

Let r∗ = δ
2 and �r∗ = {u ∈ E| ||u|| < r∗}. For u ∈ Pk ∩ ∂�r∗, we have

u(i) ≥ M0hk(i)||u|| ≥ M0r∗hk(i).

It follows that

f (i, u(i)) ≥ M∗u(i) ≥ M∗M0r∗hk(i), i ∈ [α1, β1].
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Then, for u ∈ Pk ∩ ∂�r∗, we have

||Tku|| = λ max
0≤i≤T+3

{
T+2∑
j=2

Gk(i, j)a(j)f (j, u(j))}

≥ λ max
0≤i≤T+3

{
β1∑
j=α1

Gk(i, j)a(j)f (j, u(j))}

≥ λ max
0≤i≤T+3

{
β1∑
j=α1

Gk(i, j)a(j)M∗M0r∗hk(j)}

≥ λM∗M0r∗ max
0≤i≤T+3

{
β1∑
j=α1

Gk(i, j)a(j)hk(j)}

≥ r∗.

Therefore, by the first part of the Fixed Point Theorem 2.4, Tk has a fixed point u1
with r* ≤ ||u1|| ≤ r. It follows from (19) that ||u1|| ≠ r.

Then for each r > 0, there exists a positive number l* such that the problem (1) with

boundary value condition (k) (k = 2, ..., 6) has at least two positive solutions un (n = 1,

2) with r* ≤ ||u1|| <r ≤ ||u2|| ≤ R for 0 <l <l*.
This completes the proof of the theorem.

From the proof of Theorem 3.1, we have the following result.

Corollary 3.2 Assume that (C1)-(C2) hold. Further, suppose that (H1)-(H3) are

satisfied. Then for each r > 0, there exists a positive number l* such that the problem

(1) with boundary value condition (k) has at least one positive solution for 0 <l <l*.
Corollary 3.3 Assume that (C1)-(C2) hold. Further, suppose that (H1)-(H2) and (H4)

are satisfied. Then for each r > 0, there exists a positive number l* such that the problem

(1) with boundary value condition (k) has at least one positive solution for 0 <l <l*.

Remark Condition (H3) shows that f have the property lim
u→+∞ inf f (i,u)u = +∞ for i Î [a,

b]; condition (H4) shows that f have the property lim
u→0+

inf f (i,u)u = +∞ for i Î [a1, b1].

Example 3.1 Consider the boundary value problem:

−�3u(i − 2) = λa(i)(c(i)u−a + d(i)ub(sin2u + 1)), i ∈ [2, T + 2], (22)

with boundary value condition (k), where 0 <a < 1 <b are constants, and

c(i) =
{
1, i ∈ [2, T],
0, i ∈ [T + 1, T + 2],

d(i) =
{
0, i ∈ [2, T − 2],
1, i ∈ [T − 2, T + 2].

Then for each r >, there exists a positive number l* such that the problem (22) has

at least two positive solutions for 0 <l <l*.
In fact, it is clear that

f (i, u) = c(i)u−a + d(i)ub(sin2u + 1)

and

lim
u→0+

f (i, u)
u

= +∞ for [α, β] = [2, T] ⊂ [2, T + 2];

lim
u→+∞

f (i, u)
u

= +∞ for [α1, β1] = [T − 2, T + 2] ⊂ [2, T + 2].
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Let K(i) = 1, g(u) = u-a and h(u) = 2ub, we have

f (i, u) ≤ K(i)(g(u) + h(u)), K(i) = 1

and g > 0 continuous and non-increasing on (0, ∞), h ≥ 0 continuous on (0, ∞) and
h
g = 2ua+b non-decreasing on (0, ∞); K0 = 1 with g(xy) = g(x)g(y) ≤ K0g(x)g(y) ∀x > 0, y

> 0;

Then, by Theorem 3.1, for each r > 0 given, we choose

λ∗ =
Ma

0r
1+a

(1 + 2ra+b)
T+2∑
j=2

gk(j)a(j)h
−a
k (j)

,

such that the problem (22) has at least two positive solutions for 0 <l <l*.

4. Singular semi-positone problems
Before we prove our next main result, we first state a result.

Lemma 4.1 The difference equation

−�3u(i − 2) = λa(i)e(i), i ∈ [2, T + 2], (23)

with boundary value condition (k) has a solution w with w(t) ≤ c0hk(i), where

c0 =
T+2∑
j=2

a(j)e(j).

In fact, from Lemma 2.1, equation (23) has the solution:

w(t) =
T+2∑
j=2

Gk(i, j)a(j)e(j).

According to Lemma 2.3, we have

w(t) ≤ hk(i)
T+2∑
j=2

a(j)e(j) = c0hk(i).

Theorem 4.2 Assume that the following conditions are satisfied:

(B1) f : [2, T + 2] × (0, ∞) ® R is continuous and there exists a function e Î C([2, T

+ 2], (0, +∞)) with f (i, u) + e(i) ≥ 0 for (i, u) Î [2, T + 2] × (0, ∞);

(B2) f * (i, u) = f (i, u) + e(i) ≤ K(i)(g(u) + h(u)) on [2, T + 2] × (0, ∞) with g > 0 con-

tinuous and non-increasing on (0, ∞), h ≥ 0 continuous on [0, ∞) and h
g non-decreasing

on (0, ∞);

(B3) ∃ K0 with g(xy) ≤ K0g(x)g(y) ∀x > 0, y > 0;

(B4) There exists [a, b] ⊂ [2, T + 2] such that lim
u→+∞ inf f (i,u)u = +∞ for i Î [a, b].

Then for each r > 0, there exists a positive number l* such that the problem (1) with

boundary value condition (k) has at least one positive solution for 0 <l <l*.
Proof. To show (1) with boundary value condition that (k) has a non-negative solu-

tion, we will look at the equation:

−�3y(i − 2) = λa(i)f ∗(i, y(i) − ϕ(i)), i ∈ [2, T + 2], (24)

with boundary value condition (k), where �(i) = lw(i); w is as in Lemma 4.1.
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We let fixed k Î [2,6]. We will show, using Theorem 2.4, that there exists a solution

y to (24) with y(i) >�(i) for i Î [2, T + 2]. If this is true, then u(i) = y(i) - �(i) (0 ≤ i ≤

T + 4) is a non-negative solution (positive on [2, T+2]) of (1), since

−�3u(i − 2) = −�3(y(i − 2) − ϕ(i − 2))

= λa(i)f ∗(i, y(i) − ϕ(i)) − λa(i)e(i)

= λa(i)[f (i, y(i) − ϕ(i)) + e(i)] − λa(i)e(i)

= λa(i)f (i, y(i) − ϕ(i))

= λa(i)f (i, u(i)), i ∈ [0, T + 4].

Next let Tk : K ® E be defined by

(Tky)(i) = λ

T+2∑
j=2

Gk(i, j)a(j)f ∗(s, y(s) − ϕ(s)), 0 ≤ i ≤ T + 3.

In addition, standard argument shows that Tk(Pk) ⊂ Pk and Tk is completely

continuous.

For any r > 0 given, let

�r = {y ∈ E| ||y|| < r}

and choose

λ∗ = min
{
M0r
2c0

,
r

K2
0a0(g(r) + h(r))

}
, (25)

where a0 = g(M0
2 )

T+2∑
j=2

gk(j)a(j)K(j)g(hk(j)).

We now show that

||Tky|| ≤ ||y||for y ∈ Pk ∩ ∂�r . (26)

To see this, let y Î Pk ∩ ∂Ωr. Then ||y|| = r and y(t) ≥ M0hk(i)r for i Î [0, T + 3].

For i Î [0, T + 3], the Lemma 4.1 and (25) imply that

y(i) − ϕ(i) ≥ M0rhk(i) − λc0hk(i) ≥ (M0r − λc0)hk(i) ≥ M0r
2 hk(i) > 0,

and hence, for i Î [0, T + 4], we have

(Tky)(i) = λ

T+2∑
j=2

Gk(i, j)a(j)f ∗(j, y(j) − ϕ(j))

≤ λ

T+2∑
j=2

gk(j)a(j)K(j)[g(y(j) − ϕ(j)) + h(y(j) − ϕ(j))]

= λ

T+2∑
j=2

gk(j)a(j)K(j)g(y(j) − ϕ(j)){1 + h(y(j)−ϕ(j))
g(y(j)−ϕ(j))}

≤ λ

T+2∑
j=2

gk(j)a(j)K(j)g(
M0r
2 hk(j)){1 + h(r)

g(r) }ds

≤ λK2
0g(

M0
2 )(g(r) + h(r))

T+2∑
j=2

gk(j)a(j)K(j)g(hk(j))

= λK2
0a0(g(r) + h(r)) ≤ r.

This yields ||Tky|| ≤ r = ||y||, and so (26) is satisfied.
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Further, choose a constant M* > 0 satisfying that

λM∗M0

2
σ max

0≤i≤T+3
{

β∑
j=α

Gk(i, j)a(j)} > 1, (27)

where σ = min
α≤i≤β

{hk(i)}.
By (B4), there is a constant L > 0 such that

f ∗(i, x) ≥ M∗x, ∀x ≥ L, i ∈ [α, β].

Let R = r + 2L
M0σ

and ΩR = {y Î E | ||y|| <R}.

Next we show that

||Tky|| ≥ ||y|| for y ∈ Pk ∩ ∂�R. (28)

To verify this, let y Î Pk ∩ ∂ΩR. Then have

y(i) − ϕ(i) ≥ M0hk(i)||y|| − λc0hk(i) ≥ M0

2
Rhk(i) ≥ M0

2
Rσ ≥ L, i ∈ [α, β].

It follows that, for y Î Pk ∩ ∂ΩR, we have

f ∗(i, y(i) − ϕ(i)) ≥ M∗(y(i) − ϕ(i)) ≥ M∗M0

2
Rσ , i ∈ [α, β].

Then, we have

||Tky|| = λ max
0≤i≤T+3

{
T+2∑
j=2

Gk(i, j)a(j)f ∗(j, y(j) − ϕ(j))}

≥ λ max
0≤i≤T+3

{
β∑
j=α

Gk(i, j)a(j)f ∗(j, y(j) − ϕ(j))}

≥ λ max
0≤i≤T+3

{
β∑
j=α

Gk(i, j)a(j)M∗ M0
2 Rσ }

≥ λM∗ M0
2 Rσ max

0≤i≤T+3
{

β∑
j=α

Gk(i, j)a(j)}

≥ R.

This yields ||Tky|| ≥ ||y||, and so (28) holds.

Therefore, by the first part of the Fixed Point Theorem 2.4, Tk has a fixed point y

with r ≤ ||y|| ≤ R. Since

y(i) − ϕ(i) ≥ M0hk(i)r − λc0hk(i) ≥ (M0r − λc0)hk(i) > 0, i ∈ [0, T + 3].

In other words, u = y - � is a positive solution of the problem (1) with boundary

value condition (k).

This completes the proof of the theorem.

Example 4.1. Consider the boundary value problem:

−�3y(i − 2) = λa(i)(u−a + c(i)ub − sin(iu + i
1
2 )) = 0, i ∈ [2, T + 2], (29)
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with boundary value condition (k). Where 0 <a < 1 <b are constants and

c(i) =
{
1, i ∈ [2, T],
0, other.

Then for each r >, there exists a positive number l* such that the problem (29) has

at least one positive solution for 0 <l <l*.
To verify this, we will apply Theorem 4.2 (here l* > 0 as will be chosen later). Let

f (i, u) = u−a + c(i)ub − sin(iu + i
1
2 ),

then condition (B1) holds. Next, we let

g(u) = u−a, h(u) = ub + 2, K(i) = 1, e(i) = 1, K0 = 1.

It is clear that 0 ≤ f (i, u) + e(i) ≤ K(i)(g(u) + h(u)), g(xy) ≤ K0g(x)g(y), and

lim
u→+∞ inf f (i,u)u = +∞, i Î [a, b] = [2, T] ⊂ [2, T + 2] hold, i.e., conditions (B1)-(B4)

hold. Thus, all the conditions of Theorem 4.2 are satisfied.

For each r > given, let

λ∗ = min
{

C2r
2c0C1

,
r

K0a0(g(r) + h(r))

}
,

where

c0 =
T+2∑
j=2

a(j), a0 = g(
M0

2
)
T+2∑
j=2

gk(j)a(j)h−α
k (j).

Now Theorem 4.2 guarantees that the above equation has positive solution for 0 <l
<l*.
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