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1. Introduction and preliminaries
One of the most interesting questions in the theory of functional analysis concerning
the Ulam stability problem of functional equations is as follows: When is it true that a
mapping satisfying a functional equation approximately must be close to an exact solu-
tion of the given functional equation?

The first stability problem concerning group homomorphisms was raised by Ulam
[1] in 1940 and affirmatively solved by Hyers [2]. The result of Hyers was generalized
by Aoki [3] for approximate additive mappings and by Rassias [4] for approximate lin-
ear mappings by allowing the difference Cauchy equation || fix; + x3) - floe) - flxn) ||
to be controlled by & (|| 1 [|P + || #2 ||¥). Taking into consideration a lot of influence
of Ulam, Hyers and Rassias on the development of stability problems of functional
equations, the stability phenomenon that was proved by Rassias is called Hyers-Ulam
stability or Hyers-Ulam-Rassias stability of functional equations. In 1994, a generaliza-
tion of the Rassias’ theorem was obtained by Gavruta [5], who replaced ¢ (|| x; ||” + ||
x5 ||”) by a general control function ¢(x;, x,).

Quadratic functional equations were used to characterize inner product spaces [6]. A
square norm on an inner product space satisfies the parallelogram equality ||x; + x|
+ ||%1 - %2]|* = 2(]|x1]|* + [|x1]|?). The functional equation

fle+y)+flx—y) = 2f(x) + 2f(¥) (1.1)

is related to a symmetric bi-additive mapping [7,8]. It is natural that this equation is
called a quadratic functional equation, and every solution of the quadratic equation
(1.1) is said to be a quadratic mapping.

It was shown by Rassias [9] that the norm defined over a real vector space X is

induced by an inner product if and only if for a fixed integer n > 2
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for all x4,..., x,, € X.
Let K be a field. A non-Archimedean absolute value on K is a function | | : K — R
such that for any 4, b € K, we have

(i)|a| = 0 and equality holds if and only if a = 0,
(ii) |ab| = |a||b],

(iii) |a + b| < max{|al, |b|}.

The condition (iii) is called the strict triangle inequality. By (ii), we have |1| = | - 1]
= 1. Thus, by induction, it follows from (iii) that |#| < 1 for each integer n. We always
assume in addition that | | is non-trivial, i.e., that there is an ao € K such that |ay| = 0,
1.

Let X be a linear space over a scalar field K with a non-Archimedean non-trivial
valuation |-|. A function || - || : X = R is a non-Archimedean norm (valuation) if it
satisfies the following conditions:

(NA1) ||%|| = 0 if and only if x = 0;
(NA2) ||rx]| = |7|||x|| for all r e KR and x € X;
(NA3) the strong triangle inequality (ultrametric); namely,

x+y < max{llx [l Iy} (xyeX).

Then (X, || - ||) is called a non-Archimedean space.
Thanks to the inequality

| xm — 2 I< max{|| xjp1 —x 1 I<j<m—1} (m>])

a sequence {x,,} is Cauchy in X if and only if {x,,,1 - x,,} converges to zero in a non-
Archimedean space. By a complete non-Archimedean space, we mean a non-Archime-
dean space in which every Cauchy sequence is convergent.

In 1897, Hensel [10] introduced a normed space which does not have the Archime-
dean property.

During the last three decades, the theory of non-Archimedean spaces has gained the
interest of physicists for their research in particular in problems coming from quantum
physics, p-adic strings and superstrings [11]. Although many results in the classical
normed space theory have a non-Archimedean counterpart, their proofs are essentially
different and require an entirely new kind of intuition [12-16].

The main objective of this paper is to prove the Hyers-Ulam stability of the following
functional equation related to inner product spaces

D f|wi- ,11 Do | = Do) —nf (111 Z&) (1.2)
i=1 j=1 i=1 i=1

(me N, n > 2) in non-Archimedean normed spaces. Interesting new results concern-
ing functional equations related to inner product spaces have recently been obtained



Gordji et al. Advances in Difference Equations 2011, 2011:37
http://www.advancesindifferenceequations.com/content/2011/1/37

by Najati and Rassias [17] as well as for the fuzzy stability of a functional equation
related to inner product spaces by Park [18] and Eshaghi Gordji and Khodaei [19].
During the last decades, several stability problems for various functional equations
have been investigated by many mathematicians (see [20-49]).

2. Hyers-Ulam stability in non-Archimedean spaces

In the rest of this paper, unless otherwise explicitly stated, we will assume that G is an
additive group and that X is a complete non-Archimedean space. For convenience, we
use the following abbreviation for a given mapping f: G — X:

Af(xl,...,x,,)=Zf xi—rllej —Zf(x1)+nf(;2xl)
i=1 j=1 i=1

i=1

for all x4,..., x, € G, where n > 2 is a fixed integer.

Lemma 2.1. [17]. Let V and V, be real vector spaces. If an odd mapping f: Vi — V,
satisfies the functional equation (1.2), then f is additive.

In the following theorem, we prove the Hyers-Ulam stability of the functional equa-
tion (1.2) in non-Archimedean spaces for an odd case.

Theorem 2.2. Let ¢ : G” — [0, ) be a function such that

2"x1,2Mx,, ..., 2Mx . 1
lim #2727 W o= lim L e@m (2.1)

m— o0 [2|™ m—oo |2|™

for all x, x1, xy,..., x, € G, and
Ja(x) = i Lok o<k 2.2
Palx) = lim max{ ), @(2) 0 <k <m (2.2)
exists for all x € G, where

1
®(x) := max {(p(2x, 0,...,0), 2] max{ne(x,x,0,...,0), 2.3)

o(x, —x, ..., —x), 0(—xx,...,%)}}
for all x € G. Suppose that an odd mapping f: G — X satisfies the inequality
| Af(x1, ... %0) IS @(x1,%2, ..., %n) (2.4)

for all x1, x,,.., x, € G. Then there exists an additive mapping A : G — X such that

I F(x) — A(x) 1< |;gba(x) (2.5)

forall x € G, and if

£— 00 M—>00

1
lim lim max{|2|kcb(2kx) :E§k<m+Z} =0 (2.6)

then A is a unique additive mapping satisfying (2.5).
Proof. Letting x; = nxy, xi =nx; (i=2,...,n)in (2.4) and using the oddness of f, we
obtain that
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I nf (er + (n— 1)xs) + f((n — 1)(x1 —«'1)) — (n = 1)f (%1 — 1)

, , (2.7)
—f(nx1) — (n — 1)f(nx'1) || < @(nxy, nx'y, ..., nx'y)

for all x1,x) € G. Interchanging x; with x} in (2.7) and using the oddness of f, we get

I nf((n— 1)xy +x1) = f((n = 1) (21 —x'1)) + (n — 1)f (x1 — x'1)

(2.8)
—(n—=1Df(nx1) — f(nx'1) I|I< o(na'1,nx1,...,1x1)

for all x1,x) € G. It follows from (2.7) and (2.8) that

IFnf Qe+ (n—1)x'1) —nf ((n — 1)xy +2'1) + 2f((n — 1)(x1 — 1))
—2(n—1)f(x1 —x'1) + (n — 2)f (nx1) — (n — 2)f (nx'1) || (2.9)

< max{p(nxy, nx'y, ..., nx'1), o(nx'y, nxy, ..., nx1)}

for all x1,x] € G. Setting x; = nxy, X2 = —nx}, x; = 0 (i = 3,..., n) in (2.4) and using the
oddness of f, we get

I f((n—1)x1 +x'1) — f(xer + (n— 1)a'1) + 2f (01 — &'1)

—f(nx1) + f(nx'1) |< @(nx;, —nx'1,0,...,0) (2.10)
for all x1,%, € G. It follows from (2.9) and (2.10) that
1f((n=1)(x1 —x'1)) +f (o1 —x'1) = f(nxr) + f (') |l
< é' max{ne(nx;, —nx'1,0,...,0), (2.11)

o(nxy,nx'y, ..., nx'1), o(nx'1,nxy, ..., nx1)}
for all x1, ) € G. Putting x; = n(x; —x}), x; = 0 (i = 2,..., n) in (2.4), we obtain
I f(n(x1 —x7)) = f((n = 1)(x1 — x1)) = f((x1 — x1)) 1= @(n(x1 —x7),0,...,0) (2.12)
for all x1,x) € G. It follows from (2.11) and (2.12) that
I f(n(xy — x'1)) = f(nxr) + f(nx'1) ||

n
< max{go(n(xl -%1),0,...,0), 2|<p(nx1,—nx/1,0,...,0),

| (2.13)

2| max{g(nxy, nx'y, ..., nx'1), (nx'y, nxy, .. ., nxl)}}

—X
n

for all x1,x] € G. Replacing x, and x} by ; and

I f(2x) — 2f (x) [I< max{e(2x,0, ..., 0),

in (2.13), respectively, we obtain

1
2] max{ne(x,x,0,...,0), ¢(x, —x, ..., —x), o(—x,x,...,x)}}

for all x € G. Hence,

f(iJC) _ < Lo (2.14)

@) <,

for all x € G. Replacing x by 2”'x in (2.14), we have

F@" %) _ f(2")

2m71 om

1

< |2|md>(2m_1x) (2.15)
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for all x € G. It follows from (2.1) and (2.15) that the sequence {f(izx)} is Cauchy.
Since X is complete, we conclude that {f(ﬁx)} is convergent. So one can define the

mapping A : G — X by A(x) := limp_ ﬂ;:x) for all x € G. It follows from (2.14) and
(2.15) that

(2"x)
2"1

lreo -1

1 1 ' }
< max D(2°x):0<k<m (2.16)
12| {|2|k (29

for all m € N and all x € G. By taking m to approach infinity in (2.16) and using
(2.2), one gets (2.5). By (2.1) and (2.4), we obtain

. 1
I AAGer %2, x) | = lim 2 | Af(2™x1,2™xs, ..., 2Mx,) ||

1
< i m m m _
_nll_r)rgo |2|m<p(2 x1,2"x0,...,2"x,) =0

for all %y, x5,..., x, € G. Thus, the mapping A satisfies (1.2). By Lemma 2.1, A is
additive.
If A’ is another additive mapping satisfying (2.5), then

IA@) = A'(x) || = lim 127 | A(2%) = A'(2%) |
= lim 1217 max{|| A(2%) — f(2"%) I 1 f(2'%) = Q' (2"%) I}

1
lim lim max{ |2|k(ﬁ(zkx) L <k< m+£} =0

2] tooom—o0

forallx e G, Thus A = A’ O
Corollary 2.3. Let p : [0, ) — [0, o) be a function satisfying

Q) p (1210 < p(12)p(®) for all t = 0,
(@) p(12]) <|2].

Let ¢ >0 and let G be a normed space. Suppose that an odd mapping f: G — X satis-
fies the inequality

I AfGer, - ox) 1< p(ll i)

for all x1,..., x,, € G. Then there exists a unique additive mapping A : G — X such

that
1) =A@ 1= " eo(l 1)
forall x e G.
Proof. Defining ¢ : G" — [0, =) by ¢(x1,...,%,) =& > iy p(ll x; ), we have
lim |21|m¢(zmx1,...,zmxn) < lim (p(|‘|22||))m<p(x1,...,xn) -0
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for all x4,..., x, € G. So we have
- . 1 k
@a(x) := lim max L P(2%) 10 <k <mp =D(x)
m— 0o |2|
and

{— 00 M—>00

1 1
lim lim max{ kd>(2kx):£§k<m+£} = lim Edb(zéx):O
12 >0 |2]

|2

for all x € G. It follows from (2.3) that

®(x) = max yep(|| 2x |)), é' max{2nep(l| x 1), nep(ll x 1), nep(ll x II)}}

= max { ep(]l 2x |1, é' max(2nep( x 1), nep(ll x ||)}}

= max { ep(]l 2x ), |;znep(n x ||)} = fznlsp(n x1I)-

Applying Theorem 2.2, we conclude that

1 1 2n

1) = AR =y @) =, @0 =

2 en(ll 1)

forallx e G. O

Lemma 2.4. [17]. Let V; and V, be real vector spaces. If an even mapping f: Vi —
V, satisfies the functional equation (1.2), then f is quadratic.

In the following theorem, we prove the Hyers-Ulam stability of the functional equa-
tion (1.2) in non-Archimedean spaces for an even case.

Theorem 2.5. Let ¢ : G" — [0, ) be a function such that

. 9(2™x1,2"x5, ..., 2Mxy) . 1
nlgrolo |2|2m =0= rgr;o |2|2m(p(2m x) (2'17)
for all x, x1, x5,..., x, € G, and
1
Bqlx) = r}ijrgomax{ |2|2k¢(2kx) c0<hk< m} (2.18)

exists for all x € G, where

5() = ! { ! o(nxn,0,....,0)
X) = max nx,nx,v,..., ,
P 21% (2.19)

¢(nx,0,...,0),¢(x, (n—1)x,0,...,0), ¥(x)}

and

W (x) := |1

) max{ng(nx,0,...,0),¢(nx,0,...,0),¢(0,nx,...,nx)} (2.20)

for all x € G. Suppose that an even mapping f: G — X with f(0) = 0 satisfies the
inequality (2.4) for all xi, xy,..., x,, € G. Then there exists a quadratic mapping Q : G
— X such that
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uﬂm—QmuséﬂMm (2.21)

forall x € G, and if

{— 00 M—>00

1
lim lim max{ |2|2k¢(2kx) U <k<m +€} =0 (2.22)

then Q is a unique quadratic mapping satisfying (2.21).
Proof. Letting x1 = nxy, x; = nxy (i = 2,.., n) in (2.4) and using the evenness of f, we
obtain
I nf(x1 + (n = 1)x2) + f((n — 1) (x1 — x2)) + (n — 1)f (x1 — x2)

(2.23)
—f(nx1) — (n — 1)f(nx2) |< g(nx1, nxa, ..., nx2)

for all x1, x, € G. Interchanging x; with x, in (2.23) and using the evenness of f, we

obtain

I nf((n— D)x1 +x2) +f((n— 1)(x1 —x2)) + (n — 1)f (x1 — x2) (2.24)
—(n—1)f(nx1) — f(nx2) < @(nxz, nx1, ..., nx1) '

for all x;, x5 € G. It follows from (2.23) and (2.24) that
| nf((n — D)xg +x2) +nf(x1 + (n— Dxa) + 2f ((n — 1)(x1 — x2))
+2(n — 1)f (%1 — x2) — nf(nx1) — nf(nx2) || (2.25)
< max{p(nxy, nxy, ..., nxy), ¢(nxy, nxy, ..., nx1)}
for all x1, x, € G. Setting x1 = nxy, xy = -nxy, x; = 0 (i = 3,..., ) in (2.4) and using the
evenness of f, we obtain

| f((n—1)x1 +x2) +f(x1 + (n— 1)x2) + 2(n — 1)f(x1 — x2)

(2.26)
_f(nxl) _f(nXZ) ”f (ﬂ(”xlz —nx2,0,..., 0)
for all x;, ¥y € G. So we obtain from (2.25) and (2.26) that
1f((n=1)(x1 —x2)) = (n = 1)*f(x1 —x2) |
1
< 2] max{ng(nx;, —nx,,0,...,0), (2.27)
o(nxq, nxy, ..., nxy), p(nxy, nxy, ..., nx1)}
for all x;, x, € G. Setting x; = x, x, = 0 in (2.27), we obtain
1F((n = 1)x) = (n = 1)°f(x)
(2.28)

1
< 2] max{ng(nx,0,...,0),¢(nx,0,...,0),¢(0,nx, ..., nx)}

for all x € G. Putting x; = nx, x; = 0 (i = 2,..., ) in (2.4), one obtains
I f(nx) —f((n—1)x) — (2n — 1)f(x) =< ¢(nx,0,...,0) (2.29)

for all x e G. It follows from (2.28) and (2.29) that

| f(nx) — n’f(x) || < Inax{go(nx, 0,...,0), ;l| ¢(nx,0,...,0),

(2.30)
! (nx, 0 0) ! ¢(0, nx nx)}

¢ ’ LA ’ 7 AL
2| 2]

Page 7 of 12
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for all x € G. Letting x, = - (1 - 1) x; and replacing x; by ; in (2.26), we get
I f((n = 1)x) = f((n = 2)x) = (2n = 3)f (x) lI< ¢(x, (n = 1)x,0,...,0) (2.31)
for all x € G. It follows from (2.28) and (2.31) that

I f((n—2)x) = (n — 2)*f(x) < max {p(x, (n — 1)x,0,...,0),

n 1 1 (2.32)
nx,0,...,0), nx,0,...,0), 0,nx, ... nx
ol ) ) )|
for all x € G. It follows from (2.30) and (2.32) that
I £m) = (1 = 2)0) = 4{n = f ) | o)
< max{p(nx,0,...,0),¢(x, (n — 1)x,0,...,0), ¥(x)} '
for all x € G. Setting x; = %y = n,, x;, = 0 (i = 3,..., n) in (2.4), we obtain
1
| f((n—2)x)+(n—1)f(2x) — f(nx) || < |2|<p(nx, nx,0,...,0) (2.34)
for all x € G. It follows from (2.33) and (2.34) that
170 -4 1= b max] o mso,...0)
DT U (PTG g (2.35)
¢(nx,0,...,0),¢(x, (n—1)x,0,...,0), ¥(x)}
for all x € G. Thus,
f(2x) 1 .
Hf(x) N E |2|2<ﬂ(x) (2.36)
for all x € G. Replacing x by 2” ~ 'x in (2.36), we have
f2" %) f(2"%) |
20 g |5 ppnT) (237)

for all x € G. It follows from (2.17) and (2.37) that the sequence {f(zzzr,"nx)} is Cauchy.

Since X is complete, we conclude that {f(zzzy:")} is convergent. So one can define the

mapping Q : G = X by Q(x) := limy,_ 1) for all x e G. By using induction, it fol-

22m
lows from (2.36) and (2.37) that
f(2™x) 1 | PN
Hf(x) = om < 2P max |2|2k<p(2 x):0<k<m (2.38)

for all # € N and all x € G. By taking m to approach infinity in (2.38) and using
(2.18), one gets (2.21).

The rest of proof is similar to proof of Theorem 2.2. O

Corollary 2.6. Let 1 : [0, o) — [0, «) be a function satisfying

@ n(|l8) < n(|{)n() for all ¢ = 0,
(@) n(1)) <|l)* for l e {2, n -1, n}.

Let ¢ >0 and let G be a normed space. Suppose that an even mapping f: G — X with

Page 8 of 12
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A0) = 0 satisfies the inequality

I Af(xr,ox) 1< n(llx )

i=1

for all x1,..., x, € G. Then there exists a unique quadratic mapping Q : G — X such

that
22877(”36”), 1f n=2;
— 12]
If(x) — Q) lI= { el )i 02,
forallx e G.

Proof. Defining ¢ : G" — [0, =) by ¢(x1,...,x,) =& Y iy n(Il xi |), we have
. 1 m m (120" _
”%glgo |2|2m<p(2 X1, ..., 2"%x,) 51’}%( 2P o(x1,...,%2) =0
for all x4,..., x,, € G. We have
500 = fim max{ 72 10 <k <m - 5t
x) := lim max x) : <mp=@(x
q m—00 |2|2kg0 - ¢

and

L I .
[lggo”{glgomax{mzk(p(z x).£§k<m+£} =£1Lr£10

L
e P29 =0

for all x € G. It follows from (2.20) that

W(x) = |;_| max{nen(|| nx ||), en(|l nx 1), (n — Den(|| nx )}
= é' max{nen(|| nx ||), (n — en(|| nx ||)}
)

Hence, by using (2.19), we obtain

3 1
P(x) = "

{ 2 (Il nx 11)
max en(|l nx ),
1] 12]

en(ll nx ), |;“Sn(ll nx 1), e(m(llx 1) +n(ll (n— 1)x II))}

{28n(||x 1), if n=2

en(ll nx ), if n>2,
12][n — 1]

forallx € G.

Applying Theorem 2.5, we conclude the required result. O

Lemma 2.7. [17]. Let V| and V, be real vector spaces. A mapping f: Vi, — V, satis-
fies (1.2) if and only if there exist a symmetric bi-additive mapping B : V1 x V1 —> V,
and an additive mapping A : Vi — V5, such that fix) = B(x, x) + A(x) for all x € V.

Now, we prove the main theorem concerning the Hyers-Ulam stability problem for
the functional equation (1.2) in non-Archimedean spaces.
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Theorem 2.8. Let ¢ : G" — [0, ) be a function satisfying (2.1) and (2.17) for all x,
X1y Xy Xy € G, and §q(x)and ¢q(xX)exist for all x € G, where ¢,(x)and ¢q4(x)are defined
as in Theorems 2.2 and 2.5. Suppose that a mapping f: G — X with f(0) = 0 satisfies
the inequality (2.4) for all x,, x,,..., x,, € G. Then there exist an additive mapping A : G
— X and a quadratic mapping Q : G — X such that

If(x) = A(x) = Q) |l

1 N N 1
< 2P maX{wa(x),wa(—x),

~ (2.39)
2 %(_x)}

1
|2|(pq(x)'

forallx e G.If

{— 00 M—>00

1
lim lim max{|2|kd>(2kx):£§k<m+ﬁ} =0

£— 00 M— 00

1
= lim lim max{|2|2k¢(2kx):€ <k< m+£}

then A is a unique additive mapping and Q is a unique quadratic mapping satisfying
(2.39).
Proof. Let fo(x) = 3 (f(x) +f(—x)) for all x € G. Then

I Afe(x1, ... %) || = H;(Af(xl,...,xn) + Af(—xl,...,—xn))‘

< 2] max{@(x1, ..., %Xn), (—x1,..., —%xn)}

for all %1, xy,..., x, € G. By Theorem 2.5, there exists a quadratic mapping Q : G - X
such that

1) - QW) 1< 21|3 max(@ (x), G4(—)) (2.40)

for all x € G. Also, let f,(x) = ;(f(x) — f(—x)) for all x € G. By Theorem 2.2, there
exists an additive mapping A : G — X such that

ORVICIEY 21|2 max(@a(x), Ga(—2)) (2.41)

for all x € G. Hence (2.39) follows from (2.40) and (2.41).
The rest of proof is trivial. O
Corollary 2.9. Let 7: [0, o) — [0, =) be a function satisfying

@) At < AL AL) for all t = 0,
(@) N)I) <|l)* for le {2, n -1, n}.

Let ¢ >0, G a normed space and let f: G — X satisfy

I AfGer, ) 1<) v (lx )

i=1

for all xy,..., x, € G and f(0) = 0. Then there exist a unique additive mapping A : G
— X and a unique quadratic mapping Q : G — X such that
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I F(x) — A() — Q) II< é’;ey(n x )

forallx e G.
Proof. The result follows by Corollaries 2.6 and 2.3. O
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