q-Bernoulli numbers and q-Bernoulli polynomials revisited

Cheon Seoung Ryoo ${ }^{1 *}$, Taekyun Kim ${ }^{2}$ and Byungje Lee ${ }^{3}$

* Correspondence: ryoocs@hnu.kr
${ }^{1}$ Department of Mathematics, Hannam University, Daejeon 306791, Korea
Full list of author information is available at the end of the article

Abstract

This paper performs a further investigation on the q-Bernoulli numbers and q Bernoulli polynomials given by Acikgöz et al. (Adv Differ Equ, Article ID 951764, 9, 2010), some incorrect properties are revised. It is point out that the generating function for the q-Bernoulli numbers and polynomials is unreasonable. By using the theorem of Kim (Kyushu J Math 48, 73-86, 1994) (see Equation 9), some new generating functions for the q-Bernoulli numbers and polynomials are shown. Mathematics Subject Classification (2000) 11B68, 11S40, 11S80

Keywords: Bernoulli numbers and polynomials, q-Bernoulli numbers and polynomials, q-Bernoulli numbers and polynomials

1. Introduction

As well-known definition, the Bernoulli polynomials are given by

$$
\frac{t}{e^{t}-1} e^{x t}=e^{B(x) t}=\sum_{n=0}^{\infty} B_{n}(x) \frac{t^{n}}{n!},
$$

(see [1-4]),
with usual convention about replacing $B^{n}(x)$ by $B_{n}(x)$. In the special case, $x=0, B_{n}(0)$ $=B_{n}$ are called the nth Bernoulli numbers.

Let us assume that $q \in \mathbb{C}$ with $|q|<1$ as an indeterminate. The q-number is defined by

$$
[x]_{q}=\frac{1-q^{x}}{1-q},
$$

(see [1-6]).
Note that $\lim _{q \rightarrow 1}[x]_{q}=x$.
Since Carlitz brought out the concept of the q-extension of Bernoulli numbers and polynomials, many mathematicians have studied q-Bernoulli numbers and q-Bernoulli polynomials (see [1,7,5,6,8-12]). Recently, Acikgöz, Erdal, and Araci have studied to a new approach to q-Bernoulli numbers and q-Bernoulli polynomials related to q-Bernstein polynomials (see [7]). But, their generating function is unreasonable. The wrong properties are indicated by some counter-examples, and they are corrected.

It is point out that Acikgöz, Erdal and Araci's generating function for q-Bernoulli numbers and polynomials is unreasonable by counter examples, then the new generating function for the q-Bernoulli numbers and polynomials are given.

2. \boldsymbol{q}-Bernoulli numbers and \boldsymbol{q}-Bernoulli polynomials revisited

In this section, we perform a further investigation on the q-Bernoulli numbers and q Bernoulli polynomials given by Acikgöz et al. [7], some incorrect properties are revised.

Definition 1 (Acikgöz et al. [7]). For $q \in \mathbb{C}$ with $|q|<1$, let us define q-Bernoulli polynomials as follows:

$$
\begin{equation*}
D_{q}(t, x)=-t \sum_{y=0}^{\infty} q^{y} e^{[x+y]_{q} t}=\sum_{n=0}^{\infty} B_{n, q}(x) \frac{t^{n}}{n!}, \quad \text { where } \quad-t+\log q-\mathrm{i} 2 \pi . \tag{1}
\end{equation*}
$$

In the special case, $x=0, B_{n, q}(0)=B_{n, q}$ are called the nth q-Bernoulli numbers.
Let $D_{q}(t, 0)=D_{q}(t)$. Then

$$
\begin{equation*}
D_{q}(t)=-t \sum_{y=0}^{\infty} q^{y} e^{[y]_{q} t}=\sum_{n=0}^{\infty} B_{n, q} \frac{t^{n}}{n!} \tag{2}
\end{equation*}
$$

Remark 1. Definition 1 is unreasonable, since it is not the generating function of q Bernoulli numbers and polynomials.

Indeed, by (2), we get

$$
\begin{align*}
D_{q}(t, x) & =-t \sum_{\gamma=0}^{\infty} q^{y} e^{[x+y]_{q} t}=-t \sum_{\gamma=0}^{\infty} q^{y} e^{[x]_{q} t} e^{q^{x}[y]_{q} t} \\
& =\left(-\frac{q^{x} t}{q^{x}} \sum_{\gamma=0}^{\infty} q^{y} e^{q^{x}[y]_{q} t}\right) e^{[x]_{q} t} \\
& =\frac{1}{q^{x}} e^{[x]_{q} t} D_{q}\left(q^{x} t\right) \tag{3}\\
& =\left(\sum_{m=0}^{\infty} \frac{[x]_{q}^{m}}{m!} t^{m}\right)\left(\sum_{l=0}^{\infty} \frac{q^{(l-1) x} B_{l, q}}{l!} t^{t}\right) \\
& =\sum_{n=0}^{\infty}\left(\sum_{l=0}^{n}\binom{n}{l}[x]_{q}^{n-l} q^{(l-1) x} B_{l, q}\right) \frac{t^{n}}{n!} .
\end{align*}
$$

By comparing the coefficients on the both sides of (1) and (3), we obtain the following equation

$$
\begin{equation*}
B_{n, q}(x)=\sum_{l=0}^{n}\binom{n}{l}[x]_{q}^{n-l} q^{(l-1) x} B_{l, q} . \tag{4}
\end{equation*}
$$

From (1), we note that

$$
\begin{align*}
D_{q}(t, x) & =-t \sum_{y=0}^{\infty} q^{\gamma} e^{[x+y]_{q} t} \\
& =\sum_{n=0}^{\infty}\left(-t \sum_{y=0}^{\infty} q^{\gamma}[x+y]_{q}^{n}\right) \frac{t^{n}}{n!} \tag{5}\\
& =-\sum_{n=0}^{\infty}\left(\frac{n+1}{(1-q)^{n}} \sum_{l=0}^{n}\binom{n}{l}(-1)^{l} q^{l x} \sum_{y=0}^{\infty} q^{(l+1) y}\right) \frac{t^{n+1}}{(n+1)!} \\
& =\sum_{n=1}^{\infty}\left(\frac{-n}{(1-q)^{n-1}} \sum_{l=0}^{n-1}\binom{n-1}{l}(-1)^{l} q^{l x}\left(\frac{1}{1-q^{l+1}}\right)\right) \frac{t^{n}}{n!} .
\end{align*}
$$

By comparing the coefficients on the both sides of (1) and (5), we obtain the following equation

$$
\begin{align*}
& B_{0, q}=0 \\
& B_{n, q}=\frac{-n}{(1-q)^{n-1}} \sum_{l=0}^{n-1}\binom{n-1}{l}(-1)^{l} q^{l x}\left(\frac{1}{1-q^{l+1}}\right) \quad \text { if } \quad n>0 \tag{6}
\end{align*}
$$

By (6), we see that Definition 1 is unreasonable because we cannot derive Bernoulli numbers from Definition 1 for any q.

In particular, by (1) and (2), we get

$$
\begin{equation*}
q D_{q}(t, 1)-D_{q}(t)=t \tag{7}
\end{equation*}
$$

Thus, by (7), we have

$$
q B_{n, q}(1)-B_{n, q}= \begin{cases}1, \text { if } & n=1 \tag{8}\\ 0, \text { if } & n>1\end{cases}
$$

and

$$
\begin{equation*}
B_{n, q}(1)=\sum_{l=0}^{n}\binom{n}{l} q^{l-1} B_{l, q} . \tag{9}
\end{equation*}
$$

Therefore, by (4) and (6)-(9), we see that the following three theorems are incorrect.
Theorem 1 (Acikgöz et al. [7]). For $n \in \mathbb{N}^{*}$, one has

$$
B_{0, q}=1, \quad q(q B+1)^{n}-B_{n, q}= \begin{cases}1, \text { if } & n=0 \\ 0, \text { if } & n>0\end{cases}
$$

Theorem 2 (Acikgöz et al. [7]). For $n \in \mathbb{N}^{*}$, one has

$$
B_{n, q}(x)=\sum_{l=0}^{n}\binom{n}{l} q^{l x} B_{l, q}[x]_{q}^{n-l} .
$$

Theorem 3 (Acikgöz et al. [7]). For $n \in \mathbb{N}^{*}$, one has

$$
B_{n, q}(x)=\frac{1}{(1-q)^{n}} \sum_{l=0}^{n}\binom{n}{l}(-1)^{l} q^{l x} \frac{l+1}{[l+1]_{q}} .
$$

In [7], Acikgöz, Erdal and Araci derived some results by using Theorems 1-3. Hence, the other results are incorrect.
Now, we redefine the generating function of q-Bernoulli numbers and polynomials and correct its wrong properties, and rebuild the theorems of q-Bernoulli numbers and polynomials.
Redefinition 1. For $q \in \mathbb{C}$ with $|q|<1$, let us define q-Bernoulli polynomials as follows:

$$
\begin{align*}
F_{q}(t, x) & =-t \sum_{m=0}^{\infty} q^{2 m+x} e^{[x+m]_{q} t}+(1-q) \sum_{m=0}^{\infty} q^{m} e^{[x+m]_{q} t} \\
& =\sum_{n=0}^{\infty} \beta_{n, q}(x) \frac{t^{n}}{n!}, \quad \text { where }-t+\log q-<2 \pi \tag{10}
\end{align*}
$$

In the special case, $x=0, \beta_{n, q}(0)=\beta_{n, q}$ are called the nth q-Bernoulli numbers. Let $F_{q}(t, 0)=F_{q}(t)$. Then we have

$$
\begin{align*}
F_{q}(t) & =\sum_{n=0}^{\infty} \beta_{n, q} \frac{t^{n}}{n!} \\
& =-t \sum_{m=0}^{\infty} q^{2 m} e^{[m]_{q} t}+(1-q) \sum_{m=0}^{\infty} q^{m} e^{[m]_{q} t} \tag{11}
\end{align*}
$$

By (10), we get

$$
\begin{align*}
\beta_{n, q}(x) & =-n \sum_{m=0}^{\infty} q^{2 m+x}[x+m]_{q}^{n-1}+(1-q) \sum_{m=0}^{\infty} q^{m}[x+m]_{q}^{n} \\
& =\frac{-n}{(1-q)^{n-1}} \sum_{l=0}^{n-1}\binom{n-1}{l} \frac{(-1)^{l} q^{(l+1) x}}{\left(1-q^{l+2}\right)}+(1-q) \sum_{m=0}^{\infty} q^{m}[x+m]_{q}^{n} \tag{12}\\
& =\frac{1}{(1-q)^{n}} \sum_{l=0}^{n}\binom{n}{l}(-1)^{l} q^{l x} \frac{l+1}{[l+1]_{q}} .
\end{align*}
$$

By (10) and (11), we get

$$
\begin{align*}
F_{q}(t, x) & =e^{[x]_{q} t} F_{q}\left(q^{x} t\right) \\
& =\left(\sum_{m=0}^{\infty}[x]_{q}^{m} \frac{t^{m}}{m!}\right)\left(\sum_{l=0}^{\infty} \frac{\beta_{l, q}}{l!} q^{l x} t^{l}\right) \\
& =\sum_{n=0}^{\infty}\left(\sum_{l=0}^{n} \frac{q^{l x} \beta_{l, q}[x]_{q}^{n-l} n!}{l!(n-l)!}\right) \frac{t^{n}}{n!} \tag{13}\\
& =\sum_{n=0}^{\infty}\left(\sum_{l=0}^{n}\binom{n}{l} q^{l x} \beta_{l, q}[x]_{q}^{n-l}\right) \frac{t^{n}}{n!}
\end{align*}
$$

Thus, by (12) and (13), we have

$$
\begin{align*}
\beta_{n, q}(x) & =\sum_{l=0}^{n}\binom{n}{l} q^{l x} \beta_{l, q}[x]_{q}^{n-l} \tag{14}\\
& =-n \sum_{m=0}^{\infty} q^{m}[x+m]_{q}^{n-1}+(1-q)(n+1) \sum_{m=0}^{\infty} q^{m}[x+m]_{q}^{n} .
\end{align*}
$$

From (10) and (11), we can derive the following equation:

$$
\begin{equation*}
q F_{q}(t, 1)-F_{q}(t)=t+(q-1) \tag{15}
\end{equation*}
$$

By (15), we get

$$
q \beta_{n, q}(1)-\beta_{n, q}=\left\{\begin{array}{lll}
q-1, & \text { if } & n=0 \tag{16}\\
1, & \text { if } & n=1 \\
0 & \text { if } & n>1
\end{array}\right.
$$

Therefore, by (14) and (15), we obtain

$$
\beta_{0, q}=1, q\left(q \beta_{q}+1\right)^{n}-\beta_{n, q}= \begin{cases}1, & \text { if } \tag{17}\\ 0 & n=1 \\ 0 & n>1,\end{cases}
$$

with the usual convention about replacing β_{q}^{n} by $\beta_{n, q}$.
From (12), (14) and (16), Theorems 1-3 are revised by the following Theorems 1'-3'.
Theorem 1'. For $n \in \mathbb{Z}_{+}$, we have

$$
\beta_{0, q}=1, \quad \text { and } \quad q\left(q \beta_{q}+1\right)^{n}-\beta_{n, q}=\left\{\begin{array}{ll}
1, & \text { if }
\end{array} \quad n=1,\right.
$$

Theorem 2'. For $n \in \mathbb{Z}_{+}$, we have

$$
\beta_{n, q}(x)=\sum_{l=0}^{n}\binom{n}{l} q^{l x} \beta_{l, q}[x]_{q}^{n-l} .
$$

Theorem 3'. For $n \in \mathbb{Z}_{+}$, we have

$$
\beta_{n, q}(x)=\frac{1}{(1-q)^{n}} \sum_{l=0}^{n}\binom{n}{l}(-1)^{l} q^{l x} \frac{l+1}{[l+1]_{q}} .
$$

From (10), we note that

$$
\begin{equation*}
F_{q}(t, x)=\frac{1}{[d]_{q}} \sum_{a=0}^{d-1} q^{a} F_{q^{d}}\left([d]_{q} t, \frac{x+a}{d}\right), \quad d \in \mathbb{N} . \tag{18}
\end{equation*}
$$

Thus, by (10) and (18), we have

$$
\beta_{n, q}(x)=[d]_{q}^{n-1} \sum_{a=0}^{d-1} q^{a} \beta_{n, q^{d}}\left(\frac{x+a}{d}\right), \quad n \in \mathbb{Z}_{+} .
$$

For $d \in \mathbb{N}$, let χ be Dirichlet's character with conductor d. Then, we consider the generalized q-Bernoulli polynomials attached to χ as follows:

$$
\begin{aligned}
F_{q, \chi}(t, x) & =-t \sum_{m=0}^{\infty} \chi(m) q^{2 m+x} e^{[x+m]_{q} t}+(1-q) \sum_{m=0}^{\infty} \chi(m) q^{m} e^{[x+m]_{q} t} \\
& =\sum_{n=0}^{\infty} \beta_{n, \chi, q}(x) \frac{t^{n}}{n!} .
\end{aligned}
$$

In the special case, $x=0, \beta_{n, \chi, q}(0)=\beta_{n, \chi, q}$ are called the nth generalized Carlitz q Bernoulli numbers attached to χ (see [8]).
Let $F_{q, \chi}(t, 0)=F_{q, \chi}(t)$. Then we have

$$
\begin{align*}
F_{q, \chi}(t) & =-t \sum_{m=0}^{\infty} \chi(m) q^{2 m} e^{[m]_{q} t}+(1-q) \sum_{m=0}^{\infty} \chi(m) q^{m} e^{[m]_{q} t} \tag{20}\\
& =\sum_{n=0}^{\infty} \beta_{n, \chi, q} \frac{t^{n}}{n!}
\end{align*}
$$

From (20), we note that

$$
\begin{aligned}
\beta_{n, \chi, q}= & -n \sum_{m=0}^{\infty} q^{2 m} \chi(m)[m]_{q}^{n-1}+(1-q) \sum_{m=0}^{\infty} q^{m} \chi(m)[m]_{q}^{n} \\
= & -n \sum_{a=0}^{d-1} \sum_{m=0}^{\infty} q^{2 a+2 d m} \chi(a+d m)[a+d m]_{q}^{n-1} \\
& +\sum_{a=0}^{d-1} \sum_{m=0}^{\infty} q^{a+d m} \chi(a+d m)[a+d m]_{q}^{n} \\
= & \sum_{a=0}^{d-1} \chi(a) q^{a}\left(\frac{-n}{(1-q)^{n-1}} \sum_{l=0}^{n-1}\binom{n-1}{l} \frac{(-1)^{l} q^{(l+1) a}}{\left(1-q^{d(l+2)}\right)}\right) \\
& +(1-q) \sum_{a=0}^{d-1} \chi(a) q^{a}\left(\frac{1}{(1-q)^{n}} \sum_{l=0}^{n}\binom{n}{l} \frac{(-1)^{l} q^{l a}}{\left(1-q^{d(l+1)}\right)}\right) \\
= & \sum_{a=0}^{d-1} \chi(a) q^{a}\left(\frac{-n}{(1-q)^{n-1}} \sum_{l=0}^{n-1}\binom{n-1}{l} \frac{(-1)^{l} q^{(l+1) a}}{\left(1-q^{d(l+2)}\right)}\right) \\
& +\sum_{a=0}^{d-1} \chi(a) q^{a}\left(\frac{1}{(1-q)^{n-1}} \sum_{l=0}^{n}\binom{n}{l} \frac{(-1)^{l} q^{l a}}{\left(1-q^{d(l+1)}\right)}\right) \\
= & \sum_{a=0}^{d-1} \chi(a) q^{a}\left(\frac{1}{(1-q)^{n-1}} \sum_{l=0}^{n}\binom{n}{l} \frac{(-1)^{l} q^{l a} l}{\left(1-q^{d(l+1)}\right)}\right) \\
& +\sum_{a=0}^{d-1} \chi(a) q^{a}\left(\frac{1}{(1-q)^{n-1}} \sum_{l=0}^{n}\binom{n}{l} \frac{(-1)^{l} q^{l a}}{\left(1-q^{d(l+1)}\right)}\right) \\
= & \sum_{a=0}^{d-1} \chi(a) q^{a} \frac{1-q}{(1-q)^{n}} \sum_{l=0}^{n}\binom{n}{l}(-1)^{l} q^{l a}\left(\frac{l+1}{1-q^{d(l+1)}}\right) .
\end{aligned}
$$

Therefore, by (20) and (21), we obtain the following theorem.
Theorem 4. For $n \in \mathbb{Z}_{+}$, we have

$$
\begin{aligned}
\beta_{n, \chi, q} & =\sum_{a=0}^{d-1} \chi(a) q^{a} \frac{1}{(1-q)^{n}} \sum_{l=0}^{n}\binom{n}{l}(-1)^{l} q^{l a} \frac{l+1}{[d(l+1)]_{q}} \\
& =-n \sum_{m=0}^{\infty} \chi(m) q^{m}[m]_{q}^{n-1}+(1-q)(1+n) \sum_{m=0}^{\infty} \chi(m) q^{m}[m]_{q^{\prime}}^{n}
\end{aligned}
$$

and

$$
\beta_{n, \chi, q}(x)=-n \sum_{m=0}^{\infty} \chi(m) q^{m}[m+x]_{q}^{n-1}+(1-q)(1+n) \sum_{m=0}^{\infty} \chi(m) q^{m}[m+x]_{q}^{n} .
$$

From (19), we note that

$$
\begin{equation*}
F_{q, \chi}(t, x)=\frac{1}{[d]_{q}} \sum_{a=0}^{d-1} \chi(a) q^{a} F_{q^{d}}\left([d]_{q} t, \frac{x+a}{d}\right) . \tag{22}
\end{equation*}
$$

Thus, by (22), we obtain the following theorem.

Theorem 5. For $n \in \mathbb{Z}_{+}$, we have

$$
\beta_{n, \chi, q}(x)=[d]_{q}^{n-1} \sum_{a=0}^{d-1} \chi(a) q^{a} \beta_{n, q^{d}}\left(\frac{x+a}{d}\right) .
$$

For $s \in \mathbb{C}$, we now consider the Mellin transform for $F_{q}(t, x)$ as follows:

$$
\begin{equation*}
\frac{1}{\Gamma(s)} \int_{0}^{\infty} F_{q}(-t, x) t^{s-2} \mathrm{~d} t=\sum_{m=0}^{\infty} \frac{q^{2 m+x}}{[m+x]_{q}^{s}}+\frac{1-q}{s-1} \sum_{m=0}^{\infty} \frac{q^{m}}{[m+x]_{q}^{s-1}}, \tag{23}
\end{equation*}
$$

where $x \neq 0,-1,-2, \ldots$.
From (23), we note that

$$
\begin{align*}
& \frac{1}{\Gamma(s)} \int_{0}^{\infty} F_{q}(-t, x) t^{s-2} \mathrm{~d} t \tag{24}\\
& \quad=\sum_{m=0}^{\infty} \frac{q^{m}}{[m+x]_{q}^{s}}+(1-q)\left(\frac{2-s}{s-1}\right) \sum_{m=0}^{\infty} \frac{q^{m}}{[m+x]_{q}^{s-1}},
\end{align*}
$$

where $s \in \mathbb{C}$, and $x \neq 0,-1,-2, \ldots$.
Thus, we define q-zeta function as follows:
Definition 2. For $s \in \mathbb{C}$, q-zeta function is defined by

$$
\zeta_{q}(s, x)=\sum_{m=0}^{\infty} \frac{q^{m}}{[m+x]_{q}^{s}}+(1-q)\left(\frac{2-s}{s-1}\right) \sum_{m=0}^{\infty} \frac{q^{m}}{[m+x]_{q}^{s-1}}, \quad \operatorname{Re}(s)>1,
$$

where $x \neq 0,-1,-2, \ldots$.
By (24) and Definition 2, we note that

$$
\zeta_{q}(1-n, x)=(-1)^{n-1} \frac{\beta_{n, q}(x)}{n}, \quad n \in \mathbb{N} .
$$

Note that

$$
\lim _{q \rightarrow 1} \zeta_{q}(1-n, x)=-\frac{B_{n}(x)}{n},
$$

where $B_{n}(x)$ are the nth ordinary Bernoulli polynomials.

Acknowledgements

The authors express their gratitude to the referee for his/her valuable comments.

Author details

${ }^{1}$ Department of Mathematics, Hannam University, Daejeon 306-791, Korea ${ }^{2}$ Division of General Education-Mathematics, Kwangwoon University, Seoul 139-701, Korea ${ }^{3}$ Department of Wireless Communications Engineering, Kwangwoon University, Seoul 139-701, Korea

Authors' contributions

All authors contributed equally to the manuscript and read and approved the finial manuscript.

Competing interests

The authors declare that they have no competing interests.

Received: 26 February 2011 Accepted: 18 September 2011 Published: 18 September 2011

References

1. Kim, T: On explicit formulas of p-adic q-L-functions. Kyushu J. Math. 48, 73-86 (1994). doi:10.2206/kyushujm. 48.73
2. Kim, T: On p-adic q-L-functions and sums of powers. Discrete Math. 252, 179-187 (2002). doi:10.1016/S0012-365X(01) 00293-X
3. Ryoo, CS: A note on the weighted q-Euler numbers and polynomials. Adv. Stud. Contemp. Math. 21, 47-54 (2011)
4. Ryoo, CS: On the generalized Barnes type multiple q-Euler polynomials twisted by ramified roots of unity. Proc. Jangjeon Math. Soc. 13, 255-263 (2010)
5. Kim, T: Power series and asymptotic series associated with the q-analogue of the two-variable p-adic L-function. Russ. J. Math. Phys. 12, 91-98 (2003)
6. Kim, T: q-Volkenborn integration. Russ. J. Math. Phys. 9, 288-299 (2002)
7. Acikgöz, M, Erdal, D, Araci, S: A new approach to q-Bernoulli numbers and q-Bernoulli polynomials related to q Bernstein polynomials. Adv. Differ. Equ 9 (2010). Article ID 951764
8. Kim, T, Rim, SH: Generalized Carlitz's q-Bernoulli numbers in the p-adic number field. Adv. Stud. Contemp. Math. 2, 9-19 (2000)
9. Ozden, H, Cangul, IN, Simsek, Y: Remarks on q-Bernoulli numbers associated with Daehee numbers. Adv. Stud. Contemp. Math. 18, 41-48 (2009)
10. Bayad, A: Modular properties of elliptic Bernoulli and Euler functions. Adv. Stud. Contemp. Math. 20, 389-401 (2010)
11. Kim, T: Barnes type multiple q-zeta function and q-Euler polynomials. J. Phys. A Math. Theor. 43, 255201 (2010) doi:10.1088/1751-8113/43/25/255201
12. Kim, T: q-Bernoulli numbers and polynomials associated with Gaussian binomial coefficients. Russ. J. Math. Phys. 15 51-57 (2008)
[^0]
Submit your manuscript to a SpringerOpen ${ }^{\ominus}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at $>$ springeropen.com

[^0]: doi:10.1186/1687-1847-2011-33
 Cite this article as: Ryoo et al.: q-Bernoulli numbers and q-Bernoulli polynomials revisited. Advances in Difference Equations 2011 2011:33

