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1 Introduction
In this article, we study the following nonlinear Neumann discrete boundary value pro-

blem: {−�(a(k − 1,�u(k − 1))) + |u(k)|p(k)u(k) = f (k), k ∈ Z[1,T]
�u(0) = �u(T) = 0,

(1:1)

where T ≥ 2 is a positive integer, and Δu(k) = u(k+1) - u(k) is the forward difference

operator. Throughout this article, we denote by ℤ[a, b] the discrete interval {a, a + 1,

..., b}, where a and b are integers and a < b.

We also consider the function space

W =
{
v : Z[0,T + 1] → R; such that �v(0) = �v(T) = 0

}
, (1:2)

where W is a T-dimensional Hilbert space [1,2] with the inner product

(u, v) =
T+1∑
k=1

�u(k − 1)�v(k − 1) +
T∑
k=1

u(k)v(k), ∀u, v ∈ W. (1:3)

The associated norm is defined by

‖u‖ =

(
T+1∑
k=1

∣∣�u(k − 1)
∣∣2 + T∑

k=1

∣∣u(k)∣∣2
) 1

2

. (1:4)

For the data f and a, we assume the following:

f : Z[1,T] → R, (1:5)
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⎧⎨
⎩
a(k, .) : R → R∀k ∈ Z[0,T] and there exists a mapping
A : Z[0,T] × R → R which satisfies : a(k, ξ) = ∂

∂ξ
A(k, ξ)

and A(k, 0) = 0, ∀k ∈ Z[0,T],
(1:6)

(
a(k, ξ) − a(k, η)

)
.(ξ − η) > 0∀k ∈ Z[0,T] and ξ , η ∈ R such that ξ �= η, (1:7)

and

|ξ |p(k) ≤ a(k, ξ)ξ ≤ p(k)A(k, ξ)∀k ∈ Z[0,T] and ξ ∈ R. (1:8)

Moreover, in this article, we assume that the function

p : Z[0,T] → (2, +∞). (1:9)

The theory of difference equations occupy a central position in applicable analysis.

We refer to the recent results of Agarwal et al. [1], Candito and D’Agui [2], Yu and

Guo [3], Koné and Ouaro [4], Cai and Yu [5], Zhang and Liu [6], Mihailescu et al. [7],

Cabada et al. [8] and the references therein. In [6], the authors studied the following

problem:{
�2y(k − 1) + λf (y(k)) = 0, k ∈ Z[1,T]
y(0) = y(T + 1) = 0,

(1:10)

where l >0 is a parameter, Δ2y(k) = Δ(Δy(k)), and f : [0, +∞) ® ℝ a continuous func-

tion satisfying the condition

f (0) = −a < 0, where a is a positive constant. (1:11)

The problem (1.10) is referred as the “semipositone” problem in the literature, which

was introduced by Castro and Shivaji [9]. Semipositone problems arise in bulking of

mechanical systems, design of suspension bridges, chemical reactions, astrophysics,

combustion, and management of natural resources.

The studies regarding problems like (1.1) or (1.10) can be placed at the interface of

certain mathematical fields such as nonlinear partial differential equations and numeri-

cal analysis. On the other hand, they are strongly motivated by their applicability in

mathematical physics as mentioned above.

In [2], Candito and D’Agui studied the following problem:{−�(�p(�uk−1)) + qk�p(uk) = λf (k, uk), k ∈ [1,N]
�u0 = �uN = 0,

(1:12)

where N is a fixed positive integer, [1, N] is the discrete interval 1, ..., N, qk >0 for all

k Î [1, N], l is a positive real parameter, Fp(s) := |s| p-2 s, 1 <p < +∞ and f : [1, N] × ℝ

® ℝ is a continuous function. Candito and D’Agui proved the existence of three solu-

tions for (1.12) by using a three critical points theorem by Jiang and Zhou [[10], Theo-

rem 2.6].

In this article, we consider the same boundary conditions as in [2], but the main

operator is more general than the one in [2] and involve variable exponent.
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Problem (1.1) is a discrete variant of the variable exponent anisotropic problem:⎧⎨
⎩−

N∑
i=1

∂

∂xi
ai

(
x,

∂u

∂xi

)
= f (x) in �

u = 0 on ∂�,
(1:13)

where Ω ⊂ ℝN (N ≥ 3) is a bounded domain with smooth boundary, f Î L∞(Ω), pi

continuous on � such that 1 <pi(x) <N and
N∑
i=1

1

p−
i

> 1 for all x ∈ �, and all i Î ℤ[1,

N], where p−
i := ess inf

x∈�
pi(x).

Problem (1.13) was recently analyzed by Koné et al. [11], Ouaro [12], and general-

yzed to a Radon measure data by Koné et al. [13]. Problems like (1.13) have been

intensively studied in the last few decades since they can model various phenomena

arising from the study of elastic mechanics [14,15], electrorheological fluids [14,16-18],

and image restoration [19]. In [19], Chen et al. studied a functional with variable expo-

nent 1 ≤ p(x) ≤ 2 which provides a model for image denoizing, enhancement and

restoration. Their article created motivation for the study of problems with variable

exponent.

Note that Mihailescu et al. [20,21] were the first authors to study anisotropic elliptic

problems with variable exponent.

Our aim in this article is to use a minimization method to establish some existence

results of solutions of (1.1). The idea of the proof is to transfer the problem of the

existence of solutions for (1.1) into the problem of the existence of a minimizer for

some associated energy functional. Let us point out that, to the best of our knowledge,

discrete problems like (1.1) involving anisotropic exponents have been discussed for

the first time by Mihailescu, Radulescu, and Tersian [7] and for the second time by

Koné and Ouaro [4]. In [7], the authors proved by using critical point theory, the exis-

tence of a continuous spectrum of eigenvalues for the problem:{
−�

(∣∣�u(k − 1)
∣∣p(k−1)−2

�u(k − 1)
)
= λ

∣∣u(k)∣∣q(k)−2
u(k), k ∈ Z[1,T]

u(0) = u(T + 1) = 0,
(1:14)

where T ≥ 2 is a positive integer, and the functions p : ℤ[0, T] ® [2, ∞) and q : ℤ[1,

T] ® [2, ∞) are bounded while l is a positive constant.

In [4], Koné and Ouaro proved using minimization method the existence and

uniqueness of weak solutions for the following problem:{−�(a(k − 1,�u(k − 1))) = f (k), k ∈ Z[1,T]
u(0) = u(T + 1) = 0,

(1:15)

where T ≥ 2 is a positive integer.

The function a(k - 1, Δu(k - 1)) which appears in the left-hand side of problem (1.1)

is more general than the one which appears in (1.14). Indeed, as examples of functions

which satisfy the assumptions (1.6)-(1.8), we can give the following:

• A(k, ξ) = 1
p(k) |ξ |p(k), where a(k, ξ) = |ξ|p(k)-2 ξ, ∀k Î ℤ[0, T] and ξ Î ℝ.

• A(k, ξ) = 1
p(k)

[(
1 + |ξ |2)p(k)/2 − 1

]
, where a(k, ξ) = (1 + |ξ|2)(p(k)-2)/2 ξ, ∀k Î ℤ[0,

T] and ξ Î ℝ.
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In this article, the boundary condition is the Neumann one which is different to that

in [4] which is the Dirichlet boundary condition.

The remaining part of this article is organized as follows. Sect. 2 is devoted to math-

ematical preliminaries. The main existence and uniqueness result is stated and proved

in Sect. 3. Finally, in Sect. 4, we discuss some extensions.

2 Preliminaries
From now onwards, we will use the following notations:

p− = min
k∈Z[0,T]

p(k) and p+ = max
k∈Z[0,T]

p(k).

Moreover, it is useful to introduce other norms on W, namely

|u|m =

(
T∑
k=1

∣∣u(k)∣∣m
) 1

m

∀u ∈ W and m ≥ 2.

We have the following inequalities [5,7]:

T(2−m)/(2m)|u|2 ≤ |u|m ≤ T1/m|u|2 ∀u ∈ W and m ≥ 2. (2:1)

In the sequel, we will use the following auxiliary result:

Lemma 2.1.

(a) There exist four positive constants C1, C2, C3 and C4 such that

T+1∑
k=1

∣∣�u(k − 1)
∣∣p(k−1) ≥ C1

(
T+1∑
k=1

|�u(k − 1)|2
) p−

2

− C2,

T∑
k=1

∣∣u(k)∣∣p(k) ≥ C3

(
T∑
k=1

|u(k)|2
) p−

2

− C4,

∀u Î W with ||u|| > 1.

(b) There exist two positive constants C5 and C6 such that

T+1∑
k=1

∣∣�u(k − 1)
∣∣p(k−1) ≥ C5

(
T+1∑
k=1

|�u(k − 1)|2
) p+

2

,

T∑
k=1

∣∣u(k)∣∣p(k) ≥ C6

(
T∑
k=1

|u(k)|2
) p+

2

,

∀u Î W with ||u|| < 1.

Proof Fix u Î W with ||u|| > 1, we define

αk =
{
p+ if

∣∣�u(k)
∣∣ < 1

p− if
∣∣�u(k)

∣∣ > 1

and

βk =
{
p+ if

∣∣u(k)∣∣ < 1
p− if

∣∣u(k)∣∣ > 1,

for each k Î ℤ[0, T].
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(a) We deduce that

T+1∑
k=1

∣∣�u(k − 1)
∣∣p(k−1) ≥

T+1∑
k=1

∣∣�u(k − 1)
∣∣αk−1

≥
T+1∑
k=1

∣∣�u(k − 1)
∣∣p−

−
∑

{k∈Z[1,T+1];αk−1=p+}

(∣∣�u(k − 1)
∣∣p− − ∣∣�u(k − 1)

∣∣p+)

≥
T+1∑
k=1

∣∣�u(k − 1)
∣∣p− − C2,

for all u Î W with ||u|| > 1.

The inequality above and the relation (2.1) imply that

T+1∑
k=1

∣∣�u(k − 1)
∣∣p(k−1) ≥ C1

(
T+1∑
k=1

∣∣�u(k − 1)
∣∣2)

p−
2

− C2,

for all u Î W with ||u|| > 1.

Analogously, by using bk instead of ak, we prove that there exists C3 and C4 such

that

T∑
k=1

∣∣u(k)∣∣p(k) ≥ C3

(
T∑
k=1

|u(k)|2
) p−

2

− C4,

for all u Î W with ||u|| > 1.

(b) We deduce as |Δu(k)| < 1 and |u(k)| < 1 since ||u|| < 1, that

T+1∑
k=1

∣∣�u(k − 1)
∣∣p(k−1) ≥

T+1∑
k=1

∣∣�u(k − 1)
∣∣p+ .

and

T∑
k=1

∣∣u(k)∣∣p(k) ≥
T∑
k=1

|u(k)|p+ .

We then get according to the two inequalities above and relation (2.1) that there

exist two positive constants C5 and C6 such that

T+1∑
k=1

∣∣�u(k − 1)
∣∣p(k−1) ≥ C5

(
T+1∑
k=1

∣∣�u(k − 1)
∣∣2)

p+

2

and

T∑
k=1

∣∣u(k)∣∣p(k) ≥ C6

(
T∑
k=1

|u(k)|2
) p+

2

,

for all u Î W such that ||u|| < 1 □
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3 Existence and uniqueness of weak solution
In this section, we study the existence and uniqueness of weak solution of (1.1).

Definition 3.1 A weak solution of (1.1) is a function u Î W such that

T+1∑
k=1

a(k−1,�u(k−1))�v(k−1)+
T∑

k=1

|u(k)|p(k)−2u(k)v(k) =
T∑
k=1

f (k)v(k), for any v ∈ W. (3:1)

Note that since W is a finite dimensional space, the weak solutions coincide with the

classical solutions of problem (1.1).

We have the following result.

Theorem 3.2 Assume that (1.5)-(1.9) hold. Then, there exists a unique weak solution

of (1.1).

The energy functional corresponding to problem (1.1), J : W ® ℝ is defined by

J(u) =
T+1∑
k=1

A(k − 1,�u(k − 1)) +
T∑
k=1

1
p(k)

|u(k)|p(k) −
T∑
k=1

f (k)u(k). (3:2)

We first establish some basic properties of J.

Proposition 3.3 The functional J is well defined on W and is of class C1(W, ℝ) with

the derivative given by

〈
J′(u), v

〉
=

T+1∑
k=1

a(k− 1,�u(k− 1))�v(k− 1) +
T∑
k=1

|u(k)|p(k)−2u(k)v(k)−
T∑
k=1

f (k)v(k), (3:3)

for all u, v Î W.

We define for i = 1, ..., N the functionals I, Λ1, Λ2 ; W ® ℝ by

I(u) =
T+1∑
k=1

A(k − 1,�u(k − 1)),

�1(u) =
T∑
k=1

1
p(k)

|u(k)|p(k)

and

�2(u) =
T∑
k=1

f (k)u(k).

The proof of Proposition 3.3 is contained in the following.

Lemma 3.4

(i) The functionals I, Λ1 and Λ2 are well defined on W.

(ii) The functionals I, Λ1, and Λ2 are of class C
1(W, ℝ) and

〈
I′(u), v

〉
=

T+1∑
k=1

a(k − 1,�u(k − 1))�v(k − 1), (3:4)

〈
�′

1(u), v
〉
=

T∑
k=1

|u(k)|p(k)−2u(k)v(k), (3:5)
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〈
�′

2(u), v
〉
=

T∑
k=1

f (k)v(k), (3:6)

for all u, v Î W.

Proof

(i)
∣∣I(u)∣∣ = ∣∣∣∣T+1∑

k=1
A(k − 1,�u(k − 1))

∣∣∣∣ < +∞ since A(k, .) is continuous for all k Î ℤ

[0, T].

For all k Î ℤ[1, T],

∣∣�1(u)
∣∣ =

∣∣∣∣∣
T∑
k=1

1
p(k)

|u(k)|p(k)
∣∣∣∣∣ ≤ 1

p−

(
T∑
k=1

(|u(k)|p− + |u(k)|p+ )
)

< +∞.

We also have by using Schwartz inequality that

∣∣�2(u)
∣∣ =

∣∣∣∣∣
T∑
k=1

f (k)u(k)

∣∣∣∣∣ ≤
T∑
k=1

∣∣f (k)∣∣ ∣∣u(k)∣∣ ≤
(

T∑
k=1

∣∣f (k)∣∣2
) 1

2
(

T∑
k=1

∣∣u(k)∣∣2
) 1

2

< +∞.

Then, I, Λ1, and Λ2 are well defined on W .

(ii) Clearly, I, Λ1 and Λ2 are in C1(W; ℝ). In what follows, we prove (3.4) and (3.5):

choose u, v Î W. We have

lim
δ→0+

I(u + δv) − I(u)
δ

= lim
δ→0+

T+1∑
k=1

A(k − 1,�u(k − 1) + δ�v(k − 1)) − A(k − 1,�u(k − 1))
δ

=
T+1∑
k=1

lim
δ→0+

A(k − 1,�u(k − 1) + δ�v(k − 1)) − A(k − 1,�u(k − 1))
δ

=
T+1∑
k=1

a(k − 1,�u(k − 1))�v(k − 1).

Note also that there exists ν Î]0, 1[ such that

1
δ

(
1

p(k)
(|u(k) + δϕ|p(k) − |u(k)|p(k))

)
= |u(k) + νδϕ|p(k)−2(u(k) + νδϕ)ϕ. Then

lim
δ→0+

�1(u + δv) − �1(u)
δ

= lim
δ→0+

T∑
k=1

1
p(k)

|u(k) + δv(k)|p(k) − |u(k)|p(k)
δ

=
T∑
k=1

|u(k)|p(k)−2u(k)v(k).

and

lim
δ→0+

�2(u + δv) − �2(u)
δ

= lim
δ→0+

T∑
k=1

f (k)(u(k) + δv(k)) − f (k)u(k)
δ

=
T∑
k=1

f (k)v(k).
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□
Lemma 3.5 The functional I is weakly lower semi-continuous.

Proof A is convex with respect to the second variable according to (1.6). Thus, it is

enough to show that I is lower semi-continuous. For this, we fix u Î W and ε > 0.

Since I is convex, we deduce that for any v Î W

I(v) ≥ I(u) +
〈
I′(u), v − u

〉
≥ I(u) +

T+1∑
k=1

a(k − 1,�u(k − 1))
(
�v(k − 1) − �u(k − 1)

)

≥ I(u) −
T+1∑
k=1

∣∣a(k − 1,�u(k − 1))
∣∣ ∣∣�v(k − 1) − �u(k − 1)

∣∣

≥ I(u) −
(

T+1∑
k=1

∣∣a(k − 1,�u(k − 1))
∣∣2)

1
2
(

T+1∑
k=1

∣∣�v(k − 1) − �u(k − 1)
∣∣2)

1
2

≥ I(u) −
(
1 +

T+1∑
k=1

∣∣a(k − 1,�u(k − 1))
∣∣2)

1
2

‖v − u‖

≥ I(u) − ε,

for all v Î W with ||v - u|| <δ = ε/K(T, u), where K(T, u) =
(
1 +

T+1∑
k=1

∣∣a(k − 1,�u(k − 1))
∣∣2)1

2.

Hence we conclude that I is weakly lower semi-continuous. □
Proposition 3.6 The functional J is bounded from below, coercive, and weakly lower

semi-continuous.

Proof By (1.8), we deduce that

J(u) =
T+1∑
k=1

A(k − 1,�u(k − 1)) +
T∑
k=1

1
p(k)

|u(k)|p(k) −
T∑
k=1

f (k)u(k)

≥
T+1∑
k=1

1
p(k)

|�u(k − 1)|p(k−1) +
T∑
k=1

1
p(k)

|u(k)|p(k) −
T∑
k=1

f (k)u(k).

To prove the coercivity of J, we may assume that ||u|| > 1 and we get from the

above inequality, Lemma 2.1 and the fact that p- > 2 (then x �→ x
p−
2 is convex), the fol-

lowing:

J(u) ≥ 1
p+

(
T+1∑
k=1

|�u(k − 1)|p(k−1) +
T∑
k=1

|u(k)|p(k)
)

−
T∑
k=1

f (k)u(k)

≥ C
p+

⎡
⎢⎢⎣
(

T+1∑
k=1

|�u(k − 1)|2
) p−

2

+

(
T∑
k=1

|u(k)|2
) p−

2

− C′

⎤
⎥⎥⎦ −

(
T∑
k=1

∣∣f (k)∣∣2
) 1

2
(

T∑
k=1

∣∣u(k)∣∣2
) 1

2

≥ C
p+

‖u‖p− − K1 ‖u‖ − K,

where K and K1 are positive constants. Hence, since p- > 1, J is coercive.

On the other hand, if ||u|| < 1, we get by (1.8), Lemma 2.1 and the fact that p+ > 2

(then x �→ x
p+

2 is convex) the following:
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J(u) ≥ C

p+

⎡
⎢⎣
(

T+1∑
k=1

|�u(k − 1)|2
) p+

2

+

(
T∑
k=1

|u(k)|2
) p+

2

⎤
⎥⎦ − K1 ‖u‖

≥ C

p+
‖u‖p+ − K1 ‖u‖

≥ −K1

> −∞.

Therefore, J is bounded from below.

As I is weakly lower semi-continuous, J is weakly lower semi-continuous. □
We now give the proof of Theorem 3.2.

Proof of Theorem 3.2 By Proposition 3.6, J has a minimizer which is a weak solution

of (1.1).

In order to complete the proof of Theorem 3.2, we will prove the uniqueness of the

weak solution.

Let u1 and u2 be two weak solutions of problem (1.1), then we have

T+1∑
k=1

a(k−1,�u1(k−1))�(u1−u2)(k−1)+
T∑
k=1

|u1(k)|p(k)u1(k)(u1−u2)(k) =
T∑
k=1

f (k)(u1−u2)(k) (3:7)

and

T+1∑
k=1

a(k−1,�u2(k−1))�(u1−u2)(k−1)+
T∑
k=1

|u2(k)|p(k)u2(k)(u1−u2)(k) =
T∑
k=1

f (k)(u1−u2)(k). (3:8)

Adding (3.7) and (3.8), we obtain⎧⎪⎪⎨
⎪⎪⎩

T+1∑
k=1

[
a(k − 1,�u1(k − 1)) − a(k − 1,�u2(k − 1))

]
�(u1 − u2)(k − 1)

+
T∑
k=1

[
|u1(k)|p(k)u1(k) − |u2(k)|p(k)u2(k)

]
(u1 − u2)(k) = 0.

(3:9)

Using (1.7), we deduce from (3.9) that

�u1(k − 1) = �u2(k − 1) for all k = 1, . . . ,T + 1

and

u1(k) = u2(k) for all k = 1, . . . ,T.

Therefore,

‖u1 − u2‖ =

(
T+1∑
k=1

∣∣�(u1 − u2)(k − 1)
∣∣2 + T∑

k=1

∣∣(u1 − u2)(k)
∣∣2)

1
2

= 0,

which implies that u1 = u2. □

4 Some extensions
4.1 Extension 1

In this section, we show that the existence result obtained for (1.1) can be extended to

more general discrete boundary value problem of the form:
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{−�(a(k − 1,�u(k − 1))) + |u(k)|p(k)−2u(k) = f (k, u(k)), k ∈ Z[1,T]
�u(0) = �u(T) = 0,

(4:1)

where T ≥ 2 is a positive integer and f : ℤ[1, T] × ℝ ® ℝ is a continuous function

with respect to the second variable for all (k, z) Î ℤ[1, T] × ℝ.

For every k Î ℤ[1, T] and every t Î ℝ, we put F(k, t) =
∫ t
0 f (k, τ )dτ.

By a weak solution of problem (4.1), we understand a function u Î W such that

T+1∑
k=1

a(k−1,�u(k−1))�v(k−1)+
T∑

k=1

|u(k)|p(k)−2u(k)v(k) =
T∑
k=1

f (k, u(k))v(k), for any v ∈ W. (4:2)

We assume that there exist two positive constants C7 and C8 such that∣∣f (k, t)∣∣ ≤ C7 + C8|t|β−1, for all (k, t) ∈ Z[1,T] × R, where 1 < β < p−. (4:3)

We have the following result:

Theorem 4.1 Under assumptions (1.6)-(1.9) and (4.3), the problem (4.1) has at least

one weak solution.

Proof Let g(u) =
T∑
k=1

F(k, u(k)), then g’ : W ® W is completely continuous and thus, g

is weakly lower semi-continuous.

Therefore, for u Î W,

J(u) =
T+1∑
k=1

A(k − 1,�u(k − 1)) +
T∑
k=1

1
p(k)

|u(k)|p(k) −
T∑
k=1

F(k, u(k)) (4:4)

is such that J Î C1(W; ℝ) and is weakly lower semi-continuous.

On the other hand, for all u, v Î W, we have

lim
δ→0+

g(u + δv) − g(u)
δ

= lim
δ→0+

T∑
k=1

F(k, u(k) + δv(k)) − F(k, u(k))
δ

=
T∑
k=1

lim
δ→0+

F(k, u(k) + δv(k)) − F(k, u(k))
δ

=
T∑
k=1

f (k, u(k))v(k).

Consequently,

〈
J′(u), v

〉
=

T+1∑
k=1

a(k−1,�u(k−1))�v(k−1)+
T∑

k=1

|u(k)|p(k)−2u(k)v(k)−
T∑
k=1

f (k, u(k))v(k),

for all u, v Î W.

This implies that the weak solutions of problem (4.1) coincide with the critical points

of J. Next, we prove that J is bounded below and coercive complete the proof. From

(4.3), we deduce that |F(k, t)| ≤ C(1 + |t|b) and then for u Î W such that ||u|| > 1,
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J(u) ≥ C
p+

‖u‖p− − C1 −
T∑
k=1

F(k, u(k))

≥ C
p+

‖u‖p− − C1 − C′
T∑
k=1

(
1 +

∣∣u(k)∣∣β)

≥ C
p+

‖u‖p− − C1 − C′T − C′
(

T∑
k=1

∣∣u(k)∣∣β
)

≥ C
p+

‖u‖p− − C1 − C′T − C′′
(

T∑
k=1

∣∣u(k)∣∣2
) β

2

.

≥ C

p+
‖u‖p− − C1 − C′T − K‖u‖β .

Furthermore, by the fact that 1 <b < p- , it turns out that

J(u) ≥ C
p+

‖u‖p− − C1 − C′T − K‖u‖β → +∞ as ‖u‖ → +∞,

where K is a positive constant. Therefore, J is coercive.

On the other hand, for u Î W such that ||u|| < 1,

J(u) ≥ C3

p+
‖u‖p+ − CT − K‖u‖β

≥ −CT − K‖u‖β

≥ −CT − K

> −∞.

Hence, J is bounded below. □

Assume now that F+(k, t) =
∫ t

0
f +(k, τ )dτ is such that there exist two positive con-

stant C9 and C10 such that

f +(k, t) ≤ C9 + C10|t|β−1, for all (k, t) ∈ Z[1,T] × R, where 1 < β < p−. (4:5)

Then, we have the following result:

Theorem 4.2 Under assumptions (1.6)-(1.9) and (4.5), problem (4.1) has at least one

weak solution.

Proof As f = f+ - f-, letting F+(k, t) =
∫ t

0
f +(k, τ )dτ and F−(k, t) =

∫ t

0
f−(k, τ )dτ, we

have

J(u) =
T+1∑
k=1

A(k − 1,�u(k − 1)) +
T∑
k=1

1
p(k)

|u(k)|p(k) −
T∑
k=1

F(k, u(k))

=
T+1∑
k=1

A(k − 1,�u(k − 1)) +
T∑
k=1

1
p(k)

|u(k)|p(k) −
T∑
k=1

F+(k, u(k)) +
T∑
k=1

F−(k, u(k))

≥
T+1∑
k=1

A(k − 1,�u(k − 1)) +
T∑
k=1

1
p(k)

|u(k)|p(k) −
T∑
k=1

F+(k, u(k)).

Therefore, similar to the proof of Theorem 4.1, Theorem 4.2 follows immediately. □
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4.2 Extension 2

In this section, we show that the existence result obtained for (1.1) can be extended to

more general discrete boundary value problem of the form:
{−�(a(k − 1,�u(k − 1))) + |u(k)|p(k)−2u(k) + λ|u(k)|β+−2u(k) = f (k, u(k)), k ∈ Z[1,T]

�u(0) = �u(T) = 0,
(4:6)

where T ≥ 2 is a positive integer, l Î ℝ+ and f : ℤ[1, T]× ℝ ® ℝ is a continuous

function with respect to the second variable for all (k, z) Î ℤ[1, T] × ℝ.

For every k Î ℤ[1, T] and every t Î ℝ, we put F(k, t) =
∫ t
0 f (k, τ )dτ.

By a weak solution of problem (4.1), we understand a function u Î W such that
⎧⎪⎪⎨
⎪⎪⎩

T+1∑
k=1

a(k − 1,�u(k − 1))�v(k − 1) +
T∑
k=1

|u(k)|p(k)−2u(k)v(k) + λ
T∑
k=1

|u(k)|β+−2u(k)v(k)

=
T∑
k=1

f (k, u(k))v(k), for any v ∈ W.
(4:7)

We assume that there exist two positive constants C11 and C12 such that∣∣f (k, t)∣∣ ≤ C11 + C12|t|β(k)−1, for all (k, t) ∈ Z[1,T] × R, where 1 < β− < p−.(4:8)

We have the following result:

Theorem 4.3 Under assumptions (1.6)-(1.9) and (4.8), there exist l* > 0 such that for

l Î [l*, +∞[, the problem (4.6) has at least one weak solution.

Proof Let g(u) =
T∑
k=1

F(k, u(k)), then g’: W ® W is completely continuous and thus, g

is weakly lower semi-continuous.

Therefore, for u Î W

J(u) =
T+1∑
k=1

A(k − 1,�u(k − 1)) +
T∑
k=1

1
p(k)

|u(k)|p(k) + λ

β+

T∑
k=1

|u(k)|β+ −
T∑
k=1

F(k, u(k)) (4:9)

is such that J Î C1(W; ℝ) and is weakly lower semi-continuous.

On the other hand, for all u, v Î W, we have

lim
δ→0+

g(u + δv) − g(u)
δ

= lim
δ→0+

T∑
k=1

F(k, u(k) + δv(k)) − F(k, u(k))
δ

=
T∑
k=1

lim
δ→0+

F(k, u(k) + δv(k)) − F(k, u(k))
δ

=
T∑
k=1

f (k, u(k))v(k).

Consequently,⎧⎪⎪⎨
⎪⎪⎩

〈
J′(u), v

〉
=

T+1∑
k=1

a(k − 1,�u(k − 1))�v(k − 1) +
T∑
k=1

|u(k)|p(k)−2u(k)v(k)

+λ
T∑
k=1

|u(k)|β+−2u(k)v(k) −
T∑
k=1

f (k, u(k))v(k),

for all u, v Î W.

This implies that the weak solutions of problem (4.6) coincide with the critical points

of J. We then have to prove that J is bounded below and coercive complete the proof.
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From (4.8), we deduce that |F(k, t) ≤ C(1 + |t|b(k)-1) and then for u Î W such that ||u||

> 1,

J(u) ≥ C
p+

‖u‖p− +
λ

β+

T∑
k=1

|u(k)|β+ − C1 −
T∑
k=1

F(k, u(k))

≥ C
p+

‖u‖p− +
λ

β+

T∑
k=1

|u(k)|β+ − C1 − C′
T∑
k=1

(
1 +

∣∣u(k)∣∣β(k))

≥ C
p+

‖u‖p− +
λ

β+

T∑
k=1

|u(k)|β+ − C1 − C′T − C′
(

T∑
k=1

∣∣u(k)∣∣β(k)
)

≥ C
p+

‖u‖p− +
λ

β+

T∑
k=1

|u(k)|β+ − C1 − C′T − C′
(

T∑
k=1

∣∣u(k)∣∣β−
+

T∑
k=1

∣∣u(k)∣∣β+

)

≥ C
p+

‖u‖p− + (
λ

β+
− C′)

T∑
k=1

|u(k)|β+ − C1 − C′T − K‖u‖β−

≥ C
p+

‖u‖p− − C1 − C′T − K‖u‖β−
,

where we put l* = C’b+.
Furthermore, by the fact that 1 <b- <p-, it turns out that

J(u) ≥ C
p+

‖u‖p− − C1 − C′T − K‖u‖β− → +∞ as ‖u‖ → +∞,

where K is a positive constant. Therefore, J is coercive.

On the other hand, for u Î W such that ||u|| < 1,

J(u) ≥ C3

p+
‖u‖p+ − C′T − K‖u‖β

≥ −C′T − K‖u‖β

≥ −C′T − K

> −∞.

Hence, J is bounded below. □
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