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Abstract

In this article we study the difference equation

xn+1 =
axn−lxn−k

bxn−p − cxn−q
, n = 0, 1, . . . ,

where the initial conditions x-r, x-r+1, x-r+2,..., x0 are arbitrary positive real numbers, r =
max{l, k, p, q} is nonnegative integer and a, b, c are positive constants: Also, we study
some special cases of this equation.
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1 Introduction
The purpose of this article is to investigate the global attractivity of the equilibrium

point, and the asymptotic behavior of the solutions of the following difference equation

xn+1 =
axn−lxn−k

bxn−p − cxn−q
, n = 0, 1, . . . , (1)

where the initial conditions x-r, x-r+1, x-r+2,..., x0 are arbitrary positive real numbers, r

= max{l, k, p, q} is nonnegative integer and a, b, c are positive constants: Moreover, we

obtain the form of the solution of some special cases of Equation 1 and some numeri-

cal simulations to the equation are given to illustrate our results.

Let us introduce some basic definitions and some theorems that we need in the

sequel.

Let I be some interval of real numbers and let

f : Ik+1 → I,

be a continuously differentiable function. Then for every set of initial conditions x-k,

x-k+1,..., x0 Î I, the difference equation

xn+1 = f (xn, xn−1, . . . , xn−k), n = 0, 1, . . . , (2)

has a unique solution {xn}∞n=−k[1].

A point x̄ ∈ I is called an equilibrium point of Equation 2 if

x̄ = f (x̄, x̄, . . . , x̄).
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That is, xn = x̄ for n ≥ 0, is a solution of Equation 2, or equivalently, x̄ is a fixed point

of f.

Definition 1 (Stability)

(i) The equilibrium point x̄ of Equation 2 is locally stable if for every ε >0, there exists

δ >0 such that for all x-k, x-k+1,..., x-1, x0 Î I with

|x−k − x̄| + |x−k+1 − x̄| + · · · + |x0 − x̄| < δ,

we have

|xn − x̄| < ε for all n ≥ −k.

(ii) The equilibrium point x̄ of Equation 2 is locally asymptotically stable if x̄ is

locally stable solution of Equation 2 and there exists g >0, such that for all x-k, x-k+1,...,

x-1, x0 Î I with

|x−k − x̄| + |x−k+1 − x̄| + . . . + |x0 − x̄| < γ ,

we have

lim
n→∞ xn = x̄.

(iii) The equilibrium point x̄ of Equation 2 is global attractor if for all x-k, x-k+1,..., x-1,

x0 Î I, we have

lim
n→∞ xn = x̄.

(iv) The equilibrium point x̄ of Equation 2 is globally asymptotically stable if x̄ is

locally stable and x̄ is also a global attractor of Equation 2.

(v) The equilibrium point x̄ of Equation 2 is unstable if x̄ is not locally stable.

The linearized equation of Equation 2 about the equilibrium x̄ is the linear difference

equation

yn+1 =
∑k

i=0

∂f (x̄, x̄, . . . , x̄)
∂xn−i

yn−i. (3)

Theorem A [2]

Assume that p, q Î R and k Î {0, 1, 2,...}. Then

|p| + |q| < 1,

is a sufficient condition for the asymptotic stability of the difference equation

xn+1 + pxn + qxn−k = 0, n = 0, 1, . . . .

Remark 1 Theorem A can be easily extended to a general linear equations of the

form

xn+k + p1xn+k−1 + . . . + pkxn = 0, n = 0, 1, . . . , (4)

where p1, p2,..., pk Î R and k Î {1, 2,...}. Then Equation 4 is asymptotically stable

provided that

k∑
i=1

|pi| < 1.
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Definition 2

(Fibonacci Sequence) The sequence {Fm}∞m=0 = {1, 2, 3, 5, 8, 13, . . .}i.e. Fm = Fm-1 + Fm-2,

m ≥ 0, F-2 = 0, F-1 = 1 is called Fibonacci Sequence.

The nature of many biological systems naturally leads to their study by means of a

discrete variable. Particular examples include population dynamics and genetics. Some

elementary models of biological phenomena, including a single species population

model, harvesting of fish, the production of red blood cells, ventilation volume and

blood CO2 levels, a simple epidemics model and a model of waves of disease that can

be analyzed by difference equations are shown in [3]. Recently, there has been interest

in so-called dynamical diseases, which correspond to physiological disorders for which

a generally stable control system becomes unstable. One of the first papers on this sub-

ject was that of Mackey and Glass [4]. In that paper they investigated a simple first

order difference-delay equation that models the concentration of blood-level CO2.

They also discussed models of a second class of diseases associated with the produc-

tion of red cells, white cells, and platelets in the bone marrow.

The study of the nonlinear rational difference equations of a higher order is quite

challenging and rewarding, and the results about these equations offer prototypes

towards the development of the basic theory of the global behavior of nonlinear differ-

ence equations of a big order, recently, many researchers have investigated the beha-

vior of the solution of difference equations for example: Elabbasy et al. [5] investigated

the global stability, periodicity character and gave the solution of special case of the

following recursive sequence

xn+1 = axn − bxn
cxn − dxn−1

.

Elabbasy et al. [6] investigated the global stability, boundedness, periodicity character

and gave the solution of some special cases of the difference equation

xn+1 =
αxn−k

β + γ
∏k

i=0 xn−i

.

Elabbasy et al. [7] investigated the global stability character, boundedness and the

periodicity of solutions of the difference equation

xn+1 =
αxn + βxn−1 + γ xn−2

Axn + Bxn−1 + Cxn−2
.

El-Metwally et al. [8] investigated the asymptotic behavior of the population model:

xn+1 = α + βxn−1e
−xn ,

where a is the immigration rate and b is the population growth rate.

Yang et al. [9] investigated the invariant intervals, the global attractivity of equili-

brium points and the asymptotic behavior of the solutions of the recursive sequence

xn+1 =
axn−1 + bxn−2

c + dxn−1xn−2
.
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Cinar [10,11] has got the solutions of the following difference equations

xn+1 =
xn−1

1 + axnxn−1
, xn+1 =

xn−1

−1 + axnxn−1
.

Aloqeili [12] obtained the form of the solutions of the difference equation

xn+1 =
xn−1

a − xnxn−1
.

Yalçinkaya [13] studied the following nonlinear difference equation

xn+1 = α +
xn−m

xkn
.

For some related work see [1-29].

The article proceeds as follows. In Sect. 2 we show that when 2a |b - c| + a(b + c) <

(b - c)2, then the equilibrium point of Equation 1 is locally asymptotically stable. In

Sect. 3 we prove that the equilibrium point of Equation 1 is global attractor. In Sect. 4

we give the solutions of some special cases of Equation 1 and give a numerical exam-

ples of each case and draw it by using Matlab 6.5.

2 Local stability of Equation 1
In this section we investigate the local stability character of the solutions of Equation 1.

Equation 1 has a unique positive equilibrium point and is given by

x =
ax2

bx − cx
,

if a ≠ b-c, b ≠ c, then the unique equilibrium point is x̄ = 0.
Let f : (0, ∞)4 ® (0, ∞) be a function defined by

f (u, v, w, s) =
auv

bw − cs
. (5)

Therefore, it follows that

fu(u, v, w, s) =
av

(bw − cs)
, fv(u, v, w, s) =

au
(bw − cs)

,

fw(u, v, w, s) =
−bauv

(bw − cs)2
, fs(u, v, w, s) =

cauv

(bw − cs)2
,

we see that

fu(x̄, x̄, x̄, x̄) =
a

(b − c)
, fv(x̄, x̄, x̄, x̄) =

a
(b − c)

,

fw(x̄, x̄, x̄, x̄) =
−ab

(b − c)2
, fs(x̄, x̄, x̄, x̄) =

ac

(b − c)2
.

The linearized equation of Equation 1 about x̄ is

yn+1 +
a

(b − c)
yn−1 +

a
(b − c)

yn−k − ab

(b − c)2
yn−p +

ac

(b − c)2
yn−q = 0. (6)
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Theorem 1

Assume that

a(3ζ − η) < (b − c)2,

where ζ = max{b, c}, h = min{b, c}. Then the equilibrium point of Equation 1 is

locally asymptotically stable.

Proof: It is follows by Theorem A that Equation 6 is asymptotically stable if∣∣∣∣ a
(b − c)

∣∣∣∣ +
∣∣∣∣ a
(b − c)

∣∣∣∣ +
∣∣∣∣ ab

(b − c)2

∣∣∣∣ +
∣∣∣∣ ab

(b − c)2

∣∣∣∣ < 1,

or ∣∣∣∣ 2a
(b − c)

∣∣∣∣ +
∣∣∣∣ a(b + c)

(b − c)2

∣∣∣∣ < 1,

and so

2a|b − c| + a(b + c) < (b − c)2.

The proof is complete.

3 Global attractivity of the equilibrium point of Equation 1
In this section we investigate the global attractivity character of solutions of Equation

1.

We give the following two theorems which is a minor modification of Theorem A.0.2

in [1].

Theorem 2

Let [a, b] be an interval of real numbers and assume that

f : [a, b]k+1 → [a, b],

is a continuous function satisfying the following properties:

(i) f(x1, x2,...., xk+1) is non-increasing in one component (for example xt) for each xr (r

≠ t) in [a, b] and non-decreasing in the remaining components for each xt in [a, b].

(ii) If (m, M) ∈ [a, b] × [a, b] is a solution of the system

M = f(M, M,...,M, m, M,...,M, M) and m = f(m, m,...,m, M, m,...m, m) implies

m = M.

Then Equation 2 has a unique equilibrium x̄ ∈ [a, b] and every solution of Equation

2 converges to x̄
Proof: Set

m0 = a andM0 = b,

and for each i = 1, 2,...set

mi = f (mi−1, mi−1, . . . , mi−1, Mi−1, mi−1, . . . , mi−1, mi−1),

and

Mi = f (Mi−1, Mi−1, . . . , Mi−1, mi−1, Mi−1, . . . , Mi−1, Mi−1).
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Now observe that for each i ≥ 0,

a = m0 ≤ m1 ≤ . . . ≤ mi ≤ . . . ≤ Mi ≤ . . . ≤ M1 ≤ M0 = b,

and

mi ≤ xp ≤ Mi for p ≥ (k + 1)i + 1.

Set

m = lim
x→∞mi andM = lim

i→∞
Mi.

Then

M ≥ lim
i→∞

sup xi ≥ lim inf
i→∞

xi ≥ m

and by the continuity of f,

M = f(M, M,...,M, m, M,...,M, M) and m = f(m, m,...,m, M, m,...m, m).

In view of (ii),

m = M = x̄,

from which the result follows.

Theorem 3

Let [a, b] be an interval of real numbers and assume that

f : [a, b]k+1 → [a, b],

is a continuous function satisfying the following properties:

(i) f(x1, x2,...,xk+1) is non-increasing in one component (for example xt) for each xr (r

≠ t) in [a, b] and non-increasing in the remaining components for each xt in [a, b].

(ii) If (m, M)Î[a, b] × [a, b] is a solution of the system

M = f(m, m,...,m, M, m,...m, m) and m = f(M, M,...,M, m, M,...,M, M)’ implies

m = M.

Then Equation 2 has a unique equilibrium x̄ ∈ [a, b] and every solution of Equation

2 converges to x̄
Proof: As the proof of Theorem 2 and will be omitted.

Theorem 4

The equilibrium point x̄ of Equation 1 is global attractor if c ≠ a.

Proof: Let p, q are a real numbers and assume that f : [p, q]4 → [p, q] be a function

defined by Equation 5, then we can easily see that the function f(u, v, w, s) increasing

in s and decreasing in w.

Case (1) If bw-cs > 0, then we can easily see that the function f(u, v, w, s)

increasing in u, v, s and decreasing in w.

Suppose that (m, M) is a solution of the system

M = f(m, m, M, m) and M = f(M, M, m, M).

Then from Equation 1, we see that

m =
am2

bM − cm
, M =

aM2

bm − cM
,

Elabbasy et al. Advances in Difference Equations 2011, 2011:28
http://www.advancesindifferenceequations.com/content/2011/1/28

Page 6 of 16



bM = cm + am, bm = cM + aM,

then

(M − m)(b + c + a) = 0.

Thus

M = m.

It follows by Theorem 2 that x̄ is a global attractor of Equation 1 and then the proof

is complete.

Case (2) If bw-cs < 0, then we can easily see that the function f(u, v, w, s) decreasing

in u, v, w and increasing in s.

Suppose that (m, M) is a solution of the system

M = f(m, m, m, M) and m = f(M, M, M, m).

Then from Equation 1, we see that

M =
am2

bm − cM
, m =

aM2

bM − cm
,

bmM − cM2 = am2, bmM − cm2 = aM2,

then

(M2 − m2)(c − a) = 0, a �= c.

Thus,

M = m.

It follows by the Theorem 3 that x̄ is a global attractor of Equation 1 and then the

proof is complete.

4 Special cases of Equation 1
4.1 Case (1)

In this section we study the following special case of Equation 1

xn+1 =
xnxn−1

xn − xn−1
, (7)

where the initial conditions x-1, x0 are arbitrary positive real numbers.

Theorem 5

Let {xn}∞n=−1 be a solution of Equation 7. Then for n = 0, 1,...

xn =
(−1)nhk

Fn−1k − Fn−2h
,

where x-1 = k, x0 = h and Fn-1, Fn-2 are the Fibonacci terms.

Proof: For n = 0 the result holds. Now suppose that n > 0 and that our assumption

holds for n-1, n-2. That is;

xn−2 =
(−1)n−2hk

Fn−3k − Fn−4h
, xn−1 =

(−1)n−1hk
Fn−2k − Fn−3h

.
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Now, it follows from Equation 7 that

xn =
xn−1xn−2

xn−1 − xn−2
=

(
(−1)n−1hk

Fn−2k − Fn−3h

)(
(−1)n−2hk

Fn−3k − Fn−4h

)
(

(−1)n−1hk

Fn−2k − Fn−3h
− (−1)n−2hk

Fn−3k − Fn−4h

)

=

(
(−1)n−1hk

Fn−2k − Fn−3h

) ( −1
Fn−3k − Fn−4h

)
(

1
Fn−2k − Fn−3h

+
1

Fn−3k − Fn−4h

) =
(−1)nhk

(Fn−2k − Fn−3h + Fn−3k − Fn−4h)

=
(−1)nhk

Fn−1k − Fn−2h
.n

Hence, the proof is completed.

For confirming the results of this section, we consider numerical example for x-1 =

11, x0 = 4 (see Figure 1), and for x-1 = 6, x0 = 15 (see Figure 2), since the solutions

take the forms {6, -12, 4, -3, 1.714286, -1.090909, .6666667, -.4137931, .2553191,....},

{-60, 10, -8.571428, 4.615385, -3, 1.818182, -1.132075, .6976744,...}.

4.2 Case (2)

In this section we study the following special case of Equation 1

xn+1 =
xn−1xn−2

xn−1 − xn−2
, (8)
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−8

−6

−4

−2

0

2

4
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8

10

12

n

x(
n)

plot of x(n+1)= x(n)*x(n−1)/(x(n)−x(n−1))

Figure 1 This figure shows the solution of xn+1 =
xnxn−1

xn − xn−1
, where x-1 = 11, x0 = 4.
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where the initial conditions x-2, x-1, x0 are arbitrary positive real numbers.

Theorem 6

Let {xn}∞n=−2 be a solution of Equation 8. Then x1 =
rk

k − r
, for n = 1, 2,...

xn+1 =
hkr

gn−4hk + gn−3kr + gn−2hr
,

where x-2 = r, x-1 = k, x0 = h, {gm}∞m=0 = {1, −2, 0, 3, −2, −3, . . .}, i.e., gm = gm-2 +

gm-3, m ≥ 0, g-3 = 0, g-2 = -1, g-1 = 1.

Proof: For n = 1, 2 the result holds. Now suppose that n > 1 and that our assump-

tion holds for n - 1, n - 2. That is;

xn−2 =
hkr

gn−7hk + gn−6kr + gn−5hr
,xn−1 =

hkr
gn−6hk + gn−5kr + gn−4hr

. Now, it follows

from Equation 8 that

xn+1 =
xn−1xn−2

xn−1 − xn−2

=

(
hkr

gn−6hk + gn−5kr + gn−4hr

)(
hkr

gn−7hk + gn−6kr + gn−5hr

)
(

hkr
gn−6hk + gn−5kr + gn−4hr

− hkr
gn−7hk + gn−6kr + gn−5hr

)

=
hkr

(gn−7hk + gn−6kr + gn−5hr − gn−6hk + gn−5kr + gn−4hr)

=
hkr

gn−4hk + gn−3kr + gn−2hr
.
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15

n

x(
n)

plot of x(n+1)= x(n)*x(n−1)/(x(n)−x(n−1))

Figure 2 This figure shows the solution of xn+1 =
xnxn−1

xn − xn−1
, for x-1 = 6, x0 = 15.

Elabbasy et al. Advances in Difference Equations 2011, 2011:28
http://www.advancesindifferenceequations.com/content/2011/1/28

Page 9 of 16



Hence, the proof is completed.

Assume that x-2 = 8, x-1 = 15, x0 = 7, then the solution will be {17.14286, -13.125,

11.83099, 7.433628, -6.222222, -20, 3.387097, -9.032259,...}(see Figure 3).

The proof of following cases can be treated similarly.

4.3 Case (3)

Let x-2 = r, x-1 = k, x0 = h,
−1∏
i=0

Ai = 1 and F2i-1, F2i, F2i+1 (where i = 0 to n) are the Fibo-

nacci terms. Then the solution of the difference equation

xn+1 =
xn−1xn−2

xn − xn−2
, (9)

is given by

x2n =

h
n−1∏
i=0

(F2i−1h − F2ir)

n−1∏
i=0

(F2i+1r − F2ih)

, x2n+1 =

kr
n−1∏
i=0

(F2i+1r − F2ih)

n∏
i=0

(F2i−1h − F2ir)
, n = 0, 1, ... .

Figure 4 shows the solution when x-2 = 9, x-1 = 12, x0 = 17.
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plot of x(n+1)= x(n−1)*x(n−2)/(x(n−1)−x(n−2))

Figure 3 This figure shows the solution of xn+1 =
xn−1xn−2

xn−1 − xn−2
, where x-2 = 8, x-1 = 15, x0 = 7.
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4.4 Case (4)

Let x-2 = r, x-1 = k, x0 = h. Then the solution of the following difference equation

xn+1 =
xn−1xn

xn − xn−2
(10)

is given by

x2n−1 =
(

h
h − r

)n

k, x2n =
hn+1

rn
, n = 0, 1, . . . .

Figure 5 shows the solution when x-2 = 21, x-1 = 6, x0 = 3.

4.5 Case (5)

Let x-2 = r, x-1 = k, x0 = h. Then the solution of the following difference equation

xn+1 =
xn−1xn

xn−1 − xn−2
, (11)

is given by

x4n =
h(hk)2n

(rk(h − k)(k − r))n
, x4n+1 =

(hk)2n+1

(rk(h − k))n(k − r)n+1
,

x4n+2 =
h(hk)2n+1

((h − k)(k − r))n+1(rk)n
, x4n+3 =

(hk)2n

(r(h − k)(k − r))n+1kn
,n = 0, 1, . . . .

Figure 6 shows the solution when x-2 = 9, x-1= 5, x0 = 4.
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plot of x(n+1)= x(n−1)*x(n−2)/(x(n)−x(n−2))

Figure 4 This figure shows the solution of xn+1 =
xn−1xn−2

xn − xn−2
, when x-2 = 9, x-1 = 12, x0 = 17.
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Figure 5 This figure shows the solution of xn+1 =
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, where x-2 = 21, x-1 = 6, x0 = 3.
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Figure 6 This figure shows the solution of xn+1 =
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, for x-2 = 9, x-1 = 5, x0 = 4.
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Figure 7 shows the solution when x-2= .9, x-1 = 5, x0 = .4.

4.6 Case (6)

Let x-2 = r, x-1 = k, x0 = h, Then the solution of the following difference equation

xn+1 =
xn−2xn

xn − xn−2
, (12)

is given by

xn =
hkr

un−3hr + un−2hk + un−1kr
, n = 0, 1, . . . ,

Where {um}∞m=0 = {−1, 1, 0, −1, 2, −2, 1, 1, −3, . . .} i. e. um = um-1 - um-3, m ≥ 0, u-

3 = 0, u-2 = 0, u-1 = 1.

Figure 8 shows the solution when x-2 = 11, x-1 = 6, x0 = 17.

4.7 Case (7)

Let x-2 = r, x-1 = k, x0 = h and Fn-1F, n-2, Fn are the Fibonacci terms.

Then the solution of the following difference equation

xn+1 =
xn−2xn

xn−1 − xn−2
, (13)
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plot of x(n+1)= x(n)*x(n−1)/(x(n−1)−x(n−2))

Figure 7 This figure shows the solution of xn+1 =
xn−1xn

xn−1 − xn−2
, when x-2 = 0.9, x-1 = 5, x0 = 0.4.
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Figure 8 This figure shows the solution of xn+1 =
xn−2xn

xn − xn−2
, where x-2 = 11, x-1 = 6, x0 = 17.
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Figure 9 This figure shows the solution of xn+1 =
xn−2xn

xn−1 − xn−2
when x-2 = 8, x-1 = 5, x0 = 0.9.

Elabbasy et al. Advances in Difference Equations 2011, 2011:28
http://www.advancesindifferenceequations.com/content/2011/1/28

Page 14 of 16



is given by

x2n =
hkr

(Fn−2k − Fn−1r)(Fn−2h − Fn−1k)
,

x2n+1 =
hkr

(Fn−1k − Fnr)(Fn−2h − Fn−1k)
, n = 0, 1, . . . .

Figure 9 shows the solution when x-2 = 8, x-1 = 5, x0 = 0.9.
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