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Abstract

In the present paper, we deal with the Cauchy problems of abstract fractional
integro-differential equations involving nonlocal initial conditions in a-norm, where
the operator A in the linear part is the generator of a compact analytic semigroup.
New criterions, ensuring the existence of mild solutions, are established. The results
are obtained by using the theory of operator families associated with the function of
Wright type and the semigroup generated by A, Krasnoselkii’s fixed point theorem
and Schauder’s fixed point theorem. An application to a fractional partial integro-
differential equation with nonlocal initial condition is also considered.
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1 Introduction
Let (A, D(A)) be the infinitesimal generator of a compact analytic semigroup of

bounded linear operators {T(t)}t≥0 on a real Banach space (X, ||·||) and 0 Î r(A).
Denote by Xa, the Banach space D(Aa) endowed with the graph norm ||u||a = ||Aau||

for u Î Xa. The present paper concerns the study of the Cauchy problem for abstract

fractional integro-differential equation involving nonlocal initial condition⎧⎪⎪⎨⎪⎪⎩
cDβ

t u(t) = Au(t) + F(t, u(t), u(κ1(t)))

+
t∫
0
K(t − s)G(s, u(s), u(κ2(s)))ds, t ∈ [0,T],

u(0) +H(u) = u0

(1:1)

in Xa, where cDβ
t , 0 <b < 1, stands for the Caputo fractional derivative of order b,

and K : [0, T] ® ℝ+, �1, �2 : [0, T] ®[0, T], F, G : [0, T] × Xa × Xa ® X, H : C([0, T];

Xa) ® Xa are given functions to be specified later. As can be seen, H constitutes a

nonlocal condition.

The fractional calculus that allows us to consider integration and differentiation of

any order, not necessarily integer, has been the object of extensive study for analyzing

not only anomalous diffusion on fractals (physical objects of fractional dimension, like

some amorphous semiconductors or strongly porous materials; see [1-3] and references

therein), but also fractional phenomena in optimal control (see, e.g., [4-6]). As indi-

cated in [2,5,7] and the related references given there, the advantages of fractional
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derivatives become apparent in modeling mechanical and electrical properties of real

materials, as well as in the description of rheological properties of rocks, and in many

other fields. One of the emerging branches of the study is the Cauchy problems of

abstract differential equations involving fractional derivatives in time. In recent dec-

ades, there has been a lot of interest in this type of problems, its applications and var-

ious generalizations (cf. e.g., [8-11] and references therein). It is significant to study

this class of problems, because, in this way, one is more realistic to describe the mem-

ory and hereditary properties of various materials and processes (cf. [4,5,12,13]).

In particular, much interest has developed regarding the abstract fractional Cau-

chy problems involving nonlocal initial conditions. For example, by using the frac-

tional power of operators and some fixed point theorems, the authors studied the

existence of mild solutions in [14] for fractional differential equations with nonlocal

initial conditions and in [15] for fractional neutral differential equations with nonlo-

cal initial conditions and time delays. The existence of mild solutions for fractional

differential equations with nonlocal initial conditions in a-norm using the contrac-

tion mapping principle and the Schauder’s fixed point theorem have been investi-

gated in [16].

We here mention that the abstract problem with nonlocal initial condition was first

considered by Byszewski [17], and the importance of nonlocal initial conditions in dif-

ferent fields has been discussed in [18,19] and the references therein. Deng [19], espe-

cially, gave the following nonlocal initial values: H(u) =
∑p

i=1 Ciu(ti), where Ci (i = 1,

..., p) are given constants and 0 <t1 < ··· <tp-1 <tp < + ∞ (p Î N), which is used to

describe the diffusion phenomenon of a small amount of gas in a transparent tube. In

the past several years theorems about existence, uniqueness and stability of Cauchy

problem for abstract evolution equations with nonlocal initial conditions have been

studied by many authors, see for instance [19-28] and references therein.

In this paper, we will study the existence of mild solutions for the fractional Cauchy

problem (1.1). New criterions are established. Both Krasnoselkii’s fixed point theorem

and Schauder’s fixed point theorem, and the theory of operator families associated

with the function of Wright type and the semigroup generated by A, are employed in

our approach. The results obtained are generalizations and continuation of the recent

results on this issue.

The paper is organized as follows. In Section 2, some required notations, definitions

and lemmas are given. In Section 3, we present our main results and their proofs.

2 Preliminaries
In this section, we introduce some notations, definitions and preliminary facts which

are used throughout this work.

We first recall some definitions of fractional calculus (see e.g., [6,13] for more

details).

Definition 2.1 The Riemann-Liouville fractional integral operator of order b > 0 of

function f is defined as

Iβ f (t) =
1

�(β)

t∫
0

(t − s)β−1f (s)ds,
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provided the right-hand side is pointwise defined on [0, ∞), where Γ(·) is the gamma

function.

Definition 2.2 The Caputo fractional derivative of order b > 0, m - 1 <b <m, m Î N,

is defined as

cDβ f (t) = Im−βDm
t f (t) =

1
�(m − β)

t∫
0

(t − s)m−β−1Dm
s f (s)ds,

where Dm
t := dm

dtmand f is an abstract function with value in X. If 0 <b < 1, then

cDβ f (t) =
1

�(1 − β)

t∫
0

f ′(s)
(t − s)β

ds.

Throughout this paper, we let A : D(A) ® X be the infinitesimal generator of a com-

pact analytic semigroup of bounded linear operators {T(t)}t≥0 on X and 0 Î r(A),
which allows us to define the fractional power Aa for 0 ≤ a < 1, as a closed linear

operator on its domain D(Aa) with inverse A-a.

Let Xa denote the Banach space D(Aa) endowed with the graph norm ||u||a = ||

Aau|| for u Î Xa and let C([0, T];Xa) be the Banach space of all continuous functions

from [0, T] into Xa with the uniform norm topology

|u|α = sup{‖ u(t)‖α , t ∈ [0,T]}.

L (X) stands for the Banach space of all linear and bounded operators on X. Let M

be a constant such that

M = sup{‖ T(t)‖L(X), t ∈ [0,∞)}.

For k > 0, write

�k = {u ∈ C([0,T];Xα); |u|α ≤ k}.

The following are basic properties of Aa.

Theorem 2.1 ([29], pp. 69-75)).

(a) T(t) : X ® Xa for each t > 0, and AaT(t)x = T(t)Aax for each x Î Xa and t ≥ 0.

(b) AaT(t) is bounded on X for every t > 0 and there exist Ma > 0 and δ > 0 such

that

||AαT(t)||L(X) ≤ Mα

tα
e−δt.

(c) A-ais a bounded linear operator in X with D(Aa) = Im(A-a).

(d) If 0 <a1 ≤ a2, then Xα2.↪ Xα1

Lemma 2.1. [27]The restriction of T(t) to Xa is exactly the part of T(t) in Xa and is

an immediately compact semigroup in Xa, and hence it is immediately norm-

continuous.
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Define two families {Sβ(t)}t≥0 and {Pβ(t)}t≥0 of linear operators by

Sβ(t)x =
∞∫
0

�β(s)T(tβ s)xds, Pβ(t)x =
∞∫
0

βs�β(s)T(tβ s)x ds

for x Î X, t ≥ 0, where

�β(s) =
1

πβ

∞∑
n=1

(−s)n−1 �(1 + βn)
n!

sin(nπβ), s ∈ (0,∞)

is the function of Wright type defined on (0, ∞) which satisfies

�β(s) ≥ 0, s ∈ (0,∞),
∞∫
0

�β(s)ds = 1, and

∞∫
0
sζ �β(s)ds =

�(1 + ζ )
�(1 + βζ )

, ζ ∈ (−1,∞).
(2:1)

The following lemma follows from the results in [15].

Lemma 2.2. The following properties hold:

(1) For every t ≥ 0, Sβ(t)and Pβ(t)are linear and bounded operators on X, i.e.,

‖ Sβ(t)x ‖≤ M ‖ x ‖, ‖ Pβ(t)x ‖≤ βM

�(1 + β)
‖ x ‖

for all x Î X and 0 ≤ t < ∞.

(2) For every x Î X, t → Sβ(t)x, t → Pβ(t)xare continuous functions from [0, ∞)

into X.

(3) Sβ(t) and Pβ(t)are compact operators on X for t > 0.

(4) For all x Î X and t Î (0, ∞), ‖ AαPβ(t)x ‖ ≤ C
α
t−αβ ‖ x ‖, where

C
α
= Mαβ�(2−α)

�(1+β(1−α)).

We can also prove the following criterion.

Lemma 2.3. The functions t → AαPβ(t) and t → AαSβ(t) are continuous in the uni-

form operator topology on (0, +∞).

Proof. Let ε > 0 be given. For every r > 0, from (2.1), we may choose δ1, δ2 > 0 such

that

Mα

rαβ

δ1∫
0

�β(s)s−αds ≤ ε

6
,

Mα

rαβ

∞∫
δ2

�β(s)s−αds ≤ ε

6
. (2:2)

Then, we deduce, in view of the fact t ® AaT(t) that is continuous in the uniform

operator topology on (0, ∞) (see [[30], Lemma 2.1]), that there exists a constant δ >

such that

δ2∫
δ1

�β(s)
∥∥∥AαT

(
tβ1 s

)
− AαT

(
tβ2 s

)∥∥∥
L(X)

ds ≤ ε

3
, (2:3)

for t1, t2 ≥ r and |t1 - t2| <δ.
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On the other hand, for any x Î X, we write

Sβ(t1)x − Sβ(t2)x =
δ1∫
0

�β(s)
(
T
(
tβ1 s

)
x − T

(
tβ2 s

)
x
)
ds

+
δ2∫
δ1

�β(s)
(
T
(
tβ1 s

)
x − T

(
tβ2 s

)
x
)
ds

+
∞∫
δ2

�β(s)(T(t
β
1 s)x − T(tβ2 s)x)ds.

Therefore, using (2.2, 2.3) and Lemma 2.2, we get∥∥AαSβ(t1)x − AαSβ(t2)x
∥∥

≤
δ1∫
0

�β(s)
(∥∥∥AαT

(
tβ1 s

)∥∥∥
L(X)

+
∥∥∥AαT

(
tβ2 s

)∥∥∥
L(X)

)
‖ x ‖ ds

+
δ2∫
δ1

�β(s) ‖ AαT
(
tβ1 s

)
− AαT

(
tβ2 s

)
‖L(X) ‖ x ‖ ds

+

∞∫
δ2

�β(s)
(∥∥∥AαT

(
tβ1 s

)∥∥∥
L(X)

+
∥∥∥AαT

(
tβ2 s

)∥∥∥
L(X)

)
‖ x ‖ ds

≤ 2Mα

rαβ

δ1∫
0

�β(s)s−α ‖ x ‖ ds

+

δ2∫
δ1

�β(s)
∥∥∥T (tβ1 s) − T

(
tβ2 s

)∥∥∥
L(X)

‖ x ‖ ds

+
2Mα

rαβ

∞∫
δ2

�β(s)s−α ‖ x ‖ ds

≤ ε ‖ x ‖,
that is,

‖ AαSβ(t1) − AαSβ(t2) ‖ ≤ ε, for t1, t2 ≥ r and |t1 − t2| < δ

which together with the arbitrariness of r > 0 implies that AαPβ(t) is continuous in

the uniform operator topology for t > 0. A similar argument enable us to give the

characterization of continuity on AαPβ(t). This completes the proof. ■
Lemma 2.4. For every t > 0, the restriction of Sβ(t)to Xa and the restriction of Pβ(t)to

Xa are compact operators in Xa.

Proof. First consider the restriction of Sβ(t) to Xa. For any r > 0 and t > 0, it is suffi-

cient to show that the set {Sβ(t)u; u ∈ Br}is relatively compact in Xa, where Br := {u Î
Xa; ||u||a ≤ r}.

Since by Lemma 2.1, the restriction of T(t) to Xa is compact for t > 0 in Xa, for each

t > 0 and ε Î (0, t),{∞∫
ε

�β(s)T
(
tβ s

)
uds; u ∈ Br

}
=
{
T
(
tβε

) ∞∫
ε

�β(s)T
(
tβ s − tβε

)
uds; u ∈ Br

}
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is relatively compact in Xa. Also, for every u Î Br, as

∞∫
ε

�β(s)T
(
tβ s

)
uds → Sβ(t)u, ε → 0

in Xa, we conclude, using the total boundedness, that the set {Sβ(t)u; u ∈ Br} is
relatively compact, which implies that the restriction of Sβ(t) to Xa is compact.

The same idea can be used to prove that the restriction of Pβ(t) to Xa is also com-

pact. ■
The following fixed point theorems play a key role in the proofs of our main results,

which can be found in many books.

Lemma 2.5 (Krasnoselskii’s Fixed Point Theorem). Let E be a Banach space and B

be a bounded closed and convex subset of E, and let F1, F2 be maps of B into E such

that F1x + F2y Î B for every pair x, y Î B. If F1 is a contraction and F2 is completely

continuous, then the equation F1x + F2x = x has a solution on B.

Lemma 2.6 (Schauder Fixed Point Theorem). If B is a closed bounded and convex

subset of a Banach space E and F : B ® B is completely continuous, then F has a fixed

point in B.

3 Main results
Based on the work in [[15], Lemma 3.1 and Definition 3.1], in this paper, we adopt the

following definition of mild solution of Cauchy problem (1.1).

Definition 3.1. By a mild solution of Cauchy problem (1.1), we mean a function u Î
C([0, T]; Xa) satisfying

u(t) = Sβ(t)(u0 − H(u)) +
t∫
0
(t − s)β−1Pβ(t − s)(F(s, u(s), u(κ1(s)))

+
s∫
0
K(s − τ )G(τ , u(τ ), u(κ2(τ )))dτ )ds

for t Î [0, T].

Let us first introduce our basic assumptions.

(H0) �1, �2 Î C([0, T]; [0, T]) and K Î C([0, T]; ℝ+).

(H1) F, G : [0, T] × Xa × Xa ® X are continuous and for each positive number k Î
N, there exist a constant g Î [0, b(1 - a)) and functions �k(·) Î L1/g(0, T; ℝ+), jk(·)

Î L∞(0, T; ℝ+) such that

sup
‖u‖α ,‖v‖α≤k

‖ F(t, u, v) ‖ ≤ ϕk(t) and lim inf
k→+∞

‖ ϕk‖L1/γ (0,T)
k

= σ1 < ∞,

sup
‖u‖α ,‖v‖α≤k

‖ G(t, u, v) ‖ ≤ φk(t) and lim inf
k→+∞

‖ φk‖L∞(0,T)

k
= σ2 < ∞.

(H2) F, G : [0, T] × Xa × Xa ® X are continuous and there exist constants LF, LK
such that

‖ F(t, u1, v1) − F(t, u2, v2) ‖ ≤ LF(‖ u1 − u2‖α+ ‖ v1 − v2‖α),
‖ G(t, u1, v1) − G(t, u2, v2) ‖ ≤ LG(‖ u1 − u2‖α+ ‖ v1 − v2‖α)
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for all (t, u1, v1), (t, u2, v2) Î [0, T] × Xa × Xa.

(H3) H : C([0, T]; Xa) ® Xa is Lipschitz continuous with Lipschitz constant LH.

(H4) H : C([0, T]; Xa) ® Xa is continuous and there is a h Î (0, T) such that for

any u, w Î C([0, T]; Xa) satisfying u(t) = w(t)(t Î[h, T]), H(u) = H(w).

(H5) There exists a nondecreasing continuous function F : ℝ+ ® ℝ+ such that for

all u Î Θk,

‖ H(u)‖α ≤ �(k), and lim inf
k→+∞

�(k)
k

= μ < ∞.

Remark 3.1. Let us note that (H4) is the case when the values of the solution u(t) for t

near zero do not affect H(u). We refer to [19]for a case in point.

In the sequel, we set k̃ :=
∫ T

0
K(t)dt. We are now ready to state our main results in

this section.

Theorem 3.1. Let the assumptions (H0), (H1) and (H3) be satisfied. Then, for u0 Î
Xa, the fractional Cauchy problem (1.1) has at least one mild solution provided that

MLH + Cασ1T(1−α)β−γ

(
1 − γ

(1 − α)β − γ

)1−γ

+
Cασ2̃kT(1−α)β

(1 − α)β
< 1. (3:1)

Proof. Let v Î C([0, T]; Xa) be fixed with |v|a ≡ 0. From (3.1) and (H1), it is easy to

see that there exists a k0 > 0 such that

M(‖ u0‖α + LHk0+ ‖ H(ν)‖α) + Cα

(
1 − γ

(1 − α)β − γ

)1−γ

T(1−α)β−γ ‖ ϕk0‖L1/γ (0,T)

+
Cα̃kT(1−α)β

(1 − α)β
‖ φk0‖L∞(0,T) ≤ k0.

Consider a mapping Γ defined on �k0 by

(�u)(t) = Sβ(t)(u0 − H(u)) +
t∫
0
(t − s)β−1Pβ(t − s)

(
F(s, u(s), u(κ1(s)))

+
s∫
0
K(s − τ )G(τ , u(τ ), u(κ2(τ )))dτ

)
ds

:= (�1u)(t) + (�2u)(t), t ∈ [0,T].

It is easy to verify that (Γu)(·) Î C([0, T]; Xa) for every u ∈ �k0. Moreover, for every

pair v, u ∈ �k0 and t Î [0, T], by (H1) a direct calculation yields

‖ (�1v)(t) + (�2u)(t)‖α

≤ ‖ Sβ(t)(u0 − H(v))‖α +
t∫
0
(t − s)β−1 ‖ AαPβ(t − s)‖L(X)

∥∥F(s, u(s), u(κ1(s)))
+

s∫
0
K(s − τ ) G(τ , u(τ ), u(κ2(τ )))dτ

∥∥ds
≤ M(‖ u0‖α + LHk0+ ‖ H(ν)‖α)

+Cα

t∫
0
(t − s)β(1−α)−1(ϕk0 (s) + k̃ ‖ φk0‖L∞(0,T))ds

≤ M(‖ u0‖α + LHk0+ ‖ H(ν)‖α)

+Cα

(
1 − γ

(1 − α)β − γ

)1−γ

T(1−α)β−γ ‖ ϕk0‖L1/γ (0,T)
Cα̃kT(1−α)β

(1 − α)β
‖ φk0‖L∞(0,T)

≤ k0.
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That is, �1v + �2u ∈ �k0 for every pair v, u ∈ �k0. Therefore, the fractional Cauchy

problem (1.1) has a mild solution if and only if the operator equation Γ1u + Γ2u = u

has a solution in �k0.

In what follows, we will show that Γ1 and Γ2 satisfy the conditions of Lemma 2.5.

From (H3) and (3.1), we infer that Γ1 is a contraction. Next, we show that Γ2 is com-

pletely continuous on �k0.

We first prove that Γ2 is continuous on �k0. Let {un}∞n=1 ⊂ �k0 be a sequence such

that un ® u as n ® ∞ in C([0, T]; Xa). Therefore, it follows from the continuity of F,

G, �1 and �2 that for each t Î [0, T],

F(t, un(t), un(κ1(t))) → F(t, u(t), u(κ1(t))) as n → ∞,
G(t, un(t), un(κ1(t))) → G(t, u(t), u(κ2(t))) as n → ∞.

Also, by (H1), we see

t∫
0
(t − s)β−1−αβ ‖ F(s, un(s), un(κ1(s))) − F(s, u(s), u(κ1(s))) ‖ ds

≤ 2
t∫
0
(t − s)β−1−αβϕk0 (s)ds

≤ 2
(

1 − γ

(1 − α)β − γ

)1−γ

T(1−α)β−γ ‖ ϕk0‖L1/γ (0,T),

and

t∫
0
(t − s)β−1−αβ

s∫
0
K(s − τ ) ‖ G(τ , un(τ ), un(κ2(τ )))

−G(τ , u(τ ), u(κ2(τ ))) ‖ dτds

≤ 2̃k ‖ φk0‖L∞(0,T)

t∫
0
(t − s)β−1−αβds

≤ 2̃kT(1−α)β

(1 − α)β
‖ φk0‖L∞(0,T).

Hence, as

‖ (�2un)(t) − (�2u)(t)‖α

≤ C
α

t∫
0
(t − s)β−1−αβ ‖ F(s, un(s), un(κ1(s))) − F(s, u(s), u(κ1(s))) ‖ ds

+Cα

t∫
0
(t − s)β−1−αβ

s∫
0
K(s − τ ) ‖ G(τ , un(τ ), un(κ2(τ )))

−G(τ , u(τ ), u(κ2(τ ))) ‖ dτds,

we conclude, using the Lebesgue dominated convergence theorem, that for all t Î [0,

T],

‖ (�2un)(t) − (�2u)(t)‖α → 0, as n → ∞,

which implies that

|�2un − �2u|α → 0, as n → ∞.

This proves that Γ2 is continuous on �k0.

It suffice to prove that Γ2 is compact on �k0. For the sake of brevity, we write

N (t, u(t)) = F(t, u(t), u(κ1(t))) +

t∫
0

K(t − τ )G(τ , u(τ ), u(κ2(τ )))dτ .
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Let t Î [0, T] be fixed and ε, ε1 > 0 be small enough. For u ∈ �k0, we define the map

�ε,ε1 by

(�ε,ε1u)(t) =

t−ε∫
0

∞∫
ε1

βτ�β(τ )T((t − s)βτ )N (s, u(s))dτds

= T(εβε1)

t−ε∫
0

∞∫
ε1

βτ�β(τ )T((t − s)βτ − εβε1)N (s, u(s))dτds.

Therefore, from Lemma 2.1 we see that for each t Î (0, T], the set

{�ε,ε1u)(t); u ∈ �k0} is relatively compact in Xa. Then, as

‖ (�2u)(t) − (�ε,ε1u)(t)‖α

≤
∥∥∥∥ t∫
0

ε1∫
0

βτ (t − s)β−1�β(τ )T((t − s)βτ )N (s, u(s))dτds

∥∥∥∥
α

+

∥∥∥∥∥∥
t∫

t−ε

∞∫
ε1

βτ (t − s)β−1�β(τ )T((t − s)βτ )N (s, u(s))dτds

∥∥∥∥∥∥
α

≤ βMα

[ t∫
0
(t − s)β(1−α)−1(ϕk0 (s) + k̃ ‖ φk0‖L∞(0,T))ds

ε1∫
0

τ 1−α�β(τ )dτ

+
t∫

t−ε

(t − s)β(1−α)−1(ϕk0 (s) + k̃ ‖ φk0‖L∞(0,T))ds
∞∫
ε1

τ 1−α�β(τ )dτ

]

≤ βM
α

[(
1 − γ

(1 − α)β − γ

)1−γ

T(1−α)β−γ ‖ ϕk0‖L1/γ (0,T)

+
k̃T(1−α)β

(1 − α)β
‖ φk0‖L∞(0,T)

]
ε1∫
0

τ 1−α�β(τ )dτ

+
βMα�(2 − α)

�(1 + β(1 − α))

[(
1 − γ

(1 − α)β − γ

)1−γ

‖ ϕk0‖L1/γ (0,T)ε(1−α)β−γ

+
k̃

(1 − α)β
‖ φk0‖L∞(0,T)ε

(1−α)β

]
→ 0 as ε, ε1 → 0+

in view of (2.1), we conclude, using the total boundedness, that for each t Î [0, T],

the set {�2u)(t); u ∈ �k0} is relatively compact in Xa.

On the other hand, for 0 <t1 <t2 ≤ T and ε’ > 0 small enough, we have

‖ (�2u)(t1) − (�2u)(t2)‖α ≤ A1 + A2 + A3 + A4,

where

A1 =

t2∫
t1

(t2 − s)β−1−αβ ‖ N (s, u(s)) ‖ ds,

A2 =

t1−ε′∫
0

(t1 − s)β−1 ‖ AαPβ(t2 − s) − AαPβ(t1 − s)‖L(X) ‖ N (s, u(s)) ‖ ds,

A3 =

t1∫
t1−ε′

(t1 − s)β−1
(
(t2 − s)−αβ + (t1 − s)−αβ

)
‖ N (s, u(s)) ‖ ds,

A4 =

t1∫
0

∣∣∣(t2 − s)β−1 − (t1 − s)β−1
∣∣∣ · (t2 − s)−αβ ‖ N (s, u(s)) ‖ ds.
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Therefore, it follows from (H1), Lemma 2.2, and Lemma 2.3 that

A1 ≤ C
α

t2∫
t1
(t2 − s)β−1−αβ (ϕk0(s) + k̃ ‖ φk0‖L∞(0,T))ds

≤ Cα

(
1 − γ

(1 − α)β − γ

)1−γ

‖ ϕk0‖L1/γ (0,T)(t2 − t1)
(1−α)β−γ

+
Cα̃k ‖ φk0‖L∞(0,T)

(1 − α)β
(t2 − t1)

(1−α)β ,

A2 ≤ sup
s∈[0,t1−ε′]

‖ AαPα(t2 − s) − AαPα(t1 − s)‖L(X)

×
t1−ε′∫
0

(t1 − s)β−1(ϕk0(s) + k̃ ‖ φk0‖L∞(0,T))ds

≤
⎡⎣(1 − γ

β − γ

)1−γ

‖ ϕk0‖L1/γ (0,T)
(
t
β−γ

1−γ

1 − ε′
β−γ

1−γ

)1−γ

+
k̃ ‖ φk0‖L∞(0,T)

β

(
t1β − ε′β

)]
× sup

s∈[0,t1−ε′]
‖ AαPα(t2 − s) − AαPα(t1 − s)‖L(X) ,

A3 ≤ Cα

t1∫
t1−ε′

(t1 − s)β−1
(
(t2 − s)−αβ + (t1 − s)−αβ

)
×(ϕk0 (s) + k̃ ‖ φk0‖L∞(0,T))ds

≤ 2C
α

t1∫
t1−ε′

(t1 − s)β−1−αβ(ϕk0 (s) + k̃ ‖ φk0‖L∞(0,T))ds

≤ Cα

(
1 − γ

(1 − α)β − γ

)1−γ

‖ ϕk0‖L1/γ (0,T)ε′(1−α)β−γ

+
Cα̃k ‖ φk0‖L∞(0,T)

(1 − α)β
ε′(1−α)β ,

A4 ≤ Cα

t1∫
0
((t1 − s)β−1 − (t2 − s)β−1)(t2 − s)−αβ

×(ϕk0 (s) + k̃ ‖ φk0‖L∞(0,T))ds

≤ Cα

t1∫
0

((t1 − s)(1−α)β−1 − (t2 − s)(1−α)β−1)(ϕk0(s) + k̃ ‖ φk0‖L∞(0,T))ds

≤ Cα

(
1 − γ

(1 − α)β − γ

)1−γ

‖ ϕk0‖L1/γ (0,T)

×
⎡⎣t1(1−α)β−γ −

(
t2

(1−α)β−γ

1−γ − (t2 − t1)
(1−α)β−γ

1−γ

)1−γ
⎤⎦

+
2̃k

(1 − α)β
‖ φk0‖L∞(0,T)

(
t1(1−α)β − t2(1−α)β + (t2 − t1)

(1−α)β
)
,

from which it is easy to see that Ai (i = 1, 2, 3, 4) tends to zero independently of
u ∈ �k0 as t2 - t1 ® 0 and ε’ ® 0. Hence, we can conclude that

‖ (�2u)(t1) − (�2u)(t2)‖α → 0, as t2 − t1 → 0,

and the limit is independently of u ∈ �k0.

For the case when 0 = t1 <t2 ≤ T, since

‖ (�2u)(t1) − (�2u)(t2)‖α

=

∥∥∥∥ t2∫
0
(t2 − s)β−1Pβ(t2 − s)N (s, u(s))ds

∥∥∥∥
α

≤ Cα

t2∫
0
(t2 − s)β−1−αβ(ϕk0 (s) + k̃ ‖ φk0‖L∞(0,T))ds

≤ Cα

(
1 − γ

(1 − α)β − γ

)1−γ

‖ ϕk‖L1/γ (0,T)t2(1−α)β−γ +
Cα̃k ‖ φk0‖L∞(0,T)

(1 − α)β
t2(1−α)β .

||(Γ2u)(t1) - (Γ2u)(t2)||a can be made small when t2 is small independently of u ∈ �k0.

Consequently, the set {(�2)(·); · ∈ [0,T], u ∈ �k0} is equicontinuous. Now applying the

Arzela-Ascoli theorem, it follows that Γ2 is compact on �k0.
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Therefore, applying Lemma 2.5, we conclude that Γ has a fixed point, which gives

rise to a mild solution of Cauchy problem (1.1). This completes the proof. ■
The second result of this paper is the following theorem.

Theorem 3.2. Let the assumptions (H0), (H2), (H4) and (H5) be satisfied. Then, for u0
Î Xa, the fractional Cauchy problem (1.1) has at least one mild solution provided that

Mμ +
2CαT(1−α)β(LF + k̃LG)

(1 − α)β
< 1. (3:2)

Proof. The proof is divided into the following two steps.

Step 1. Assume that w Î C([h, T]; Xa) is fixed and set

w̃(t) =
{
w(t), t ∈ [η,T],
w(η), t ∈ [0, η].

It is clear that w Î C([0, T]; Xa). We define a mapping Γw on C([0, T]; Xa) by

(�wu)(t) = Sβ(t)(u0 − H(w̃)) +

t∫
0

(t − s)β−1Pβ(t − s)(F(s, u(s), u(κ1(s)))

+

s∫
0

K(s − τ )G(τ , u(τ ), u(κ2(τ )))dτ )ds, t ∈ [0,T].

Clearly, (Γwu)(·) Î C([0, T]; Xa) for every u Î C([0, T]; Xa). Moreover, for u Î Θk,

from (H2), it follows that

‖ (�wu)(t)‖α

≤ ‖ Sβ(t)(u0 − H(w̃))‖α

+
t∫
0
(t − s)β−1 ‖ Pβ(t − s)

(
F(s, u(s), u(κ1(s)))

+
s∫
0
K(s − τ )G(τ , u(τ ), u(κ2(τ )))dτ

) ‖αds

≤ M(‖ u0‖α+ ‖ H(w̃)‖α)

+Cα

t∫
0
(t − s)β(1−α)−1 [LF(‖ u(s)‖α+ ‖ u(κ1(s))‖α)+ ‖ F(s, ν, ν) ‖

+LG
s∫
0
K(s − τ )(‖ u(τ )‖α+ ‖ u(κ2(τ ))‖α+ ‖ G(s, ν, ν) ‖)dτ ]ds

≤ M(‖ u0‖α+ ‖ H(w̃)‖α) +
2kCα(LF + k̃LG)t(1−α)β

(1 − α)β

+
Cα

(
max
0≤s≤T

‖ F(s, ν, ν) ‖ +̃k max
0≤s≤T

‖ G(s, ν, ν) ‖
)
T(1−α)β

(1 − α)β
,

where v Î C([0, T]; Xa) is fixed with |v|a ≡ 0, which implies that there exists a inte-

ger k0 > 0 such that Γw maps �k0 into itself. In fact, if this is not the case, then for

each k > 0, there would exist uk Î Θk and tk Î [0, T] such that ||(Γwuk)(tk)||a >k.

Thus, we have

k < ‖ (�wuk)(tk)‖α ≤ M(‖ u0‖α+ ‖ H(̃u)‖α) +
2kCα(LF + k̃LG)T(1−α)β

(1 − α)β

+
Cα

(
max
0≤s≤T

‖ F(s, ν, ν) ‖ +̃k max
0≤s≤T

‖ G(s, ν, ν) ‖
)
T(1−α)β

(1 − α)β
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Dividing on both sides by k and taking the lower limit as k ® +∞, we get

1 ≤ 2Cα(LF + k̃LG)T(1−α)β

(1 − α)β
,

this contradicts (3.2). Also, for u, v ∈ �k0, a direct calculation yields

‖ (�wu)(t) − (�wv)(t)‖α

=

∥∥∥∥ t∫
0
(t − s)β−1Pβ(t − s)

[
F(s, u(s), u(κ1(s))) − F(s, v(s), v(κ1(s)))

+
s∫
0
K (s − τ )(G(τ , u(τ ), u(κ2(τ ))) − G(τ , v(τ ), v(κ2(τ ))))dτ

]
ds

∥∥∥∥
α

≤ Cα

t∫
0
(t − s)β−1−αβ

[‖ F(s, u(s), u(κ1(s))) − F(s, v(s), v(κ1(s))) ‖ ds

+
s∫
0
K(s − τ ) ‖ G(τ , u(τ ), u(κ2(τ ))) − G(τ , v(τ ), v(κ2(τ ))) ‖ dτ

]
ds

≤ Cα

t∫
0
(t − s)β−1−αβ

[
LF(‖ u(s) − v(s)‖α+ ‖ u(κ1(s)) − v(κ1(s))‖α)

+LG
s∫
0
K(s − τ )(‖ u(τ ) − v(τ )‖α+ ‖ u(κ2(τ )) − v(κ2(τ ))‖α)dτ

]
ds

≤ 2CαT(1−α)β(LF + k̃LG)
(1 − α)β

|u − v|α ,

which together with (3.2) implies that Γw is a contraction mapping on �k0. Thus, by

the Banach contraction mapping principle, Γw has a unique fixed point uw ∈ �k0, i.e.,

uw = Sβ(t)(u0 − H(w̃)) +

t∫
0

(t − s)β−1Pβ(t − s)(F(s, uw(s), uw(κ1(s)))

+

s∫
0

K(s − τ )G(τ , uw(τ ), uw(κ2(τ )))dτ )ds

for t Î [0, T].

Step 2. Write

�
η

k0
= {u ∈ C([η,T];Xα); ‖ u(t)‖α ≤ k0 for all t ∈ [η,T]}.

It is clear that �
η

k0 is a bounded closed convex subset of C([h, T]; Xa).

Based on the argument in Step 1, we consider a mapping F on �
η

k0 defined by

(Fw)(t) = uw, t ∈ [η,T].

It follows from (H5) and (3.2) that F maps �
η

k0 into itself. Moreover, for w1,w2 ∈ �
η

k0,

from Step 1, we have(
1 − 2CαT(1−α)β(LF + k̃LG)

(1 − α)β

)
|uw1 − uw2 |α ≤ M ‖ H(w1) − H(w2)‖α ,

that is,

sup
t∈[η,T]

‖ Fw1(t) − Fw2(t)‖α → 0 as w1 → w2 in �
η

k0
,
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which yields that F is continuous. Next, we prove that F has a fixed point in �
η

k0. It

will suffice to prove that F is a compact operator. Then, the result follows from

Lemma 2.6.

Let’s decompose the mapping F = F1 + F2 as

(F1w)(t) = Sβ(t)(u0 − H(w̃)),

(F2w)(t) =
t∫
0
(t − s)β−1Pβ(t − s)(F(s, uw(s), uw(κ1(s)))

+
s∫
0
K(s − τ )G(τ , uw(τ ), uw(κ2(τ )))dτ )ds.

Since assumption (H5) implies that the set
{
H(w̃);w ∈ �

η

k0

}
is bounded in Xa, it fol-

lows from Lemma 2.4 that for each t Î [h, T],
{
(F1w)(t);w ∈ �

η

k0

}
is relatively com-

pact in Xa. Also, for h ≤ t1 ≤ t2 ≤ T,∥∥(Sβ(t2) − Sβ(t1))(u0 − H(w̃))
∥∥

α
→ 0 as t2 − t1 → 0

independently of w ∈ �
η

k0. This proves that the set
{
(F1w)(·);w ∈ �

η

k0

}
is equicontin-

uous. Thus, an application of Arzela-Ascoli’s theorem yields that F1 is compact.

Observe that the set⎧⎨⎩F(t, u(t), u(κ1(t))) +

t∫
0

K(t − τ )G(τ , u(τ ), u(κ2(τ )))dτ ; t ∈ [0,T], w ∈ �
η

k0

⎫⎬⎭
is bounded in X. Therefore, using Lemma 2.1, Lemma 2.2 and Lemma 2.3, it is not

difficult to prove, similar to the argument with Γ2 in Theorem 3.1, that F2 is compact.

Hence, making use of Lemma 2.6 we conclude that F has a fixed point w∗ ∈ �
η

k0. Put

q = uw∗. Then,

q(t) = Sβ(t)
(
u0 − H

(
w̃∗)) + t∫

0

(t − s)β−1Pβ(t − s)
(
F(s, q(s), q(κ1(s)))

+

s∫
0

K (s − τ )G(τ , q(τ ), q(κ2(τ )))dτ )
)
ds, t ∈ [0,T].

Since uw∗ = Fw∗ = w∗ (t ∈ [η,T]), H(w∗) = H(q) and hence q is a mild solution of

the fractional Cauchy problem (1.1). This completes the proof. ■

4 Example
In this section, we present an example to our abstract results, which do not aim at

generality but indicate how our theorem can be applied to concrete problem.

We consider the partial differential equation with Dirichlet boundary condition and

nonlocal initial condition in the form

Wang et al. Advances in Difference Equations 2011, 2011:25
http://www.advancesindifferenceequations.com/content/2011/1/25

Page 13 of 16



⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c∂

1
2
t u(t, x) =

∂2u(t, x)
∂x2

+
q1(t)|u(sin(t), x)|
1 + |u(sin(t), x)|

+
t∫
0

q2(s)

1 + (t − s)2
|u(s, x)|

1 + |u(s, x)|ds, 0 ≤ t ≤ 1, 0 ≤ x ≤ π ,

u(t, 0) = u(t,π) = 0, 0 ≤ t ≤ 1,

u(0, x) =
1∫
η

ln[eu(s,x)(|u(s, x)| + 1)]ds + u0(x), 0 ≤ x ≤ π ,

(4:1)

where the functions q1, q2 are continuous on [0, 1] and 0 <h < 1.

Let X = L2[0, π] and the operators A = ∂2

∂x2 : D(A) ⊂ X �→ X be defined by

D(A) = {u ∈ X; u, u′ are absolutely continuous, u′′ ∈ X, and
u(0) = u(π) = 0}.

Then, A has a discrete spectrum and the eigenvalues are -n2, n Î N, with the corre-

sponding normalized eigenvectors yn(x) =
√

2
π
sin(nx). Moreover, A generates a com-

pact, analytic semigroup {T(t)}t≥0. The following results are well also known (see [29]

for more details):

(1) T(t)u =
∑∞

n=1 e
−n2t(u, yn)yn, ‖ T(t)‖L(X) ≤ e−t for all t ≥ 0.

(2) A−1
2 u =

∑∞
n=1

1
n
(u, yn)yn for each u Î X. In particular,

∥∥∥∥A− 1
2

∥∥∥∥
L(X)

= 1.

(3) A
1
2 u =

∑∞
n=1 n(u, yn)yn with the domain

D
(
A

1
2

)
=
{
u ∈ X;

∑∞
n=1

n(u, yn)yn ∈ X
}
.

Denote by Eζ, b, the generalized Mittag-Leffler special function (cf., e.g., [4]) defined

by

Eζ ,β(t) =
∞∑
k=0

tk

�(ζk + β)
ζ ,β > 0, t ∈ R.

Therefore, we have

Sβ(t)u =
∞∑
n=1

Eβ(−n2tβ)(u, yn)yn, u ∈ X; ‖ Sβ(t)‖L(X) ≤ 1,

Pβ(t)u =
∞∑
n=1

eβ(−n2tβ)(u, yn)yn, u ∈ X; ‖ Pβ(t)‖L(X) ≤ β

�(1 + β)

for all t ≥ 0, where Eb(t) := Eb,1(t) and eb(t) := Eb, b(t).

The consideration of this section also needs the following result.

Lemma 4.1. [31]If w ∈ D(A
1
2 ), then w is absolutely continuous, w’ Î X, and

‖ w′ ‖ =

∥∥∥∥A 1
2w

∥∥∥∥.
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Define

F(t, u(t), u(κ1(t)))(x) =
q1(t)|u(sin(t), x)|
1 + |u(sin(t), x)| ,

K(t) =
1

t2 + 1
, κ1(t) = sin(t), κ2(t) = t,

G(t, u(t), u(κ2(t)))(x) =
q2(t)|u(t, x)|
1 + |u(t, x)| ,

H(u)(x) =
1∫
η

ln[eu(s,x)(|u(s, x)| + 1)]ds.

Therefore, it is not difficult to verify that F, G : [0, 1] × X1
2

× X1
2

→ X and

H : C([0, 1]; X1
2
) → X1

2
are continuous,

‖ F(t, u(t), u(κ1(t))) − F(t, v(t), v(κ1(t))) ‖
≤ μ1

∥∥∥∥A−1
2

∥∥∥∥
L(X)

∥∥u(κ1(t)) − v(κ1(t))
∥∥ 1
2
,

‖ G(t, u(t), u(κ1(t))) − G(t, v(t), v(κ1(t))) ‖
≤ μ2

∥∥∥∥A−1
2

∥∥∥∥
L(X)

‖ u(t) − v(t)‖1
2
,

where μi := suptÎ [0, 1]|qi(t)|, and for any u satisfying |u| 1
2

≤ k,

‖ H(u)‖1
2

=

∥∥∥∥A 1
2H(u)(·)

∥∥∥∥ = ‖ H(u)′(·) ‖ ≤ 2(1 − η)k

in view of Lemma 4.1.

Now, we note that the problem (4.1) can be reformulated as the abstract problem

(1.1) and the assumptions (H0), (H2), (H4) and (H5) hold with

α =
1
2
, T = 1, LF = μ1, LG = μ2, �(k) = 2(1 − η)k, μ = 2(1 − η).

Thus, when 1 − η + 4M 1
2
(μ1 + μ2) < 1

2 such that condition (3.2) is verified, (4.1)

has at least one mild solution due to Theorem 3.2.
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