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Abstract

In this paper, an integral sliding mode control approach is presented to investigate
synchronization of nonidentical chaotic neural networks with discrete and distributed
time-varying delays as well as leakage delay. By considering a proper sliding surface
and constructing Lyapunov-Krasovskii functional, as well as employing a combination
of the free-weighting matrix method, Newton-Leibniz formulation and inequality
technique, a sliding mode controller is designed to achieve the asymptotical
synchronization of the addressed nonidentical neural networks. Moreover, a sliding
mode control law is also synthesized to guarantee the reachability of the specified
sliding surface. The provided conditions are expressed in terms of linear matrix
inequalities, and are dependent on the discrete and distributed time delays as well
as leakage delay. A simulation example is given to verify the theoretical results.
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Introduction
In the past few years, neural networks have attracted much attention due to the back-

ground of a wide range applications such as associative memory, pattern recognition,

image processing and model identification [1]. In such applications, the qualitative ana-

lysis of the dynamical behaviors is a necessary step for the practical design of neural

networks [2].

In hardware implementation, time delays occur due to finite switching speed of the

amplifiers and communication time. The existence of time delay may lead to some

complex dynamic behaviors such as oscillation, divergence, chaos, instability, or other

poor performance of the neural networks [3]. Therefore, the study of dynamical beha-

viors with consideration of time delays becomes extremely important to manufacture

high-quality neural networks [4]. Many results on dynamical behaviors have been

reported for delayed neural networks, for example, see [1-10] and references therein.

On the other hand, it was found that some delayed neural networks can exhibit

chaotic behavior [11-13]. These kinds of chaotic neural networks have been utilized to

solve optimization problems [14]. Since the drive-response concept for considering

synchronization of coupled chaotic systems was proposed in 1990 [15], the synchroni-

zation of chaotic systems has attracted considerable attention due to its benefits of
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having chaos synchronization in some engineering applications such as secure commu-

nication, chemical reactions, information processing and harmonic oscillation genera-

tion [16]. Therefore, some chaotic neural networks with delays could be treated as

models when we study the synchronization.

Recently, some works dealing with synchronization phenomena in delayed neural

networks have also appeared, for example, see [17-29] and references therein. In

[17-20], the coupled connected neural networks with delays were considered, several

sufficient conditions for synchronization of such neural networks were obtained by

Lyapunov stability theory and the linear matrix inequality (LMI) technique. In [21-29],

the authors investigated the synchronization problem of some chaotic neural networks

with delays. Using the drive-response concept, the control laws were derived to achieve

the synchronization of two identical chaotic neural networks.

It is worth pointing out that, the reported works in [17-29] focused on synchronizing

of two identical chaotic neural networks with different initial conditions. In practice,

the chaotic systems are inevitably subject to some environmental changes, which may

render their parameters to be variant. Furthermore, from the point of view of engineer-

ing, it is very difficult to keep the two chaotic systems to be identical all the time.

Therefore, it is important to study the synchronization problem of nonidentical chaotic

neural networks. Obviously, when the considered drive and response neural networks

are distinct and with time delay, it becomes more complex and challenging. On the

study for synchronization problem of two nonidentical chaotic systems, one usually

adopts adaptive control approach to establish synchronization conditions, for example,

see [30-32], and references therein. Recently, the integral sliding mode control

approach is also employed to investigate synchronization of nonidentical chaotic

delayed neural networks [33-38]. In [33], an integral sliding mode control approach is

proposed to address synchronization for two nonidentical chaotic neural networks with

constant delay. Based on the drive-response concept and Lyapunov stability theory,

both delay-independent and delay-dependent conditions in LMIs are derived under

which the resulting error system is globally asymptotically stable in the specified

switching surface, and a sliding mode controller is synthesized to guarantee the reach-

ability of the specified sliding surface. In [34], the authors investigated synchronization

for two chaotic neural networks with discrete and distributed constant delays. By using

Lyapunov functional method and LMI technique, a delay-dependent condition was

obtained to ensure that the drive system synchronizes with the identical response sys-

tem. When the parameters and activation functions of two chaotic neural networks

mismatched, the synchronization criterion is also derived by sliding mode control

approach. In [35], the projective synchronization for two nonidentical chaotic neural

networks with constant delay was investigated, a delay-dependent sufficient condition

was derived by sliding mode control approach, LMI technique and Lyapunov stability

theory. However, to the best of the authors’ knowledge, there are no results on the

problem of synchronization for chaotic neural networks with leakage delay. As pointed

out in [39], neural networks with leakage delay is a class of important neural networks;

time delay in the leakage term also has great impact on the dynamics of neural net-

works because time delay in the stabilizing negative feedback term has a tendency to

destabilize a system [39-43]. Therefore, it is necessary to further investigate the syn-

chronization problem for two chaotic neural networks with leakage delay.
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Motivated by the above discussions, the objective of this paper is to present a sys-

tematic design procedure for synchronization of two nonidentical chaotic neural net-

works with discrete and distributed time-varying delays as well as leakage delay. By

constructing a proper sliding surface and Lyapunov-Krasovskii functional, and employ-

ing a combination of the free-weighting matrix method, Newton-Leibniz formulation

and inequality technique, a sliding mode controller is designed to achieve the asympto-

tical synchronization of the addressed nonidentical neural networks. Moreover, a slid-

ing mode control law is also synthesized to guarantee the reachability of the specified

sliding surface. The provided conditions are expressed in terms of LMI, and are depen-

dent on the discrete and distributed time delays as well as leakage delay. Differing from

the results in [33-35], the main contributions of this study are to investigate the effect

of the leakage delay on the synchronization of two nonidentical chaotic neural net-

works with discrete and distributed time-varying delays as well as leakage delay and to

propose an integral sliding mode control approach to solving it.

Problem formulation and preliminaries
In this paper, we consider the following neural network model

ẏ(t) = − D1y(t − δ) + A1f (y(t)) + B1f (y(t − τ (t)))

+ C1

∫ t

t−σ (t)
f (y(s))ds + I1(t), t ≥ 0,

(1)

where y(t) = (y1(t), y2(t), ..., yn(t))
T Î Rn is the state vector of the network at time t, n

corresponds to the number of neurons; D1 Î Rn × n is a positive diagonal matrix, A1,

B1, C1 Î Rn × n are, respectively, the connection weight matrix, the discretely delayed

connection weight matrix and distributively delayed connection weight matrix; f(y(t)) =

(f1(y1(t)), f2(y2(t)), ..., fn(yn(t)))
T Î Rn denotes the neuron activation at time t; I1(t) Î Rn

is an external input vector; δ ≥ 0, τ(t) ≥ 0 and s(t) ≥ 0 denote the leakage delay, the

discrete time-varying delay and the distributed time-varying delay, respectively, and

satisfy 0 ≤ τ(t) ≤ τ, 0 ≤ s(t) ≤ s, where δ, τ and s are constants. It is assumed that the

measured output of system (1) is dependent on the state and the delayed states with

the following form:

w(t) = K1y(t) + K2y(t − δ) + K3y(t − τ (t)) + K4y(t − σ (t)), (2)

where w(t) Î Rm, Ki Î Rm × n (i = 1, 2, 3, 4) are known constant matrices.

The initial condition associated with model (1) is given by

y(s) = φ(s), s ∈ [−ρ, 0],

where j(s) is bounded and continuously differential on [-r, 0], r = max {δ, τ, s}.
We consider the system (1) as the drive system. The response system is as follows:

ż(t) = − D2z(t − δ) + A2g(z(t)) + B2g(z(t − τ (t)))

+ C2

∫ t

t−σ (t)
g(z(s))ds + I2(t) + u(t), t ≥ 0,

(3)

with initial condition z(s) = �(s), s Î [-r, 0], where �(s) is bounded and continuously

differential on [-r, 0], u(t) is the appropriate control input that will be designed in

order to obtain a certain control objective.
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Let x(t) = y(t) - z(t) be the error state, then the error system can be obtained from

(1) and (3) as follows:

ẋ(t) = − D1x(t − δ) + A1h(x(t)) + B1h(x(t − τ (t))) + C1

∫ t

t−σ (t)
h(x(s))ds

+ (D2 − D1)z(t − δ) − A2g(z(t)) − B2g(z(t − τ (t)))

− C2

∫ t

t−σ (t)
g(z(s))ds + A1f (z(t)) + B1f (z(t − τ (t)))

+ C1

∫ t

t−σ (t)
f (z(s))ds − u(t) + I1(t) − I2(t),

(4)

where h(x(t)) = f(y(t) - f(z(t)), and x(s) = j(s) - �(s), s Î [-r, 0].
Definition 1 The drive system (1) and the response system (3) is said to be globally

asymptotically synchronized, if system (4) is globally asymptotically stable.

The aim of the paper is to design a controller u(t) to let the response system (3) syn-

chronize with the drive system (1).

Since dynamic behavior of error system (4) relies on both error state x(t) and chaotic

state z(t) of response system (3), complete synchronization between two nonidentical

chaotic neural networks (1) and (3) cannot be achieved only by utilizing output feed-

back control. To overcome the difficulty, an integral sliding mode control approach

will be proposed to investigate the synchronization problem of two nonidentical chao-

tic neural networks (1) and (3). In other words, an integral sliding mode controller is

designed such that the sliding motion is globally asymptotically stable, and the state

trajectory of the error system (4) is globally driven onto the specified sliding surface

and maintained there for all subsequent time.

To utilize the information of the measured output w(t), a suitable sliding surface is

constructed as

S(t) =x(t) +
∫ t

0

[
D1x(ξ − δ) − A1h(x(ξ)) − B1h(x(ξ − τ (ξ)))

− C1

∫ ξ

ξ−σ (ξ)
h(x(s))ds + K

(
w(ξ) − K1z(ξ) − K2z(ξ − δ)

− K3z(ξ − τ (ξ)) − K4z(ξ − σ (ξ))
)]

dξ ,

(5)

where K Î Rn × m is a gain matrix to be determined.

It follows from (2), (4) and (5) that

S(t) =x(0) +
∫ t

0

[
(D2 − D1)z(ξ − δ) − A2g(z(ξ)) − B2g(z(ξ − τ (ξ)))

− C2

∫ ξ

ξ−σ (ξ)
g(z(s))ds + A1f (z(ξ)) + B1f (z(ξ − τ (ξ)))

+ C1

∫ ξ

ξ−σ (ξ)
f (z(s))ds − u(ξ) + I1(ξ) − I2(ξ) + KK1x(ξ)

+ KK2x(ξ − δ) + KK3x(ξ − τ (ξ)) + KK4x(ξ − σ (ξ))
]
dξ .

(6)

According to the sliding mode control theory [44], it is true that S(t) = 0 and

Ṡ(t) = 0 as the state trajectories of the error system (4) enter into the sliding mode. It
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thus follows from (6) and Ṡ(t) = 0 that an equivalent control law can be designed as

u(t) =(D2 − D1)z(t − δ) − A2g(z(t)) − B2g(z(t − τ (t)))

− C2

∫ t

t−σ (t)
g(z(s))ds + A1f (z(t)) + B1f (z(t − τ (t)))

+ C1

∫ t

t−σ (t)
f (z(s))ds + I1(t) − I2(t)

+ KK1x(t) + KK2x(t − δ) + KK3x(t − τ (t)) + KK4x(t − σ (t)).

(7)

Substituting (7) into (4), the sliding mode dynamics can be obtained and described

by

ẋ(t) = − KK1x(t) − (D1 + KK2)x(t − δ) − KK3x(t − τ (t)) − KK4x(t − σ (t))

+ A1h(x(t)) + B1h(x(t − τ (t))) + C1

∫ t

t−σ (t)
h(x(s))ds.

(8)

Throughout this paper, we make the following assumption:

(H). For any j Î {1, 2, ..., n}, there exist constants F
−
j , F

+
j , G

−
j and G+

j such that

F−
j ≤ fj(α1) − fj(α2)

α1 − α2
≤ F+j , G−

j ≤ gj(α1) − gj(α2)

α1 − α2
≤ G+

j

for all a1 ≠ a2.

To prove our result, the following lemma that can be found in [41] is necessary.

Lemma 1 For any constant matrix W Î Rm × m, W > 0, scalar 0 < h(t) < h, vector

function ω : [0, h] ® Rm such that the integrations concerned are well defined, then(∫ h(t)

0
ω(s)ds

)T

W

(∫ h(t)

0
ω(s)ds

)
≤ h(t)

∫ h(t)

0
ωT(s)Wω(s)ds.

Main results
For presentation convenience, in the following, we denote

F1 = diag(F−
1 , F

−
2 , . . . , F

−
n ), F2 = diag(F+1, F

+
2, . . . , F

+
n),

F3 = diag(F−
1 F

+
1, F

−
2 F

+
2, . . . , F

−
n F

+
n),

F4 = diag(
F−
1 + F+1
2

,
F−
2 + F+2
2

, . . . ,
F−
n + F+n
2

).

Theorem 1 Assume that the condition (H) holds and the measured output of drive

neural network (1) is condition (2). If there exist five symmetric positive definite

matrices Pi (i = 1, 2, 3, 4, 5), four positive diagonal matrices Ri (i = 1, 2, 3, 4), and ten

matrices M, N, L, Y, Xij (i, j = 1, 2, 3, i ≤ j) such that the following two LMIs hold:

X =

⎡
⎣ X11 X12 X13

XT
12 X22 X23

XT
13 XT

23 X33

⎤
⎦ > 0, (9)
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 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣


11 
12 
13 
14 
15 
16 
17 
18 
19 
1,10

∗ −P3 0 
24 
25 
26 
27 
28 
29 0
∗ ∗ 
33 
34 −YK3 −YK4 
37 P1B1 P1C1 0
∗ ∗ ∗ −P2 0 0 0 0 0 0
∗ ∗ ∗ ∗ 
55 0 0 F4R4 0 0
∗ ∗ ∗ ∗ ∗ 
66 0 0 0 
6,10

∗ ∗ ∗ ∗ ∗ ∗ 
77 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −R4 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −P4 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 
10,10

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (10)

in which 
11 = −P1D1 − D1P1 − YK1 − KT
1Y

T + P2 + δ2P3 + τX11 + X13 + XT
13 − F3R3 +M +MT,


13 = −F1R1 + F2R2 − KT
1Y

T, 
13 = −F1R1 + F2R2 − KT
1Y

T, Ω14 = -YK2,


15 = −YK3 + τX12 − X13 + XT
23, Ω16 = -Y K4 -MT + N, Ω17 = P1A1 + F4R3, Ω18 =

P1B1, Ω19 = P1C1, Ω1,10 = L - MT, Ω24 = D1Y K2, Ω25 = D1Y K3, Ω26 = D1Y K4, Ω27 =

-D1P1A1, Ω28 = D1P1B1, Ω29 = D1P1C1, Ω33 = τ X33 + s2 P5 - 2P1, Ω34 = - P1D1 - Y

K2, Ω37 = R1 - R2 + P1A1, 
55 = τX22 − X23 − XT
23 − F3R4, Ω66 = - N - NT, Ω6,10 = - L

- NT, Ω77 = s2P4 - R3, Ω10,10 = - P5 - L - LT, then the response neural network (3) can

globally asymptotically synchronize the drive neural network (1), and the gain matrix K

can be designed as

K = P−1
1 Y. (11)

Proof 1 Let Ri = diag(r(i)1 , r(i)2 , . . . , r(i)n ) (i = 1, 2), ν(ξ , s) = (xT(ξ), xT(ξ − τ (ξ)), ẋT(s))T,

and consider the following Lyapunov-Krasovskii functional as

V(t) = V1(t) + V2(t) + V3(t) + V4(t) + V5(t) + V6(t) + V7(t), (12)

where

V1(t) =
(
x(t) − D1

∫ t

t−δ

x(s)ds
)T

P1

(
x(t) − D1

∫ t

t−δ

x(s)ds
)
, (13)

V2(t) = 2
n∑
i=1

r(1)i

∫ xi(t)

0
(hi(s) − F−

i s)ds + 2
n∑
i=1

r(2)i

∫ xi(t)

0
(F+i s − hi(s))ds, (14)

V3(t) =
∫ t

t−δ

xT(s)P2x(s)ds + δ

∫ 0

−δ

∫ t

t+ξ

xT(s)P3x(s)ds dξ , (15)

V4(t) =
∫ 0

−τ

∫ t

t+ξ

ẋT(s)X33ẋ(s)ds dξ , (16)

V5(t) = σ

∫ 0

−σ

∫ t

t+ξ

hT(x(s))P4h(x(s))ds dξ , (17)

V6(t) = σ

∫ 0

−σ

∫ t

t+ξ

ẋT(s)P5ẋ(s)ds dξ , (18)

V7(t) =
∫ t

0

∫ ξ

ξ−τ(ξ)
νT(ξ , s)Xν(ξ , s)ds dξ . (19)

Song and Cao Advances in Difference Equations 2011, 2011:16
http://www.advancesindifferenceequations.com/content/2011/1/16

Page 6 of 17



Calculating the time derivative of V1(t) along the trajectories of model (8), we obtain

V̇1(t) = 2
(
x(t) − D1

∫ t

t−δ

x(s)ds
)T

P1
(−(D1 + KK1)x(t) − KK2x(t − δ)

− KK3x(t − τ (t)) − KK4x(t − σ (t)) + A1h(x(t))

+B1h(x(t − τ (t))) + C1

∫ t

t−σ (t)
h(x(s))ds

)

= xT(t)(−2P1D1 − 2P1KK1)x(t)

+ 2xT(t)(D1P1D1 + KT
1K

TP1D1)
∫ t

t−δ

x(s)ds

− 2xT(t)P1KK2x(t − δ) − 2xT(t)P1KK3x(t − τ (t))

− 2xT(t)P1KK4x(t − σ (t)) + 2xT(t)P1A1h(x(t))

+ 2xT(t)P1B1h(x(t − τ (t))) + 2xT(t)P1C1

∫ t

t−σ (t)
h(x(s))ds

+ 2
(∫ t

t−δ

x(s)ds
)T

D1P1KK2x(t − δ)

+ 2
(∫ t

t−δ

x(s)ds
)T

D1P1KK3x(t − τ (t))

+ 2
(∫ t

t−δ

x(s)ds
)T

D1P1KK4x(t − σ (t))

− 2
(∫ t

t−δ

x(s)ds
)T

D1P1A1h(x(t))

− 2
(∫ t

t−δ

x(s)ds
)T

D1P1B1h(x(t − τ (t)))

− 2
(∫ t

t−δ

x(s)ds
)T

D1P1C1

∫ t

t−σ (t)
h(x(s))ds.

(20)

Calculating the time derivatives of Vi(t) (i = 2, 3, 4, 5, 6, 7), we have

V̇2(t) = 2ẋT(t)R1(h(x(t)) − F1x(t)) + 2ẋT(t)R2(F2x(t) − h(x(t)))

= 2xT(t)(−F1R1 + F2R2)ẋ(t) + 2ẋT(t)(R1 − R2)h(x(t)),
(21)

V̇3(t) = xT(t)(P2 + δ2P3)x(t) − xT(t − δ)P2x(t − δ) − δ

∫ t

t−δ

xT(s)P3x(s)ds

≤ xT(t)(P2 + δ2P3)x(t) − xT(t − δ)P2x(t − δ)

−
(∫ t

t−δ

x(s)ds
)T

P3

(∫ t

t−δ

x(s)ds
)
,

(22)

V̇4(t) = τ ẋT(t)X33 ẋ(t) −
∫ t

t−τ

ẋT(s)X33ẋ(s)ds, (23)

V̇5(t) = σ 2hT(x(t))P4h(x(t)) − σ

∫ t

t−σ

hT(x(s))P4h(x(s))ds

≤ σ 2hT(x(t))P4h(x(t)) − σ (t)
∫ t

t−σ (t)
hT(x(s))P4h(x(s))ds

≤ σ 2hT(x(t))P4h(x(t))

−
(∫ t

t−σ (t)
h(x(s))ds

)T

P4

(∫ t

t−σ (t)
h(x(s))ds

)
,

(24)
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V̇6(t) = σ 2ẋT(t)P5ẋ(t) − σ

∫ t

t−σ

ẋT(s)P5ẋ(s)ds

≤ σ 2ẋT(t)P5ẋ(t) − σ (t)
∫ t

t−σ (t)
ẋT(s)P5ẋ(s)ds

≤ σ 2ẋT(t)P5ẋ(t) −
(∫ t

t−σ (t)
ẋ(s)ds

)T

P5

(∫ t

t−σ (t)
ẋ(s)ds

)
,

(25)

V̇7(t) =
∫ t

t−τ(t)
νT(t, s)Xν(t, s)ds

= τ (t)
(

x(t)
x(t − τ (t))

)T (
X11 X12

XT
12 X22

) (
x(t)

x(t − τ (t))

)
+ 2xT(t)X13x(t)

− 2xT(t)X13x(t − τ (t)) + 2xT(t − τ (t))X23x(t)

− 2xT(t − τ (t))X23x(t − τ (t)) +
∫ t

t−τ(t)
ẋT(s)X33ẋ(s)ds

≤ xT(t)(τX11 + 2X13)x(t) + 2xT(t)(τX12 − X13 + XT
23)x(t − τ (t))

+ xT(t − τ (t))(τX22 − 2X23)x(t − τ (t)) +
∫ t

t−τ

ẋT(s)X33ẋ(s)ds.

(26)

In deriving inequalities (22), (24) and (25), we have made use of 0 ≤ s (t) ≤ s, 0 ≤ τ(t)

≤ τ and Lemma 1. It follows from inequalities (20)-(26) that

V̇(t) ≤ xT(t)(−2P1D1 − 2P1KK1 + P2 + δ2P3 + τX11 + 2X13)x(t)

+ 2xT(t)(D1P1D1 + KT
1K

TP1D1)
∫ t

t−δ

x(s)ds

+ 2xT(t)(−F1R1 + F2R2)ẋ(t) − 2xT(t)P1KK2x(t − δ)

+ 2xT(t)(−P1KK3 + τX12 − X13 + XT
23)x(t − τ (t))

− 2xT(t)P1KK4x(t − σ (t)) + 2xT(t)P1A1h(x(t))

+ 2xT(t)P1B1h(x(t − τ (t))) + 2xT(t)P1C1

∫ t

t−σ (t)
h(x(s))ds

−
(∫ t

t−δ

x(s)ds
)T

P3

(∫ t

t−δ

x(s)ds
)

+ 2
(∫ t

t−δ

x(s)ds
)T

D1P1KK2x(t − δ)

+ 2
(∫ t

t−δ

x(s)ds
)T

D1P1KK3x(t − τ (t))

+ 2
(∫ t

t−δ

x(s)ds
)T

D1P1KK4x(t − σ (t))

− 2
(∫ t

t−δ

x(s)ds
)T

D1P1A1h(x(t))

− 2
(∫ t

t−δ

x(s)ds
)T

D1P1B1h(x(t − τ (t)))

− 2
(∫ t

t−δ

x(s)ds
)T

D1P1C1

∫ t

t−σ (t)
h(x(s))ds

+ ẋT(t)(τX33 + σ 2P5)ẋ(t) + 2ẋT(t)(R1 − R2)h(x(t))

− xT(t − δ)P2x(t − δ) + xT(t − τ (t))(τX22 − 2X23)x(t − τ (t))

+ σ 2hT(x(t))P4h(x(t)) −
(∫ t

t−σ (t)
h(x(s))ds

)T

P4

(∫ t

t−σ (t)
h(x(s))ds

)

−
(∫ t

t−σ (t)
ẋ(s)ds

)T

P5

(∫ t

t−σ (t)
ẋ(s)ds

)

= αT(t)�α(t),

(27)
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where

α(t) =
(
xT(t),

∫ t

t−δ

x(s)ds, ẋT(t), xT(t − δ), xT(t − τ (t)), xT(t − σ (t)),

hT(x(t)), hT(x(t − τ (t))),
∫ t

t−σ (t)
hT(x(s))ds,

∫ t

t−σ (t)
ẋT(s)ds

)T

,

� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�11 �12 �13 �14 �15 �16 P1A1 P1B1 P1C1 0
∗ −P3 0 �24 �25 �26 �27 �28 �29 0
∗ ∗ �33 0 0 0 R1 − R2 0 0 0
∗ ∗ ∗ −P2 0 0 0 0 0 0
∗ ∗ ∗ ∗ �55 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ σ 2P4 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −P4 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −P5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

with �11 = −P1D1 − D1P1 − P1KK1 − KT
1K

TP1 + P2 + δ2P3 + τX11 + X13 + XT
13,

�12 = D1P1D1 + KT
1K

TP1D1, Π13 = - F1R1 +F2R2, Π14 = - P1KK2,

�15 = −P1KK3 + τX12 − X13 + XT
23, Π16 = - P1KK4, Π24 = D1P1KK2, Π25 = D1P1KK3, Π26

= D1P1KK4, Π27 = - D1P1A1, Π28 = - D1P1B1, Π29 = - D1P1C1, Π33 = τX33 + s2P5,

�55 = τX22 − X23 − XT
23.

In addition, for any n × n diagonal matrices R3 >0 and R4 >0, we can get from

assumption (H) that [45]

[
x(t)

h(x(t))

]T [
F3R3 −F4R3

−F4R3 R3

] [
x(t)

h(x(t))

]
≤ 0 (28)

[
x(t − τ (t))

h(x(t − τ (t)))

]T [
F3R4 −F4R4

−F4R4 R4

][
x(t − τ (t))

h(x(t − τ (t)))

]
≤ 0. (29)

From Newton-Leibniz formulation x(t) − x(t − σ (t)) − ∫ t
t−σ (t) ẋ(s)ds = 0, we have

0 =2
(
x(t) − x(t − σ (t)) −

∫ t

t−σ (t)
ẋ(s)ds

)T

×
(
Mx(t) +Nx(t − σ (t)) + L

∫ t

t−σ (t)
ẋ(s)ds

)
.

(30)

Noting this fact

0 =2ẋT(t)P1
(
−ẋ(t) − KK1x(t) − (D1 + KK2)x(t − δ)

− KK3x(t − τ (t)) − KK4x(t − σ (t)) + A1h(x(t))

+ B1h(x(t − τ (t))) + C1

∫ t

t−σ (t)
h(x(s))ds

)
.

(31)
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It follows from (27)-(31) that

V̇(t) ≤ αT(t)�α(t) −
[

x(t)
h(x(t))

]T [
F3R3 −F4R3

−F4R3 R3

] [
x(t)

h(x(t))

]

−
[

x(t − τ (t))
h(x(t − τ (t)))

]T [
F3R4 −F4R4

−F4R4 R4

] [
x(t − τ (t))

h(x(t − τ (t)))

]

+ 2
(
x(t) − x(t − σ (t)) −

∫ t

t−σ (t)
ẋ(s)ds

)T

×
(
Mx(t) +Nx(t − σ (t)) + L

∫ t

t−σ (t)
ẋ(s)ds

)

+ 2ẋT(t)P1
(−ẋ(t) − KK1x(t) − (D1 + KK2)x(t − δ)

− KK3x(t − τ (t)) − KK4x(t − σ (t)) + A1h(x(t))

+B1h(x(t − τ (t))) + C1

∫ t

t−σ (t)
h(x(s))ds

)

= αT(t)
α(t),

(32)

where


 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣


11 �12 
13 �14 �15 
16 
17 P1B1 P1C1 
1,10

∗ −P3 0 �24 �25 �26 �27 �28 �29 0
∗ ∗ 
33 
34 −P1KK3 −P1KK4 
37 P1B1 P1C1 0
∗ ∗ ∗ −P2 0 0 0 0 0 0
∗ ∗ ∗ ∗ 
55 0 0 F4R4 0 0
∗ ∗ ∗ ∗ ∗ 
66 0 0 0 
6,10

∗ ∗ ∗ ∗ ∗ ∗ 
77 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −R4 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −P4 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 
10,10

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

with Γ11 = Γ11 - F3R3 +M +MT , 
13 = �13 − KT
1K

TP1, Γ16 = - P1KK4 MT + N, Γ17 =

P1A1 + F4R3, Γ1,10 = L - MT, Γ33 = Π33 -2P1, Γ34 = - P1D1 - P1KK2, Γ37 = R1 - R2

+P1A1, Γ55 = Π55 -F3R4, Γ66 = - N - NT, Γ6,10 = - L - NT, Γ77 = s2P4 - R3, Γ10,10 = - P5

- L - LT.

From (10) and (11), we get that Γ = Ω <0. There must exist a small scalar r >0 such

that


 + diag{ρI, 0, 0, 0, 0, 0, 0, 0, 0, 0} ≤ 0. (33)

It follows from (32) and (33), we get that

V̇(t) ≤ −ραT(t)α(t) ≤ −ρxT(t)x(t), t ≥ 0,

which implies that the error dynamical system (8) is globally asymptotically stable by

the Lyapunov stability theory. Accordingly, the response neural network (3) can globally

asymptotically synchronize the drive neural network (1). The proof is completed.

When there is no leakage delay, the drive neural network (1) and the response neural

network (3) become, respectively, the following models

ẏ(t) = − D1y(t) + A1f (y(t)) + B1f (y(t − τ (t)))

+ C1

∫ t

t−σ (t)
f (y(s))ds + I1(t), t ≥ 0,

(34)

Song and Cao Advances in Difference Equations 2011, 2011:16
http://www.advancesindifferenceequations.com/content/2011/1/16

Page 10 of 17



and

ż(t) = − D2z(t) + A2g(z(t)) + B2g(z(t − τ (t)))

+ C2

∫ t

t−σ (t)
g(z(s))ds + I2(t) + u(t), t ≥ 0.

(35)

It is assumed that the measured output of system (34) is dependent on the state and

the delayed states with the following form:

w(t) = K1y(t) + K3y(t − τ (t)) + K4y(t − σ (t)), (36)

where w(t) Î Rm, Ki Î Rm × n (i = 1, 3, 4) are known constant matrices.

From the process of proof in Theorem 1, we can get the following result.

Corollary 1 Assume that the condition (H) holds and the measured output of drive

neural network (34) is condition (36). If there exist three symmetric positive definite

matrices Pi (i = 1, 4, 5), four positive diagonal matrices Ri (i = 1, 2, 3, 4), and ten

matrices M, N, L, Y, Xij (i, j = 1, 2, 3, i ≤ j) such that the following two LMIs hold:

X =

⎡
⎣ X11 X12 X13

XT
12 X22 X23

XT
13 XT

23 X33

⎤
⎦ > 0, (37)


 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣


11 
13 
15 
16 
17 
18 
19 
1,10

∗ 
33 −YK3 −YK4 
37 P1B1 P1C1 0
∗ ∗ 
55 0 0 F4R4 0 0
∗ ∗ ∗ 
66 0 0 0 
6,10

∗ ∗ ∗ ∗ 
77 0 0 0
∗ ∗ ∗ ∗ ∗ −R4 0 0
∗ ∗ ∗ ∗ ∗ ∗ −P4 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ 
10,10

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (38)

in which 
11 = −P1D1 − D1P1 − YK1 − KT
1Y

T + τX11 + X13 + XT
13 − F3R3 +M +MT,


15 = −YK3 + τX12 − X13 + XT
23, 
15 = −YK3 + τX12 − X13 + XT

23, Ω16 = - Y K4 - MT

+N, Ω17 = P1A1+F4R3, Ω18 = P1B1, Ω19 = P1C1, Ω1,10 = L - MT, Ω33 = τ X33 + s2P5
-2P1, Ω37 = R1 - R2 + P1A1, 
55 = τX22 − X23 − XT

23 − F3R4, Ω66 = - N- NT, Ω6,10 = -

L - NT, Ω77 = s2P4 - R3, Ω10,10 = - P5 - L - LT, then the response neural network (35)

can globally asymptotically synchronize the drive neural network (34), and the gain

matrix K can be designed as

K = P−1
1 Y. (39)

When there is no both leakage delay and distributed time-varying delays, the drive

neural network (1) and the response neural network (3) become, respectively, the fol-

lowing models

ẏ(t) = −D1y(t) + A1f (y(t)) + B1f (y(t − τ (t))) + I1(t), t ≥ 0, (40)

and

ż(t) = −D2z(t) + A2g(z(t)) + B2g(z(t − τ (t))) + I2(t) + u(t), t ≥ 0. (41)

It is assumed that the measured output of system (46) is dependent on the state and

the delayed states with the following form:

w(t) = K1y(t) + K3y(t − τ (t)), (42)
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where w(t) Î Rm, Ki Î Rm × n (i = 1, 3) are known constant matrices.

From the process of proof in Theorem 1, we can get the following result.

Corollary 2 Assume that the condition (H) holds and the measured output of drive

neural network (40) is condition (42). If there exist a symmetric positive definite

matrices P1, four positive diagonal matrices Ri (i = 1, 2, 3, 4), and seven matrices Y, Xij

(i, j = 1, 2, 3, i ≤ j) such that the following two LMIs hold:

X =

⎡
⎣ X11 X12 X13

XT
12 X22 X23

XT
13 XT

23 X33

⎤
⎦ > 0, (43)


 =

⎡
⎢⎢⎢⎢⎣


11 
13 
15 
17 P1B1

∗ 
33 −YK3 
37 P1B1

∗ ∗ 
55 0 F4R4

∗ ∗ ∗ −R3 0
∗ ∗ ∗ ∗ −R4

⎤
⎥⎥⎥⎥⎦ < 0, (44)

in which 
11 = −P1D1 − D1P1 − YK1 − KT
1Y

T + τX11 + X13 + XT
13 − F3R3,


15 = −YK3 + τX12 − X13 + XT
23, 
15 = −YK3 + τX12 − X13 + XT

23, Ω17 = P1A1 + F4R3,

Ω33 = τ X33 -2P1, Ω37 = R1 - R2 + P1A1, 
55 = τX22 − X23 − XT
23 − F3R4, then the

response neural network (41) can globally asymptotically synchronize the drive neural

network (40), and the

gain matrix K can be designed as

K = P−1
1 Y. (45)

Now, we are in a position to design a suitable sliding mode control law to guarantee

the reachability of the specific switching surface.

Theorem 2 Consider the error system (4). Assume that the sliding function is given by

(5) with K = P−1
1 Y , where P1 and Y is a feasible solution to LMIs (9) and (10). Let ε >0

be a constant scalar, if the sliding mode control law is designed as follows:

u(t) =KK1x(t) + KK2x(t − δ) + KK3x(t − τ (t))

+ KK4x(t − σ (t)) − ρ(t)sgn(S(t)),
(46)

where

ρ(t) = − ε − ||D2 − D1)|| ||z(t − δ)|| − ||A2|| ||g(z(t))|| − ||B2|| ||g(z(t − τ (t)))||

− ||C2||
∫ t

t−σ (t)
||g(z(s))||ds − ||A1|| ||f (z(t))|| + ||B1|| ||f (z(t − τ (t)))||

+ ||C1||
∫ t

t−σ (t)
||f (z(s))||ds − ||I1(t) − I2(t)||,

(47)

then the trajectories of the error system can be globally driven onto the sliding surface

S(t) = 0.

Proof 2 It follows from (6) and (46) that

Ṡ(t) =(D2 − D1)z(t − δ) − A2g(z(t)) − B2g(z(t − τ (t)))

− C2

∫ t

t−σ (t)
g(z(s))ds + A1f (z(t)) + B1f (z(t − τ (t)))

+ C1

∫ t

t−σ (t)
f (z(s))ds + I1(t) − I2(t) + ρ(t)sgn(S(t)).

(48)
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Consider the following Lyapunov function as

V(t) =
1
2
ST(t)S(t). (49)

Calculating the time derivative of V (t) along the trajectories of model (48),

we obtain

V̇(t) =ST(t)
(
(D2 − D1)z(t − δ) − A2g(z(t)) − B2g(z(t − τ (t)))

− C2

∫ t

t−σ (t)
g(z(s))ds + A1f (z(t)) + B1f (z(t − τ (t)))

+ C1

∫ t

t−σ (t)
f (z(s))ds + I1(t) − I2(t) + ρ(t)sgn(S(t))

)
.

(50)

By substituting (47) into (50), and noting ST(t)sgn(S(t)) ≥ || S(t) ||, we get

V̇(t) ≤ −ε||S(t)||,

which means that V̇(t) < 0for any S(t) ≠ 0. Therefore, the trajectories of the error sys-

tem (4) can be globally driven onto the sliding surface S(t) = 0, and maintained there

for all subsequent time. The proof is completed.

Remark 1 Assumption (H) was first proposed in [45]. The constants F
−
j and F+j (i =

1, 2, ..., n) are allowed to be positive, negative or zero. Hence, Assumption (H) is

weaker than the assumption in [30,33-35] since the boundedness and monotonicity of

the activation functions are not required in this paper.

Remark 2 In [33-35], the synchronization of two nonidentical chaotic neural net-

works with constant delay is investigated. It is worth pointing out that the presented

methods cannot be applied to analyze the synchronization of two nonidentical chaotic

neural networks with time-varying delays.

Example
Example 1 Consider a two-dimensional drive neural network (1), where

f (y) = (tanh(y1), tanh(y2))T , I1(t) = (0.9 sin(4t),−0.7 cos(2t))T ,

δ = 0.7, τ (t) = 0.73| sin t|, σ (t) = 0.2| cos(2t)|,

D1 =
(
1 0
0 1

)
, A1 =

(
1.8 0.1

−4.3 2.9

)
,

B1 =
(−1.6 −0.1

−0.2 −2.7

)
, C1 =

(−0.3 0.1
0.1 −0.2

)
.

The state trajectories and phase trajectory of the neural network with initial condi-

tion y1(s) = - 0.1, y2(s) = 0.1, s Î [-0.73, 0] are shown in Figures 1 and 2, respectively.

The parameters of the measured output (2) are given as

K1 =
[
0.2 0
0 1.3

]
, K2 =

[−0.1 0
0 0

]
, K3 =

[−0.3 0
0 0.1

]
, K4 =

[
0.5 0
0 0

]
.

Assume the response neural network (3) with

g1(x) = g2(x) = 0.5(|x + 1| − |x − 1|), I2(t) = (1.7 sin(3t), 0.2 cos(t))T ,

D2 =
(
1 0
0 1.2

)
, A2 =

(
6.2 20
0.1 4.6

)
,

B2 =
(−5.3 0.1

0.1 −27

)
, C2 =

(−21 −3.8
0.7 −0.2

)
.
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Figure 1 State trajectory of y1(t) and y2(t)of neural network (1).
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Figure 2 Phase trajectory of neural network (1).
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Figure 3 State trajectory of z1(t) and z2(t) of neural network (3).
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Figure 4 Phase trajectory of neural network (3) without the controller u(t).
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The state trajectories and phase trajectory of the neural network with initial condi-

tion z1(s) = 0.9 - 0.4 sin(7t), z2(s) = - 0.6 cos(9), s Î [-0.73, 0] are shown in Figures 3

and 4, respectively.

It is easy to see that τ = 0.73, s = 0.2, and assumption (H) is satisfied with F1 = 0, F2
= diag(1, 1), F3 = 0, F4 = diag(0.5, 0.5).

By the Matlab LMI Control Toolbox, we find a solution to the LMIs in (9) and (10),

and obtain the gain matrix K as

K =
[

3.6204 −12.3204
−4.9739 138.9582

]
.

From Theorem 1, we know that the response neural network (3) can globally asymp-

totically synchronize the drive neural network (1). Figure 5 depicts the synchronization

errors of state variables between drive and response systems. The numerical simula-

tions clearly verify the effectiveness of the developed sliding mode control approach to

the synchronization of nonidentical two chaotic neural networks with discrete and dis-

tributed time-varying delays as well as leakage delay.

Conclusions
In this paper, the synchronization problem has been investigated for nonidentical chao-

tic neural networks with discrete and distributed time-varying delays as well as leakage

delay, which is more difficult and challenging than the ones for identical chaotic neural

networks and nonidentical chaotic neural networks with constant delay but without

leakage delay. An integral sliding mode control approach has been presented to deal

with this problem. By considering a proper sliding surface and constructing Lyapunov-

Krasovskii functional, and employing a combination of the free-weighting matrix

method, Newton-Leibniz formulation and inequality technique, a sliding mode control-

ler has been designed to achieve the asymptotical synchronization of the addressed

nonidentical neural networks. Moreover, a sliding mode control law has been synthe-

sized to guarantee the reachability of the specified sliding surface. The provided condi-

tions are expressed in terms of LMI, and are dependent on the discrete and distributed

time delays as well as leakage delay. A simulation example has been given to verify the

theoretical results.
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Figure 5 Convergence dynamics of error system (8).
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