TRICHOTOMY, STABILITY, AND OSCILLATION OF
A FUZZY DIFFERENCE EQUATION
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We study the trichotomy character, the stability, and the oscillatory behavior of the posi-
tive solutions of a fuzzy difference equation.

1. Introduction

Difference equations have already been successfully applied in a number of sciences (for
a detailed study of the theory of difference equations and their applications, see [1, 2, 7,
8, 11].

The problem of identifying, modeling, and solving a nonlinear difference equation
concerning a real-world phenomenon from experimental input-output data, which is
uncertain, incomplete, imprecise, or vague, has been attracting increasing attention in
recent years. In addition, nowadays, there is an increasing recognition that for under-
standing vagueness, a fuzzy approach is required. The effect is the introdution and the
study of the fuzzy difference equations (see [3, 4, 13, 14, 15]).

In this paper, we study the trichotomy character, the stability, and the oscillatory be-
havior of the positive solutions of the fuzzy difference equation

zl-‘ Cix

X1 = A+ o (L.1)
ijldjxn—qj

where k,m € {1,2,...}, A,c;,dj, i € {1,2,...,k}, j € {1,2,...,m}, are positive fuzzy num-

bers, pi, i € {1,2,...,k}, q;, j € {1,2,...,m}, are positive integers such that p; < p, <

c < Pr Q1 < G2 < -+ - < qm, and the initial values x;, i € {—m, -7 +1,...,0}, where

7T = max {pk,qm}, (1.2)

are positive fuzzy numbers.
Studying a fuzzy difference equation results concerning the behavior of a related family
of systems of parametric ordinary difference equations is required. Some necessary results
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concerning the corresponding family of systems of ordinary difference equations of (1.1)
have been proved in [16] and others are given in this paper.

2. Preliminaries

We need the following definitions.

For a set B, we denote byE the closure of B. We say that a fuzzy set A, from R* = (0, o)
into the interval [0,1], is a fuzzy number, if A is normal, convex, upper semicontinu-
ous (see [14]), and the support suppA = U,e (0,17 [Ala = {x: A(x) >0} is compact. Then
from [12, Theorems 3.1.5 and 3.1.8], the a-cuts of the fuzzy number A, [A], = {x € R*:
A(x) > a}, are closed intervals.

We say that a fuzzy number A is positive if supp A C (0, 00).

It is obvious that if A is a positive real number, then A is a positive fuzzy number and
[Al; = [A,A], a € (0,1]. In this case, we say that A is a trivial fuzzy number.

We say that x;, is a positive solution of (1.1) if x,, is a sequence of positive fuzzy numbers
which satisfies (1.1).

A positive fuzzy number x is a positive equilibrium for (1.1) if

kox
x=A+ zzfllld]x (2.1)
Let E, H be fuzzy numbers with
[Ela = [Eta»Eral,  [Hla=[HiaHral, a€(0,1]. (2.2)
According to [10] and [13, Lemma 2.3], we have that MIN{E,H} = E if
Eia<Hpa Ea<H., ac(0,1]. (2.3)

Moreover, let ¢;, fi,dj, gj, i = 1,2,...,k, j = 1,2,...,m, be positive fuzzy numbers such
that for a € (0,1],

[Ci]a = [Ci,l,a7ci,r,a]7 [fi]a = [ﬁ,l,mfi,r,a]’

[djlo = djsadirals (8] = [gisargiral; 24
k k
E- 2271‘;] H-= %Ti; (2.5)
We will say that E is less than H and we will write
E<H (2.6)
if
z:‘(:lsuPae(o,l]Ci,m < zi';linfae(o,l]fi,l,a 2.7)

m . m M
zjzl infae(0,1)dj1a ijl SUPge(0,1]8jorsa
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In addition, we will say that E is equal to H and we will write
E=H ifE<H,H<E, (2.8)
which means that fori = 1,2,...,k, j = 1,2,...,m,and a € (0, 1],
Cila = Cira> fita = fira dita=djrae 8ila = &jra> (2.9)
and so
Eia=Eyu=Hya=H,. ac(01], (2.10)

which imples that E, H are equal real numbers.
For the fuzzy numbers E, H, we give the metric (see [9, 17, 18])

D(E,H) =supmax{|E, — Hia|, | Era — Hral }» (2.11)

where sup is taken for all a € (0,1].

The fuzzy analog of boundedness and persistence (see [5, 6]) is given as follows: we
say that a sequence of positive fuzzy numbers x,, persists (resp., is bounded) if there exists
a positive number M (resp., N) such that

suppx, C [M,) (resp., suppx, C (O,N]), n=12,.... (2.12)

In addition, we say that x,, is bounded and persists if there exist numbers M,N € (0, %)
such that

suppx, C [M,N], n=12,.... (2.13)
Let x,, be a sequence of positive fuzzy numbers such that
[%.], = [LoasRual, a€(0,1], n=0,1,..., (2.14)
and let x be a positive fuzzy number such that
[x]a = [La,Rs], a€(0,1]. (2.15)

We say that x,, nearly converges to x with respect to D as n — o if for every & > 0, there
exists a measurable set T, T C (0,1], of measure less than & such that

limDr(x,,x) =0, asn— oo, (2.16)
where
Dr(xy,x) = sup {max{|L.,—La|,|Rna—Ra|}}. (2.17)
ac(0,1]-T

If T = &, we say that x,, converges to x with respect to D as n — .
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Let X be the set of positive fuzzy numbers. Let E,H € X. From [18, Theorem 2.1], we
have that E; 5, H, (resp., E; 4, H;,) are increasing (resp., decreasing) functions on (0, 1].
Therefore, using the definition of the fuzzy numbers, there exist the Lebesque integrals

J] |El,a - Hl,u | da) L |Er,a - Hr,u | da) (218)

where ] = (0,1]. We define the function D; : X X X — R* such that

Dy(E,H) = maxU | B — Hia|da, I I, H,,a|da}. (2.19)
J ]

If D, (E,H) = 0, we have that there exists a measurable set T of measure zero such that
E,=H,, E,=H,, Vaec(0,1]-T. (2.20)

We consider, however, two fuzzy numbers E, H to be equivalent if there exists a measur-
able set T of measure zero such that (2.20) hold and if we do not distinguish between
equivalence of fuzzy numbers, then X becomes a metric space with metric D;.

We say that a sequence of positive fuzzy numbers x, converges to a positive fuzzy
number x with respect to Dy as n — oo if

limD; (x,,x) =0, asn— oo, (2.21)

We define the fuzzy analog for periodicity (see [11]) as follows.
A sequence {x,} of positive fuzzy numbers x, is said to be periodic of period p if

D(Xpip>Xn) =0, n=0,1,.... (2.22)

Suppose that (1.1) has a unique positive equilibrium x. We say that the positive equi-
librium x of (1.1) is stable if for every € > 0, there exists a § = §(€) such that for every pos-
itive solution x,, of (1.1) which satisfies D(x_;,x) < 8,i=0,1,...,7, we have D(x,,x) < €
forall n > 0.

Moreover, we say that the positive equilibrium x of (1.1) is nearly asymptotically stable
if it is stable and every positive solution of (1.1) nearly tends to the positive equilibrium
of (1.1) with respect to D as n — .

Finally, we give the fuzzy analog of the concept of oscillation (see [11]). Let x, be a
sequence of positive fuzzy numbers and let x be a positive fuzzy number. We say that x,
oscillates about x if for every ny € N, there exist s,m € N, s,m = ny, such that

MIN {x,,x} = X, MIN {x,,x} = x (2.23)
or

MIN {x,x} = x, MIN {x5,x} = ;. (2.24)
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3. Main results

Arguing as in [13, 14, 15], we can easily prove the following proposition which concerns
the existence and the uniqueness of the positive solutions of (1.1).

ProrositioN 3.1. Consider (1.1), where k,m € {1,2,...}, A,c;,dj, i € {1,2,...,k}, j € {1,
2,...,m}, are positive fuzzy numbers, and p;, q;, i € {1,2,...,k}, j € {1,2,...,m}, are pos-
itive integers. Then for any positive fuzzy numbers X_p,X_n11,...,Xo, there exists a unique
positive solution x, of (1.1) with initial values x_n,X_z+1,...,Xo.

Now, we present conditions so that (1.1) has unbounded solutions.

ProrosiTION 3.2. Consider (1.1), where k,m € {1,2,...}, A,c;,dj, i € {1,2,...,k}, j € {1,
2,...,m}, are positive fuzzy numbers, and p;, i € {1,2,...,k}, q;, j € {1,2,...,m}, are posi-
tive integers. If

A<G, Go 2 (3.1)
> Z;n:] d]) .
then (1.1) has unbounded solutions.
Proof. Let
[A]a = [Al,a)Ar,a]) ac (0> 1]- (3-2)

From (2.4) and (3.2) and since A, ¢;, dj, i = 1,2,...,k, j = 1,2,...,m, are positive fuzzy
numbers, there exist positive real numbers B, C, a;, e;, hj, bj, i = 1,2,...,k, j = 1,2,...,m,
such that

B= inf]Az,a, C= sup Asq ai= inf c¢ija

as(0,1 ac(0,1] ac(0,1]
. (3.3)
e = Sup Cira hj = inf dj,, bj = sup dja
ac(0,1] as(0,1] ac(0,1]

Let x,, be a positive solution of (1.1) such that (2.14) hold and the initial values x;, i =
—m,—m+1,...,0, are positive fuzzy numbers which satisfy

[xi]a = [L,"a,R,',a], i=-m—-7n+1,...,0,a € (0,1] (3.4)
and for a fixed a € (0, 1], the relations
Li;<W, i=-m-n+1,...,0, (3.5)

are satisfied, where

(3.6)
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Using [15, Lemma 1], we can easily prove that L, ,, R, , satisfy the family of systems of
parametric ordinary difference equations

k
Z.i: 1 Ci,l,aLn—p,,a

Ln+1,u = Al,a + m d >
Zj:l j,r,aRn—qJ,a

zk n=0,1,.... (3.7)
= CiraRnfp-a
Rl):A)+11’, x”
n+l,a r,a Z;;Ll dj,l,aLn—qj,a
Since (3.1) holds, it is obvious that
k
Z‘:lcird
Apg < S (3.8)
¢ Z?:1dj,l,d

Using (3.8) and applying [16, Proposition 1] to the system (3.7) for a = 4, we have that
lim Ly 4-4,,, limR,;= co. (3.9
n—oo > n— oo

Therefore, from (3.9), the solution x, of (1.1) which satisfies (3.4) and (3.5) is un-
bounded. O

Remark 3.3. From the proof of Proposition 3.2, it is obvious that (1.1) has unbounded
solutions if there exists at least one a € (0,1] such that (3.8) holds.

In the following proposition, we study the boundedness and persistence of the positive
solutions of (1.1).

ProrosiTioN 3.4. Consider (1.1), where k,m € {1,2,...}, A,c;,dj, i € {1,2,...,k}, j €
{1,2,...,m}, are positive fuzzy numbers, and p;, i € {1,2,...,k}, q;, j € {1,2,...,m}, are
positive integers. If either

A=G (3.10)
or
G<A (3.11)

holds, then every positive solution of (1.1) is bounded and persists.

Proof. Firstly, suppose that (3.10) is satisfied; then A, ¢;, dj, i = 1,2,...,k, j = 1,2,...,m,
are positive real numbers. Hence, fori = 1,2,...,k, j = 1,2,...,m, we get

A= Al,u = Ar,a; Ci = Cila = Cira» d] = dj,l,a = dj,r,m ac (O, 1]: (312)

k
Zi:]ci

A= S
2.j-14;

(3.13)
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Let x, be a positive solution of (1.1) such that (2.14) hold and let x;, i = —7,—7 +

I,...,0, be the positive initial values of x,, such that (3.4) hold. Then there exist positive
numbers T}, S;, i = —m,—m+ 1,...,0, such that

TiSLi,a,Ri,uSSi, i=-m—-n+1,...,0. (3.14)

Let (y4,24) be the positive solution of the system of ordinary difference equations

k k
i1 CiYn—p; 2.1 CiZn—p;

Y1 =A+t —————, Zonl =AY
Zi=1 djzn—g; Z'-J'=1 djYn-q;

(3.15)

with initial values (y;,2;), i = —m,—m +1,...,0, such that y; = T;, z; = S;, i = —m, -7 +
1,...,0. Then from (3.14) and (3.15), we can easily prove that

}’1 < Ll,a; Rl,a <z, ac (0) 1]) (316)
and working inductively, we take
Yn<Lya Rys<z,, n=12,...,ae(0,1]. (3.17)
Since from (3.13) and [16, Proposition 3], (¥, z,) is bounded and persists, from (3.17),
it is obvious that x,, is also bounded and persists.
Now, suppose that (3.11) holds; then

B>7Z, C>W. (3.18)

We concider the system of ordinary difference equations

k
2iz1 €iZn-p,

m bJ
2= hiyn-yg;

k
i1 aiYn—p;

Y1 =B+ =/,
2 j=1bjZn-g;

Zne1 = C+ (3.19)

where B,C,ai,e;,bj,hj, i =1,2,...,k, j = 1,2,...,m, are defined in (3.3).

Let (yn,2,) be a solution of (3.19) with initial values (y;,z;), i = —m, -7+ 1,...,0, such
that y; =T;, z; = S;, i = —m, - + 1,...,0, where T;,S;, i = —m,—7m + 1,...,0, are defined
in (3.14). Arguing as above, we can prove that (3.17) holds. Since from (3.18) and [16,
Proposition 3], (y,, z,) is bounded and persists, then from (3.17), it is obvious that, x;, is
also bounded and persists. This completes the proof of the proposition. O

In what follows, we need the following lemmas.

LEMMA 3.5. Let ri,sj, i = 1,2,...,k, j = 1,2,...,m, be positive integers such that
(F1,725+ e 5 Th>S15S25- 20 58m) = 1, (3.20)

where (11,12,...,7k,51,52,...,5m) is the greatest common divisor of the integers r,sj, i = 1,2,
...k, j =1,2,...,m. Then the following statements are true.
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(I) There exists an even positive integer wy such that for any nonnegative integer p, there
exist nonnegative integers &ip, Bip, i = 1,2,...,k, j = 1,2,...,m, such that

k m
Zocipri+ zﬁjpsj=w1+2p, p=0,1,..., (321)
i=1 j=1

where 3.7, Bjp is an even integer.

(IT) Suppose that all r;, i = 1,2,...,k, are not even and all s, j = 1,2,...,m, are not odd
integers. Then there exists an odd positive integer w, such that for any nonnegative integer p,
there exist nonnegative integers yip, 8jp, i = 1,2,...,k, j = 1,2,...,m, such that

k m
S yipri+ S 8ipsi = wat2p, p=0,1,..., (3.22)
i=1 j=1

where 31, 8, is an even integer.

(III) Suppose that all r;, i = 1,2,...,k, are not even and all s, j = 1,2,...,m, are not odd
integers. Then there exists an even positive integer w3 such that for any nonnegative integer p,
there exist nonnegative integers €y, Ejp, i=12,...,k j=12,...,m, such that

k m
D€iptit > Epsj=ws+2p, p=0,1,..., (3.23)
i=1 j=1

where 3.7, &y is an odd integer.
(IV) There exists an odd positive integer wy such that for any nonnegative integer p, there
exist nonnegative integers Aip, Ujp, i = 1,2,...,k, j = 1,2,...,m, such that

k m
> hiphi+ D ujpsj =wa+2p, p=0,1,..., (3.24)
i=1 j=1

where Z;"Zl Wjp is an odd integer.

Proof. (I) Since(3.20) holds, there exist integers #;, 1j, i = 1,2,...,k, j = 1,2,...,m, such
that

k m
ZI’],‘T’,‘ + Z 1jsj = 1. (3.25)
i=1 j=1

If for any real number a, we denote by [a] the integral part of a, we set for i = 2,3,...,k,
j=L2,...,m,

m k

k m
a1y =2pm +22r,~+225j —ZZg,-pri —ZZhjpsj,
i=2 j=1 i=2 j=1 (3.26)

&ip = 2pni+2gipr1,  Bjp = 2ptj +2hjpn,
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where

P — b

gip = [#] +1,  hjy= [%] +1, i=23,..,k j=1,2..,m  (327)
1 1

Therefore, from (3.25) and (3.26), we can easily prove that a;p,Bjp, i = 1,2,...,k, j =

1,2,...,m, which are defined in (3.26), are positive integers satisfying (3.21) for

k m
wy =27 (Zri + sj) (3.28)
1

=2 j=

and z;-":l Bjp is an even number.

(IT) Firstly, suppose that one of r;, i = 1,2,...,k, is an odd positive integer and without
loss of generality, let r; be an odd positive integer. Relation (3.22) follows immediately if
we set for i = 2,...,k and for j = 1,2,...,m,

Yip = arp+1, YVip = Qips 8ip = Bjp> Wy = w+r1. (3.29)

Now, suppose that r;, i = 1,2,...,k, are even positive integers; then from (3.20), one
of sj, j = 1,2,...,m, is an odd positive integer and from the hypothesis, one of s;, j =
1,2,...,m, is an even positive integer. Without loss of generality, let s, be an odd positive
integer and s, be an even positive integer. Relation (3.22) follows immediately if we set
fori=1,2,...,kand for j =3,...,m,

Yip = ip> 8117:/-’)1[7_1'1) 82p:ﬁ2p+1, 8jp=/3jp, wy = w1 +581+ 8.
(3.30)

(II) Firstly, suppose that one of s, j = 1,2,...,m, is an even positive integer and with-
out loss of generality, let s; be an even positive integer. Relation (3.23) follows immedi-
ately if we set fori = 1,2,...,kand j = 2,...,m,

€ip = Qip, §1p = Pip+1, &ip = Bjps w3 = wi +51. (3.31)

Now, suppose that s;, j = 1,2,...,m, are odd positive integers; then from the hypoth-
esis, at least one of r;, i = 1,2,...,k, is an odd positive integer, and without loss of gener-
ality, let r; be an odd integer. Relation (3.23) follows immediately if we set for i = 2,...,k,
i=23,...,m,

€1p=0¢1p+1, eip:“i[n 61p=/.>)1p+1, (Sjpzﬁjp, w3z =wi;+s;+r;.
(3.32)

(IV) Firstly, suppose that at least one of s;, j = 1,2,...,m, is an odd positive integer
and without loss of generality, let s; be an odd positive integer. Relation (3.24) follows

immediately if we set fori = 1,2,...,k, j = 2,3,...,m,

Aip = atip, tip =Pip+1, tip = Bip> Wq = Wy +51. (3.33)
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Now, suppose that s;, j = 1,2,...,m, are even positive integers; then from (3.20), at
least one of r;,i = 1,2,...,k, is an odd positive integer, and without loss of generality, let
be an odd positive integer. Relation (3.24) follows immediately if we set for i = 2,3,...,k,
j=2,3...,m,

Mp =aip+1, Aip = aip, tip =Pip+ri, Hip = Bjp» wy=wi+ri (s +1).

(3.34)
This completes the proof of the lemma. O
LEmMMA 3.6. Consider system (3.19), where B, C are positive constants such that
Z.I'(:I €i 21;1 ai
B= =% o_ Zindi (3.35)
Z j=1 h j 2 j=1 b Jj

Then the following statements are true.
(I) Let r be a common divisor of the integers p;+1, qj+1,i=1,2,...,k, j = 1,2,...,m,
such that

pitl=rr, i=12,..,k, gitl=rsj;, j=12,....,m (3.36)

then system (3.19) has periodic solutions of prime period r. Moreover, if all r;, i = 1,2,...,k,
(resp., sj, j = 1,2,...,m) are even (resp., odd) positive integers, then system (3.19) has peri-
odic solutions of prime period 2r.

(II) Let r be the greatest common divisor of the integers p; + 1, gi+1Li=12,..,k j=
1,2,...,m, such that (3.36) hold; then ifall r;, i = 1,2,...,k, (resp., sj, j = 1,2,...,m) areeven
(resp., odd) positive integers, every positive solution of (3.19) tends to a periodic solution of
period 2r; otherwise, every positive solution of (3.19) tends to a periodic solution of period r.

Proof. (I) From relations (3.35), (3.36), and [16, Proposition 2], system (3.19) has peri-
odic solutions of prime period r.

Now, we prove that system (3.19) has periodic solutions of prime period 27, if all r;,
i=1,2,...,k, (resp., sj, j = 1,2,...,m) are even (resp., odd) positive integers.

Suppose first that pi < . Let (y4,24) be a positive solution of (3.19) with initial values
satisfying

V—rspt2rd+{ = YV—r+0> Zorsyt2rAl = Z—r+0>
V—rspt2rvir+l = Y=-2r+0> Zorspt2rvir+l = Z-2r+(> (3.37)
Sm—1 Sm—
A=0,1,..., 2 R y=0,1,..., 2 , =1,2,...,1,
2 2 ¢

and, in addition, for { = 1,2,...,1,

Cy72r+( C)Lr+(

Py U (338)
—2r+

et > B, _r¢ > B, el = .
Y-2r+¢ Y-r+{ Z-r+( Y e —B
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From (3.19), (3.35), (3.36), (3.37), and (3.38), we get for { = 1,2,...,71,

— Z_
y(=B+CM:y72r+(a Z(:C+Bﬂ2272r+(a
Z-r+( Y-r+( (3.39)
— 27 .
Yri¢ =B+ Czy—H( =Yrt(> z¢=C+B SLEg Z_riq
—2r+( Y-ar+¢

Letav € {2,3,...}. Suppose that forall u = 1,2,...,v—1and { = 1,2,...,r, we have

Your+{ = Y-2r+(> 22ur+{ = Z-2r+(> Your+r+( = Y-r+(> Zour+r+i = Z-r+¢- (3.40)
Then from (3.19), (3.35)—(3.40), we get for { = 1,2,...,7,

Yaeg = B+ C%(‘ = Yoot (3.41)
—r+

Similarly, we can prove that for { = 1,2,...,r,

2vr+¢ = Z-2r+{> Yovr+r+¢ = Y—r+{> 22vrtr+( = Z—r+(- (342)

Therefore, from (3.39)—(3.42), we have that system (3.19) has periodic solutions of
period 2r.

Now, suppose that g, < pk. Let (y4,2,) be a positive solution of (3.19) such that the
initial values satisfy relations (3.38) and for w = 0,1,...,7/2 - 1,0 = 1,2,...,2r,

Y—rr+2ro+0 = Y-2r+0> Z—rret2ro+ = Z-2r+0- (343)

Then arguing as above, we can easily prove that (y,,z,) is a periodic solution of period 2.
This completes the proof of statement (I).

(IT) Now, we prove that every positive solution of system (3.19) tends to a periodic
solution of period «r, where

(3.44)

2 ifr, i=1,2,...,k, areeven, s, j = 1,2,...,m, are odd,
1 otherwise.
Let (y4,2,) be an arbitrary positive solution of (3.19). We prove that there exist the
M Ynrsi = €5, i=0,1,...,kr — 1. (3.45)
n—oo

We fix a 7 € {0,1,...,kr — 1}. Since from [16, Proposition 3], the solution (y,,z,) is
bounded and persists, we have

liminf yxu+r = I; = B, liminf zrsr = My = C,
n—o0 n— oo
limsup ynrsr = Ly < o0, limsup zpr+r = My < 0. (3.46)
n—oo N oo
Therefore, from relations (3.19), (3.35), and (3.46), we take
L BM
m, = - = ~——. (3.47)
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We prove that (3.45) is true for i = 7. Suppose on the contrary that I, < L. Then from
(3.46), there exists an € > 0 such that

L,>l,+€e>B+e. (3.48)

In view of (3.46), there exists a sequence ny, 4 = 1,2,..., such that

lim Yerng+r = L, lim Yr(eny—ri)+r = Tr,',T <L,
U—oo U—0oo
. (3.49)
};l—»nolo Zr(kn,—s;)+T = Ssj,r = My.
In view of (3.19), (3.35), (3.46), (3.47), and (3.49), we take
k
= iTr- L
L=t 29T g, Cle ;o (3.50)
z]‘:l bjss]-,‘r mq
and obviously, we have that
Tnr=L;, i=12,..,k,
(3.51)

Ssj,r:m-n j=12,...,m.

In addition, using (3.19), (3.35), (3.46), (3.47), and (3.51), for k = 2, from statements
(I) and (IV) of Lemma 3.5 and arguing as above, we take for y = 0,1,...,

.‘llan;lo yr(Zn%—Mny)JrT = L‘n ;H{lo Zr(Znﬂ—wlfsl—Zy)Jrr = My, (352)

and for ¥ = 1 and from all the statements of Lemma 3.5,

}11_{?0 Yr(ny—wi=2y)+1 = L, Ai_g'iyr(nﬂfwth)ﬁ—r =L, ( :
. . 3.53
[}LHOIO Zr(n,—ws—2y)+r = My, }ll_{lole Zr(n,—ws—2y)+r = My,

w1, Wa, w3, wy are defined in Lemma 3.5.

Leta oy € {0,1,...,(3 — x)¢}, ¢ = max {ri,su}. Suppose first that x = 2. Then in view
of (3.19), there exist positive integers p, g and a continuous function Fg, : R X RXx - - - X
R — R such that

yr(2n}4+202)+‘r =B+ F(rz (an0>~ .. r(nﬂ,prfnwO:- .. ’Ean)a (354)
where fori=0,1,...,p, j =0,1,...,q,
(n},,i = YrQ2n,—wi—2i)+1> fn,l,j = Zr(2n,—wi—s; —2j)+1- (3.55)

If ¥ = 1, there exist positive integers v1, v, v3, v4 and a continuous function G, : R X
Rx - -+ xR — R such that

yr(n#Jra])JrT =B+ Gal ((n#,O:- .. a(nﬂ,vl’CnWOw .. )anvz;fn#,O;- .. aEnH,V3>€ny,0>~ .. )Enwm)a (356)
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where fori =0,1,...,v1,i=0,1,...,v, j = 0,1,...,v3,and j = 0, 1,..., vy,

(n}‘,i = yr(ny—wl—Zi)JrT) C_:nw{ = yr(n'u—wz—Zi_)JrT) (357)
En,‘,j = Zr(n,—ws—2j)+1> Enwj = Zr(ny—wy—2j)+7
Therefore, from (3.47), (3.52), (3.53), (3.54), and (3.56), it follows that
. CL
lim Yr(kny+xo)+t = B+ L= L. (3.58)
p—oo mq

Using the same argument to prove (3.58) and using (3.19), we can easily prove that for
i=1,2...k j=1,2,..,m,

}11_{1;10 Yr(kny+xo—ri)+1 = L, }ll_p;lo Zr(kny+xo—sj)+r = Mr. (3.59)

Therefore, if § = €(m, — C)/(L, — € — B), then in view of (3.19), (3.47), (3.58), and (3.59),
there exists a gy € {1,2,...} such that for j = 1,2,...,m,

B(m; +9)

= +46 3.60
L.—¢ my ( )

Zr (knyy +2¢+x—sj)+1 <C

and so from (3.19), (3.47), (3.48), (3.58), (3.59), and (3.60), we get

C(L;—€
Yr(knyy+2¢+x)+7 >B+ ﬁ =L, —€> lT- (3-61)
Using (3.19), (3.47), (3.48), (3.58), (3.59), and (3.61) and working inductively, we can
easily prove that

Yr(kny,+2¢+xw)+1 >L;—€> l‘n w=2,3,..., (362)

which is a contradiction since liminf, .« Yxrm+r = I;. Therefore, since 7 is an arbitrary
number such that 7 € {0, 1,...,xr — 1}, relations (3.45) are satisfied.
Moreover, from (3.19) and (3.47), we have that

limzgi =&, i=0,1,...,kr — 1. (3.63)
n— 00

This completes the proof of the lemma. O
In the next proposition, we study the periodicity of the positive solutions of (1.1).

ProrosiTioN 3.7. Consider (1.1), where k,m € {1,2,...}, A,c;,dj, i € {1,2,...,k}, j €
{1,2,...,m}, are positive fuzzy numbers, and p;, i € {1,2,...,k}, q;j, j € {1,2,...,m}, are
positive integers. If (3.10) holds and r is a common divisor of the integers p; + 1, q; + 1,
i=1,2,....k, j=1,2,...,m, then (1.1) has periodic solutions of prime period r. Moreover, if
riyi=1,2,...,k, (resp., sj, j = 1,2,...,m)—r;, s; are defined in (3.36)—are even (resp., odd)
integers, then (1.1) has periodic solutions of prime period 2r.
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Proof. From (3.10), we have that A, ¢;, i = 1,2,...,k, dj,j = 1,2,...,m, are positive real

numbers such that (3.12) and (3.13) hold. We consider functions L4, R4, i = —7, —7 +
L,...,0, such that for A = 0,1,...,¢ - 1,0 =1,2,...,r,and a € (0,1],

L7r¢+rl+0,a =L 100> R7r¢+r/\+0,a =R_1+0,00 (3.64)

the functions L, ., w = —r+1,—r +2,...,0, are increasing, left continuous, and for all
w=—-r+1,—-r+2,...,0, we have

A+e<L,,<2A, Ryo=1—""+ (3.65)

where € is a positive number such that € < A. Using (3.65) and since the functions L, ,,
w=—r+1,-r+2,...,0, are increasing, if a;,a, € (0,1], a; < a,, we get

ALy Lyg, — AZLW,,Zl = ALy Lya, — AZLW,,Z2 (3.66)
which implies that R, ,, w = —r+1,—r +2,...,0, are decreasing functions. Moreover,
from (3.65), we get

2A2
Ly, <Ry, A+e<L,qRy, < e (3.67)

and so from [18, Theorem 2.1], (L, 4, Ry q), w = =1+ 1,—r +2,...,0, determine the fuzzy
numbers x,, w = —r + 1,—r+2,...,0, such that [x,], = [LysRyal, w=—-r+1,—r+
2,...,0. Let x,, be a positive solution of (1.1) which satisfies (2.14) and let the initial values
be positive fuzzy numbers such that (3.4) hold and the functions L; 4, R4, i = =7, —7 +
I,...,0, a € (0,1], are defined in (3.64), (3.65); L4, i = —m,—m+1,...,0, a € (0,1], are
increasing and left continuous. Then from [16, Proposition 2], we have that for any a €
(0,1], the system given by (3.7), (3.12), and (3.13) has periodic solutions of prime period
r, which means that there exists solution (L4, Ry.4), a € (0,1], of the system such that

Ln+r,u = Ln,a’ Rn+r,a = Rn,a> aec (0: 1]- (3-68)

Therefore, from (2.22) and (3.68), we have that (1.1) has periodic solutions of prime

period r.
Now, suppose that rj, i = 1,2,...,k, (resp., si, j = 1,2,...,m) are even (resp., odd) in-
tegers. We consider the functions L;4, Ri, i = —7,—7 + 1,...,0, such that analogous re-

lations (3.37), (3.38), and (3.43) hold, Ly, w = —r +1,...,0, are increasing, left con-
tinuous functions, and the first relation of (3.65) holds. Arguing as above, the solution
X, of (1.1) with initial values x;, i = —m,—m + 1,...,0, satisfying (3.4), where Li,,R;,,
i=—m,—n+1,...,0, are defined above, is a periodic solution of prime period 2r. O

In the following proposition, we study the convergence of the positive solutions of
(1.1).
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ProrosiTioN 3.8. Consider (1.1), where k,m € {1,2,...}, A,c;,dj, i € {1,2,...,k}, j €
{1,2,...,m}, are positive fuzzy numbers, and p;, i € {1,2,...,k}, q;, j € {1,2,...,m}, are
positive integers. Then the following statements are true.

(1) If (3.11), holds, then (1.1) has a unique positive equilibrium x and every positive
solution of (1.1) nearly converges to the unique positive equilibrium x with respect to D as
n — oo and converges to x with respect to Dy as n — .

(ii) If (3.10) is satisfied and r is the greatest common divisor of the integers p; + 1, g; + 1,
i=12,...,k j=12,...,m, such that (3.36) holds, then every positive solution of (1.1)
nearly converges to a period kr solution of (1.1) with respect to D as n — co and converges to
a period xr solution of (1.1) with respect to Dy as n — oo; k is defined in (3.44).

Proof. (i) Let x, be a positive solution of (1.1) which satisfies (2.14). Since (3.7) and (3.11)
hold, we can apply [16, Proposition 4] and we have that for any a € (0, 1], there exist the
lim,, . Ly 4, lim,, . R, 4, and

limL,,=L,, limR,,=R,, aec(0,1], (3.69)
n— oo n—oo
where
L = Al,aAr,a - C,D, R — Al,aAr,a - C,D,
a Ar,a — Ca ’ ¢ Al,a - Da ’
(3.70)
C - zfllci,z,a D - Zf:lci,r,a
¢ szl dj,r,a ’ ¢ Z;‘nﬂ dj,l,a
In addition, from (3.3) and (3.70), we get
B2 _ Z2 C2 _ W2
L, > =/ P el /Y 71
eow b Re=Tpog s .71

where B, C (resp., Z, W) are defined in (3.3) (resp., (3.5)). Then from (3.69), (3.71), and
arguingas in [13, 14, 15], we can easily prove that L,, R, determine a fuzzy number x such
that [x], = [La, R,]. Finally, using (3.70), we take that x is the unique positive equilibrium
of (1.1). Using relations (3.11), (3.69), and arguing as in [15, Proposition 2], we can prove
that every positive solution of (1.1) nearly converges to the unique positive equilibrium x
with respect to D as n — co and converges to x with respect to D; as n — .

(ii) Suppose that (3.10) holds. Let x, be a positive solution of (1.1) such that (2.14)
holds. Since (L4, R;,4) is a positive solution of the system which is defined by (3.7),
(3.12), and (3.13), from Lemma 3.6, we have that

lim anr+l,u = €la> lim R;mr+l,a = El,a: ac (O, 1]: I= 0,1,... y KT — 1) (372)
n—oo n—o

where « is defined in (3.44). Using (3.72) and arguing as in [15, Proposition 2], we can
prove that every positive solution of (1.1) nearly converges to a period «r solution of (1.1)
with respect to D as n — co and converges to a period «r solution of (1.1) with respect to
D as n — oo. Thus, the proof of the proposition is completed. O

From Propositions 3.2-3.8, it is obvious that (1.1) exhibits the trichotomy character
described concentratively by the following proposition.
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ProrosriTioN 3.9. Consider the fuzzy difference equation (1.1), where k,m € {1,2,...}, and
A,ci,dj, i€ {1,2,...,k}, j € {1,2,...,m}, are positive fuzzy numbers. Then (1.1) possesses
the following trichotomy.

(1) If relation (3.1) is satisfied, then (1.1) has unbounded solutions.

(ii) If (3.10) holds and r is the greatest common divisor of the integers p; + 1, q; + 1,
i=12,....k j=12,...,m, such that (3.36) holds, then every positive solution of (1.1)
nearly converges to a period kr solution of (1.1) with respect to D as n — co and converges to
a period kr solution of (1.1) with respect to D as n — .

(iii) If (3.11) holds, then every positive solution of (1.1) nearly converges to the unique
positive equilibrium x with respect to D as n — oo and converges to x with respect to Dy as

n — oo,

In the next proposition, we study the asymptotic stability of the unique positive equi-
librium of (1.1).

ProrosriTiON 3.10. Consider the fuzzy difference equation (1.1), where k,m € {1,2,...},
Ascipdj, i€ {1,2,...,k}, j € {1,2,...,m}, are positive fuzzy numbers, and p;, i € {1,2,...,k},
qj> j € {1,2,...,m}, are positive integers such that (3.11) holds. Suppose that there exists a
positive number 0 such that

— A — — 2
Z<ZB+C 0 \/Z(C 0) +4BC’

6<B, (3.73)

where B, C are defined in (3.3) and Z is defined in (3.5). Then the unique positive equilib-
rium x of (1.1) is nearly asymptotically stable.

Proof. Since (3.11) holds, from Proposition 3.8, equation (1.1) has a unique positive
equilibrium x which satisfies (2.15).

Let € be a positive real number. Since (3.18) holds, we can define the positive real
number & as follows:

d <min{e,1,0,B—Z}. (3.74)
Let x, be a positive solution of (1.1) such that
D(x_,x)<d<e€, i=0,1,...,m (3.75)
From (3.75), we have
|Loiw—La| <8, |Roiu—Ry| <8, i=0,1,...,m, ac(0,1]. (3.76)

In addition, from (3.3), (3.7), (3.74), and (3.76) and since (L, R,) satisfies (3.7), we get

S el pa Sk cia(La+0)
Lig—Ly=Ajg+ = 2008 [ <A+ i=1Cila\Lla 1,
" ' Z;il de’“R”Zp“ ’ 27:1 dj,r,a(Ra -0) (3.77)
Co—Apa+L, R,—-(B-Z
=0 Ly <4 ( )

R,—§ R,—§6
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From (3.74) and (3.77), it is obvious that
|Li,—Ls| <8<e. (3.78)

Moreover, arguing as above, we can easily prove that

Ria—R, <82 _L i (3.79)
We claim that
0<L,—R,+A,.—D,;, ac(0,1]. (3.80)
We fix an a € (0, 1] and we concider the function
AjaArg — Dah ApgArg — Dah
h)=—"= - — +A,,— D, 3.81
g( ) Ar,a “h Al,a _D, ra a ( )
where h is a nonnegative real variable. Moreover, we consider the function
2—(2x+y)z+2?
flx,p,2) = ¥ —(@xtylatz -0, (3.82)

X—z

whereB<x<y<Cand W <z <Z, B,C (resp., W,Z) are defined in (3.3) (resp., (3.5)).
Using (3.82), we can easily prove that the function f is increasing (resp., decreasing)
(resp., decreasing) with respect to x (resp., y) (resp., z) for all y,z (resp., x,z) (resp., X, ¥)
and so from (3.73),

B* - (2B+C)Z+2*

f(x,y,2)> f(B,C,Z) = B_7 0>0. (3.83)
Therefore, from (3.3), (3.81), (3.82), and (3.83), we have
g(0) = f(A1aAra, D) +6>6. (3.84)

In addition, from (3.81), we can prove that g is an increasing function with respect to h
and so we have g(0) < g(C,), a € (0,1]. Therefore, from (3.70), (3.81), and (3.84), relation
(3.80) is true. Hence, from (3.74), (3.79), and (3.80), we get

|Ri,—R,| <d<e. (3.85)

From (3.7), (3.76), (3.78), and (3.85) and working inductively, we can easily prove that

|Lua—La| <€ |Rua—Rs| <€, ac(0,1],n=0,1,..., (3.86)
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and so
D(xy,x) <€, n=0. (3.87)

Therefore, the positive equilibrium x is stable. Moreover, from Proposition 3.8, we have
that every positive solution of (1.1) nearly tends to x with respect to D as n — co. So, x is
nearly asymptotically stable. So, the proof of the proposition is completed. O

Finally, we study the oscillatory behavior of the positive solutions of the fuzzy differ-
ence equation

k
ZS=0 Cos+1Xn—2s5—1

Xn+l = A+ k
Zs:() drss2Xn—2s

, (3.88)

where k is a positive integer, and A, ¢a5+1, das+2, S € 10,1,...,k}, are positive fuzzy num-
bers. Obviously, (3.88) is a special case of (1.1).

In what follows, we need to study the oscillatory behavior of the positive solutions of
the system of ordinary difference equations

k
Zs=() A2s+1 Yn—2s—1

Vn+1 = B+ k 5
ZS:O basi22n—2s

P n=0,1,..., (3.89)
—C+ ZS:O €25+12n-2s-1
Zf:o h23+2)’n—2s

Zn+1

>

where k is a positive integer, B, C,dzsi1,b2542, €541, H2s42, s € {0,1,...,k}, are positive real

constants, and the initial values y;, zj, j = —2k — 1, -2k,...,0, are positive real numbers.
Let (yu, z,) be a positive solution of (3.89). We say that the solution (y,, z,) oscillates

about (y, z), y,z € RY, if for every ny € N, there exist s, m € N, s, m = ny, such that

(ys=y)(ym—y) <0, (zs—2)(zm —2) <0,

=) (z=-2)20,  (ym—y)(zm—2) = 0. (3.90)

LemMa 3.11. Consider system (3.89), where k is a positive integer, B, C, 51, basia, €241,
hasia, s € {0, 1,...,k}, are positive real constants, and the initial values yj, zj, j = —2k —
1,=2k,...,0, are positive real numbers. A positive solution (yn,z,) of system (3.89) oscillates
about the unique positive equilibrium (x,y) of system (3.89) if either the relations

A>max{A15,Aosl, A=max{A1Ar}, s=0,1,...,k, (3.91)
or the relations

A <min{AioAzs}, A<min{A,Ar), s=0,1,....k (3.92)
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hold, where for s =0,1,...,k,

k k
_ D=0 €25+12-25-1 A= D=0 A2s+1)-2s—1

k ’ k
Zszo hzs+zyfzs Zszo basi2z_s

s—1
(Zb2]+22+ z biji2z- 2;+2+25)—(Zazj+1)/+ Z A2j+1Y-2j+1+2s

j=0 j=s+1 j=0 j=st+1

>

|-5.

— B,

1 - s—1 s—1
Ars = |:/€/Z<262]+1z+ Zezjﬂz 2]+25) - (Zh2]+2}/+ Z hyjay- 2]+1+2s)

h25+2 j=s j=0 j=s+l1

s—1

_ s k
1
A= [Aé (z hjoj+ > hzj+2)/—2j+2+2s> - ( > ezt Z €j+12- 2]+1+25)] -C

€2s+1 j=0 j=st+1 j=0 j=st+1

1 z s—1 s—1
Ay = |:)_)<Za2]+1y+za2]+1y 2]+2$) (Zb2]+22+ > byjazaajeiias | |-G

b25+2 j=s j=0 j=s+1
1= Zi{:o €2s+1 u= Zf:o A2s+1
Zf:() h25+2 ’ zfzo b25+2
(3.93)
Proof. Suppose that (3.91) hold. We prove that for p =0, 1,...,k,
Yop+1 = P Z2op+1 Z 2, Yop+2 <9, Zpr2 < Z. (3.94)
From (3.89) and (3.91), we have
k
yi= B Z0ENL g B
D=0 basi2z s (3.95)
=C+A=C+Ar=2
Since from (3.91), A > A, and A > A, , then from (3.89), we have
)= B+ S0 @1y <B4+ (C+A)by + 58 basozi o W _p, yy -5,
byzy + 35 brsiazioas bz + 35 bz 2
2 <C+ )LTZ =2z
Y
(3.96)

Using (3.89), (3.91), (3.95), and (3.96), relations A = Ay, 1, A= Ay, 1 (resp., A =
Ayps A= Nyp), p=1,2,...,k, and working inductively, we can easily prove (3.94) for p =
1,2,...,k:

Yopt1 = Js Zopi1 =2 (resp., yapi2 < P 2opt2 < Z). (3.97)
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Therefore, (3.94) hold for p = 0,1,...,k. Then since (3.94) hold for p = 0,1,...,k, using
(3.89) and working inductively, we can easily prove that(3.94) hold for any p = k+ 1,k +
2,...,and so if (3.91) hold, the proof of the lemma is completed. O

Similarly, if (3.92) are satisfied, then we can easily prove that

Vopr1 Vs Zpr1 =2, Yp2Z Y Z2pn222, p=0,1,.... (3.98)

This completes the proof of the lemma.

Using Lemma 3.11 and arguing as in [13, Proposition 2.4], we can easily prove the
following proposition which concerns the oscillatory behavior of the positive solutions of
the fuzzy difference equation (3.88).

ProposiTioN 3.12. Consider (3.88), where k is a positive integer, and A, ¢ys11, dasi2, § € 10,
1,...,k}, are positive fuzzy numbers. Then a positive solution x, of (3.88) satisfying (2.14)
oscillates about the positive equilibrium x, which satisfies (2.15) if, for any s = 0,1,...,k and
a € (0,1], either the relations

Ay =max{Ai M54l Ay =max{A 4 A .} (3.99)
or the relations

Ay <min{A; 0, Arsals A, <min{A;q,Ar 4} (3.100)
hold, where Agy Agy A0y Mo ar D1 sarDos,a are defined for the analogous system (3.7) in the
same way as A, A, A5, Mo, A5, Nys were defined in Lemma 3.11 for system (3.89).

Using Proposition 3.12, we take the following corollary.

CoroLLARY 3.13. Consider (3.88), where k is a positive integer, and A, cis+1, dasiz, S €
10,1,...,k}, are positive fuzzy numbers. Then a positive solution x, of (3.88) satisfying (2.14)
oscillates about the positive equilibrium x, which satisfies (2.15) if, for any p = 0,1,...,k and
a € (0,1], either the relations

L 3k-1+2p.a = Lo, R 3k-1+2p.0a = Ry,
(3.101)
L—2k+2p,a <Ly, R—2k+2p,a <R,
or the relations
L 3k-1+2p.a < Lo, R 3k-112p.0 < Ry,
(3.102)
L—2k+2p,a > Ly, R—2k+2p,a >R,
hold.
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