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Based on a continuation theorem of Mawhin, positive periodic solutions are found for
difference equations of the form yn+1 = yn exp( f (n, yn, yn−1, . . . , yn−k)), n∈ Z.

1. Introduction

There are several reasons for studying nonlinear difference equations of the form

yn+1 = yn exp
{
f
(
n, yn, yn−1, . . . , yn−k

)}
, n∈ Z= {0,±1,±2, . . .}, (1.1)

where f = f (t,u0,u1, . . . ,uk) is a real continuous function defined on Rk+2 such that

f
(
t+ω,u0, . . . ,uk

)= f
(
t,u0, . . . ,uk

)
,
(
t,u0, . . . ,uk

)∈R
k+2, (1.2)

and ω is a positive integer. For one reason, the well-known equations

yn+1 = λyn,

yn+1 = µyn
(
1− yn

)
,

yn+1 = yn exp

{
µ
(
1− yn

)
K

}
, K > 0,

(1.3)

are particular cases of (1.1). As another reason, (1.1) is intimately related to delay dif-
ferential equations with piecewise constant independent arguments. To be more precise,
let us recall that a solution of (1.1) is a real sequence of the form {yn}n∈Z which renders
(1.1) into an identity after substitution. It is not difficult to see that solutions can be found
when an appropriate function f is given. However, one interesting question is whether
there are any solutions which are positive and ω-periodic, where a sequence {yn}n∈Z is
said to be ω-periodic if yn+ω = yn, for n ∈ Z. Positive ω-periodic solutions of (1.1) are
related to those of delay differential equations involving piecewise constant independent
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arguments:

y′(t)= y(t) f
(
[t], y

(
[t]
)
, y
(
[t− 1]

)
, y
(
[t− 2]

)
, . . . , y

(
[t− k]

))
, t ∈R, (1.4)

where [x] is the greatest-integer function.
Such equations have been studied by several authors including Cooke and Wiener

[5, 6], Shah and Wiener [9], Aftabizadeh et al. [1], Busenberg and Cooke [2], and so
forth. Studies of such equations were motivated by the fact that they represent a hybrid
of discrete and continuous dynamical systems and combine the properties of both differ-
ential and differential-difference equations. In particular, the following equation

y′(t)= ay(t)
(
1− y

(
[t]
))
, (1.5)

is in Carvalho and Cooke [3], where a is constant.
By a solution of (1.4), we mean a function y(t) which is defined on R and which satis-

fies the following conditions [1]: (i) y(t) is continuous on R; (ii) the derivative y′(t) ex-
ists at each point t ∈R with the possible exception of the points [t]∈R, where one-sided
derivatives exist; and (iii) (1.4) is satisfied on each interval [n,n+ 1) ⊂ R with integral
endpoints.

Theorem 1.1. Equation (1.1) has a positive ω-periodic solution if and only if (1.4) has a
positive ω-periodic solution.

Proof. Let y(t) be a positive ω-periodic solution of (1.4). It is easy to see that for any
n∈ Z,

y′(t)= y(t) f
(
n, y(n), y(n− 1), . . . , y(n− k)

)
, n≤ t < n+1. (1.6)

Integrating (1.6) from n to t, we have

y(t)= y(n)exp
(
(t−n) f

(
n, y(n), y(n− 1), . . . , y(n− k)

))
. (1.7)

Since limt→(n+1)− y(t)= y(n+1), we see further that

y(n+1)= y(n)exp
(
f
(
n, y(n), y(n− 1), . . . , y(n− k)

))
. (1.8)

If we now let yn = y(n) for n∈ Z, then {yn}n∈Z is a positive ω-periodic solution of (1.1).
Conversely, let {yn}n∈Z be a positive ω-periodic solution of (1.1). Set y(n) = yn, for

n ∈ Z, and let the function y(t) on each interval [n,n+ 1) be defined by (1.7). Then it
is not difficult to check that this function is a positive ω-periodic solution of (1.4). The
proof of Theorem 1.1 is complete. �

Therefore, once the existence of a positive ω-periodic solution of (1.1) can be demon-
strated, we may then make immediate statements about the existence of positive ω-
periodic solutions of (1.4).

There appear to be several techniques (see, e.g., [4, 8, 10]) which can help to answer
such a question. Among these techniques are fixed point theorems such as that of Kras-
nolselskii, Leggett-Williams, and others; and topological methods such as degree theories.
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Here we will invoke a continuation theorem of Mawhin for obtaining such solutions.
More specifically, let X and Y be two Banach spaces and L : DomL ⊂ X → Y is a linear
mapping and N : X → Y a continuous mapping [7, pages 39–40]. The mapping L will
be called a Fredholm mapping of index zero if dimKerL= codimImL < +∞, and ImL is
closed in Y . If L is a Fredholm mapping of index zero, there exist continuous projectors
P : X → X andQ : Y → Y such that ImP = KerL and ImL= KerQ= Im(I −Q). It follows
that L|DomL∩KerP : (I −P)X → ImL has an inverse which will be denoted by KP . If Ω is an
open and bounded subset of X , the mapping N will be called L-compact on Ω̄ if QN(Ω̄)
is bounded and KP(I −Q)N : Ω̄→ X is compact. Since ImQ is isomorphic to KerL there
exist an isomorphism J : ImQ→ KerL.

Theorem 1.2 (Mawhin’s continuation theorem). Let L be a Fredholm mapping of index
zero, and let N be L-compact on Ω̄. Suppose

(i) for each λ∈ (0,1), x ∈ ∂Ω, Lx �= λNx;
(ii) for each x ∈ ∂Ω∩KerL, QNx �= 0 and deg(JQN ,Ω∩Ker,0) �= 0.

Then the equation Lx =Nx has at least one solution in Ω̄∩domL.

As a final remark in this section, note that if ω = 1, then a positive ω-periodic solution
of (1.1) is a constant sequence {c}n∈Z that satisfies (1.1). Hence

f (n,c, . . . ,c)= 0, n∈ Z. (1.9)

Conversely, if c > 0 such that f (n,c, . . . ,c) = 0 for n ∈ Z, then the constant sequence
{c}n∈Z is an ω-periodic solution of (1.1). For this reason, we will assume in the rest of
our discussion that ω is an integer greater than or equal to 2.

2. Existence criteria

We will establish existence criteria based on combinations of the following conditions,
where D andM are positive constants:

(a1) f (t,ex0 , . . . ,exk ) > 0 for t ∈R and x0, . . . ,xk ≥D,
(a2) f (t,ex0 , . . . ,exk ) < 0 for t ∈R and x0, . . . ,xk ≥D,
(b1) f (t,ex0 , . . . ,exk ) < 0 for t ∈R and x0, . . . ,xk ≤−D,
(b2) f (t,ex0 , . . . ,exk ) > 0 for t ∈R and x0, . . . ,xk ≤−D,
(c1) f (t,ex0 , . . . ,exk )≥−M for (t,ex0 , . . . ,exk )∈Rk+2,
(c2) f (t,ex0 , . . . ,exk )≤M for (t,ex0 , . . . ,exk )∈Rk+2.

Theorem 2.1. Suppose either one of the following sets of conditions holds:

(i) (a1), (b1), and (c1), or,
(ii) (a2), (b2), and (c1), or,
(iii) (a1), (b1), and (c2), or
(iv) (a2), (b2), and (c2).

Then (1.1) has a positive ω-periodic solution.

We only give the proof in case (a1), (b1), and (c1) hold, since the other cases can be
treated in similar manners.
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We first need some basic tools. First of all, for any real sequence {un}n∈Z, we define a
nonstandard “summation” operation

β⊕
n=α

un =




β∑
n=α

un, α≤ β,

0, β = α− 1,

−
α−1∑

n=β+1
un, β < α− 1.

(2.1)

It is then easy to see if {xn}n∈Z is a ω-periodic solution of the following equation

xn = x0 +
n−1⊕
i=0

f
(
i,exi ,exi−1 , . . . ,exi−k

)
, n∈ Z, (2.2)

then {yn}n∈Z = {exn}n∈Z is a positive ω-periodic solution of (1.1). We will therefore seek
an ω-periodic solution of (2.2).

Let Xω be the Banach space of all real ω-periodic sequences of the form x = {xn}n∈Z,
and endowed with the usual linear structure as well as the norm ‖x‖1 =max0≤i≤ω−1 |xi|.
Let Yω be the Banach space of all real sequences of the form y = {yn}n∈Z = {nα+hn}n∈Z
such that y0 = 0, where α ∈ R and {hn}n∈Z ∈ Xω, and endowed with the usual linear
structure as well as the norm ‖y‖2 = |α|+ ‖h‖1. Let the zero element of Xω and Yω be
denoted by θ1 and θ2 respectively.

Define the mappings L : Xω → Yω and N : Xω → Yω, respectively, by

(Lx)n = xn− x0, n∈ Z, (2.3)

(Nx)n =
n−1⊕
i=0

f
(
i,exi ,exi−1 , . . . ,exi−k

)
, n∈ Z. (2.4)

Let

h̄n =
n−1⊕
i=0

f
(
i,exi ,exi−1 , . . . ,exi−k

)− n

ω

ω−1⊕
i=0

f
(
i,exi ,exi−1 , . . . ,exi−k

)
, n∈ Z. (2.5)

Since h̄= {h̄n}n∈Z ∈ Xω and h̄0 = 0, N is a well-defined operator from Xω to Yω. On the
other hand, direct calculation leads to KerL = {x ∈ Xω | xn = x0, n ∈ Z, x0 ∈ R} and
ImL= Xω∩Yω. Let us define P : Xω → Xω and Q : Yω → Yω, respectively, by

(Px)n = x0, n∈ Z, for x = {xn}n∈Z ∈ Xω, (2.6)

(Qy)n = nα for y = {nα+hn
}
n∈Z ∈ Yω. (2.7)

The operators P and Q are projections and Xω = KerP ⊕KerL, Yω = ImL⊕ ImQ. It is
easy to see that dimKerL= 1= dimImQ = codimImL, and that

ImL= {y ∈ Xω | y0 = 0
}⊂ Yω. (2.8)

It follows that ImL is closed in Yω. Thus the following lemma is true.
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Lemma 2.2. The mapping L defined by (2.3) L is a Fredholm mapping of index zero.

Next we recall that a subset S of a Banach space X is relatively compact if, and only if,
for each ε > 0, it has a finite ε-net.

Lemma 2.3. A subset S of Xω is relatively compact if and only if S is bounded.

Proof. It is easy to see that if S is relatively compact in Xω, then S is bounded. Conversely,
if the subset S of Xω is bounded, then there is a subset

Γ := {x ∈ Xω | ‖x‖1 ≤H
}
, (2.9)

where H is a positive constant, such that S ⊂ Γ. It suffices to show that Γ is relatively
compact in Xω. Note that for each ε > 0, we may choose numbers y0 < y1 < ··· < yl such
that y0 =−H , yl =H and yi+1− yi < ε for i= 0, . . . , l− 1. Then

{
v = {vn}n∈Z ∈ Xω | vj ∈

{
y0, y1, . . . , yl−1

}
, j = 0, . . . ,ω− 1

}
(2.10)

is a finite ε-net of Γ. This completes the proof. �

Lemma 2.4. Let L and N be defined by (2.3) and (2.4), respectively. Suppose Ω is an open
bounded subset of Xω. Then N is L-compact on Ω.

Proof. From (2.4), (2.5), and (2.7), we see that for any x = {xn}n∈Z ∈Ω,

(QNx)n = n

ω

ω−1⊕
i=0

f
(
i,exi ,exi−1 , . . . ,exi−k

)
, n∈ Z. (2.11)

Thus

‖QNx‖2 =
∥∥∥∥∥ nω

ω−1⊕
i=0

f
(
i,exi ,exi−1 , . . . ,exi−k

)∥∥∥∥∥
2

= 1
ω

∣∣∣∣∣
ω−1∑
i=0

f
(
i,exi ,exi−1 , . . . ,exi−k

)∣∣∣∣∣, (2.12)

so that QN(Ω) is bounded. We denote the inverse of the mapping L|DomL∩KerP : (I −
P)X → ImL by KP . Direct calculations lead to

(
KP(I −Q)Nx

)
n =

n−1⊕
i=0

f
(
i,exi ,exi−1 , . . . ,exi−k

)− n

ω

ω−1⊕
i=0

f
(
i,exi ,exi−1 , . . . ,exi−k

)
. (2.13)

It is easy to see that

∥∥KP(I −Q)Nx
∥∥
1 ≤ 2

∣∣∣∣∣
ω−1⊕
i=0

f
(
i,exi ,exi−1 , . . . ,exi−k

)∣∣∣∣∣. (2.14)
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Noting that Ω is a closed and bounded subset of Xω and f is continuous on Rk+2, rela-
tion (2.14) implies that KP(I −Q)N(Ω) is bounded in Xω. In view of Lemma 2.3, KP(I −
Q)N(Ω) is relatively compact in Xω. Since the closure of a relatively compact set is rela-

tively compact, KP(I −Q)N(Ω) is relatively compact in Xω and hence N is L-compact on
Ω. This completes the proof. �

Now, we consider the following equation

xn− x0 = λ
n−1⊕
i=0

f
(
i,exi ,exi−1 , . . . ,exi−k

)
, n∈ Z, (2.15)

where λ∈ (0,1).

Lemma 2.5. Suppose (a1), (b1), and (c1) are satisfied. Then for any ω-periodic solution
x = {xn}n∈Z of (2.15),

‖x‖1 = max
0≤i≤ω−1

∣∣xi∣∣≤D+4ωM. (2.16)

Proof. Let x = {xn}n∈Z be a ω-periodic solution x = {xn}n∈Z of (2.15). Then

ω−1⊕
i=0

f
(
i,exi ,exi−1 , . . . ,exi−k

)= 0. (2.17)

If we write

G+
n =max

{
f
(
n,exn ,exn−1 , . . . ,exn−k

)
,0
}
, n∈ Z, (2.18)

G−n =max
{− f

(
n,exn ,exn−1 , . . . ,exn−k

)
,0
}
, n∈ Z, (2.19)

then {G+
n}n∈Z and {G−n }n∈Z are nonnegative real sequences and

f
(
n,exn ,exn−1 , . . . ,exn−k

)=G+
n −G−n , n∈ Z, (2.20)

as well as
∣∣ f (n,exn ,exn−1 , . . . ,exn−k)∣∣=G+

n +G−n , n∈ Z. (2.21)

In view of (c1) and (2.19), we have
∣∣G−n ∣∣=G−n ≤M, n∈ Z. (2.22)

Thus

ω−1⊕
i=0

G−i ≤ ωM, (2.23)

and in view of (2.17), (2.20), and (2.23),

ω−1⊕
i=0

G+
i =

ω−1⊕
i=0

G−i ≤ ωM. (2.24)
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By (2.21) and (2.24), we know that

ω−1⊕
i=0

∣∣ f (i,exi ,exi−1 , . . . ,exi−k)∣∣≤ 2ωM. (2.25)

Let xα =max0≤i≤ω−1 xi and xβ =min0≤i≤ω−1 xi, where 0≤ α, β ≤ ω− 1. By (2.15), we have

xα− xβ =
∣∣xα− xβ

∣∣= λ

∣∣∣∣∣
α−1⊕
i=0

f
(
i,exi ,exi−1 , . . . ,exi−k

)−
β−1⊕
i=0

f
(
i,exi ,exi−1 , . . . ,exi−k

)∣∣∣∣∣
≤ 2

ω−1⊕
i=0

∣∣ f (i,exi ,exi−1 , . . . ,exi−k)∣∣≤ 4ωM.

(2.26)

If there is some xl, 0≤ l ≤ ω− 1, such that |xl| < D, then in view of (2.15) and (2.25), for
any n∈ {0,1, . . . ,ω− 1}, we have

∣∣xn∣∣= ∣∣xl∣∣+∣∣xn− xl
∣∣

≤D+

∣∣∣∣∣
n−1⊕
i=0

f
(
i,exi ,exi−1 , . . . ,exi−k

)− l−1⊕
i=0

f
(
i,exi ,exi−1 , . . . ,exi−k

)∣∣∣∣∣
≤D+2

ω−1⊕
i=0

∣∣ f (i,exi ,exi−1 , . . . ,exi−k)∣∣
≤D+4ωM.

(2.27)

Otherwise, by (a1), (b1), and (2.17), xα �D and xβ ≤−D. From (2.26), we have

xα ≤ xβ +4ωM ≤−D+4ωM,

xβ ≥ xα− 4ωM ≥D− 4ωM.
(2.28)

It follows that

D− 4ωM ≤ xβ ≤ xn ≤ xα ≤−D+4ωM, 0≤ n≤ ω− 1, (2.29)

or

∣∣xn∣∣≤D+4ωM, 0≤ n≤ ω− 1. (2.30)

This completes the proof. �

We now turn to the proof of Theorem 2.1. Let L,N , P andQ be defined by (2.3), (2.4),
(2.6), and (2.7), respectively. Set

Ω= {x ∈ Xω | ‖x‖1 < D
}
, (2.31)

where D is a fixed number which satisfies D >D+4ωM. It is easy to see thatΩ is an open
and bounded subset of Xω. Furthermore, in view of Lemma 2.2 and Lemma 2.4, L is a
Fredholm mapping of index zero and N is L-compact on Ω. Noting that D > D + 4ωM,
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by Lemma 2.5, for each λ ∈ (0,1) and x ∈ ∂Ω, Lx �= λNx. Next, note that a sequence
x = {xn}n∈Z ∈ ∂Ω∩KerL must be constant: {xn}n∈Z = {D}n∈Z or {xn}n∈Z = {−D}n∈Z.
Hence by (a1), (b1), and (2.11),

(QNx)n = n

ω

ω−1⊕
i=0

f
(
i,ex0 , . . . ,ex0

)
, n∈ Z, (2.32)

so

QNx �= θ2. (2.33)

The isomorphism J : ImQ→ KerL is defined by (J(nα))n = α, for α∈R, n∈ Z. Then

(JQNx)n = 1
ω

ω−1⊕
i=0

f
(
i,ex0 , . . . ,ex0

) �= 0, n∈ Z. (2.34)

In particular, we see that if {xn}n∈Z = {D}n∈Z, then

(JQNx)n = 1
ω

ω−1⊕
i=0

f
(
i,eD, . . . ,eD

)
> 0, n∈ Z, (2.35)

and if {xn}n∈Z = {−D}n∈Z, then

(JQNx)n = 1
ω

ω−1⊕
i=0

f
(
i,e−D, . . . ,e−D

)
< 0, n∈ Z. (2.36)

Consider the mapping

H(x,s)= sx+ (1− s)JQNx, 0≤ s≤ 1. (2.37)

From (2.35) and (2.37), for each s∈ [0,1] and {xn}n∈Z = {D}n∈Z, we have
(
H(x,s)

)
n = sD+ (1− s)

1
ω

ω−1⊕
i=0

f
(
i,eD, . . . ,eD

)
> 0, n∈ Z. (2.38)

Similarly, from (2.36) and (2.37), for each s∈ [0,1] and {xn}n∈Z = {−D}n∈Z, we have
(
H(x,s)

)
n =−sD+ (1− s)

1
ω

ω−1⊕
i=0

f
(
i,e−D, . . . ,e−D

)
< 0, n∈ Z. (2.39)

By (2.38) and (2.39), H(x,s) is a homotopy. This shows that

deg
(
JQNx,Ω∩KerL,θ1

)= deg
(− x,Ω∩KerL,θ1

) �= 0. (2.40)

By Theorem 1.2, we see that equation Lx = Nx has at least one solution in Ω∩DomL.
In other words, (2.2) has an ω-periodic solution x = {xn}n∈Z, and hence {exn}n∈Z is a
positive ω-periodic solution of (1.1).

Corollary 2.6. Under the same assumption of Theorem 1.1, (1.4) has a positive ω-periodic
solution.
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3. Examples

Consider the difference equation

yn+1 = yn exp

(
r(n)

(
a(n)− yn−k

a(n) + c(n)r(n)yn−k

)δ)
, n∈ Z, (3.1)

and the semi-discrete “food-limited” population model of

y′(t)= y(t)r
(
[t]
)( a

(
[t]
)− y

(
[t− k]

)
a
(
[t]
)
+ c
(
[t]
)
r
(
[t]
)
y
(
[t− k]

)
)δ

, t ∈R. (3.2)

In (3.1) or (3.2), r, a, and c belong to C(R, (0,∞)), and r(t +ω) = r(t), a(t +ω) = a(t),
c(t+ω)= c(t) and δ is a positive odd integer. Letting

M = max
0≤t≤ω

r(t),

f
(
t,u0,u1, . . . ,uk

)= r(t)

(
a(t)−uk

a(t) + c(t)r(t)uk

)δ

,

D = max
0≤t≤ω

∣∣ lna(t)∣∣+ ε0, ε0 > 0.

(3.3)

It is easy to verify that the conditions (a2), (b2), and (c1) are satisfied. By Theorem 2.1
and Corollary 2.6, we know that (3.1) and (3.2) have positive ω-periodic solutions.

As another example, consider the semi-discrete Michaelis-Menton model

y′(t)= y(t)r
(
[t]
)(

1−
k∑
i=0

ai
(
[t]
)
y
(
[t− i]

)
1+ ci

(
[t]
)
y
(
[t− i]

)
)
, t ∈R, (3.4)

and its associated difference equation

yn+1 = yn exp

(
r(n)

(
1−

k∑
i=0

ai(n)yn−i
1+ ci(n)yn−i

))
, n∈ Z. (3.5)

In (3.4) and (3.5), r, ai, and ci belong to C(R, (0,∞)), r(t+ω)= r(t), ai(t+ω)= ai(t) and
ci(t+ω)= ci(t) for i= 0,1, . . . ,k and t ∈R, and

∑k
i=0 ai(t)/ci(t) > 1. Letting

f
(
t,u0,u1, . . . ,uk

)= r(t)

(
1−

k∑
i=0

ai(t)ui
1+ ci(t)ui

)
, (3.6)

then

f
(
t,ex0 ,ex1 , . . . ,exk

)= r(t)

(
1−

k∑
i=0

ai(t)exi

1+ ci(t)exi

)
. (3.7)
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Since

lim
x0,...,xk→+∞ min

0≤t≤ω

k∑
i=0

ai(t)exi

1+ ci(t)exi
> 1,

lim
x0,...,xk→−∞

max
0≤t≤ω

k∑
i=0

ai(t)exi

1+ ci(t)exi
= 0,

(3.8)

we can chooseM =max0≤t≤ω r(t) and some positive numberD such that conditions (a2),
(b2), and (c1) are satisfied. By Theorem 2.1 and Corollary 2.6, (3.4), and (3.5) have posi-
tive ω-periodic solution.
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