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Based on a continuation theorem of Mawhin, positive periodic solutions are found for
difference equations of the form y,41 = y,exp(f (1, Y, Yu-15---> Yn-k)), 1 € Z.
1. Introduction

There are several reasons for studying nonlinear difference equations of the form
Yur1 = Vn€Xp L f (M Vi Vuetsee s Vi) ), nEZ={0,+1,%+2,...}, (1.1)
where f = f(t,uq,uy,...,ux) is a real continuous function defined on R**2 such that
ft+w,up,...our) = f(tugs...,ux), (ttoy...,ux) € RF2, (1.2)
and w is a positive integer. For one reason, the well-known equations

Vn+1 = Ay;n
Yne1 = fyn(1 = yn)s

1- n
yn+1:ynexp{#( Ky_)}, K >0,

are particular cases of (1.1). As another reason, (1.1) is intimately related to delay dif-
ferential equations with piecewise constant independent arguments. To be more precise,
let us recall that a solution of (1.1) is a real sequence of the form {y,},cz which renders
(1.1) into an identity after substitution. It is not difficult to see that solutions can be found
when an appropriate function f is given. However, one interesting question is whether
there are any solutions which are positive and w-periodic, where a sequence {y,} ez is
said to be w-periodic if y,4, = yn, for n € Z. Positive w-periodic solutions of (1.1) are
related to those of delay differential equations involving piecewise constant independent

(1.3)
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arguments:

Y () =y f([tL,y([e]), y ([t =1]), ([t =2]),..., p([t = K])), tER, (1.4)

where [x] is the greatest-integer function.

Such equations have been studied by several authors including Cooke and Wiener
[5, 6], Shah and Wiener [9], Aftabizadeh et al. [1], Busenberg and Cooke [2], and so
forth. Studies of such equations were motivated by the fact that they represent a hybrid
of discrete and continuous dynamical systems and combine the properties of both differ-
ential and differential-difference equations. In particular, the following equation

y'() = ay®)(1-y([t])), (1.5)

is in Carvalho and Cooke [3], where a is constant.

By a solution of (1.4), we mean a function y(¢) which is defined on R and which satis-
fies the following conditions [1]: (i) y(¢) is continuous on R; (ii) the derivative y’(t) ex-
ists at each point t € R with the possible exception of the points [¢] € R, where one-sided
derivatives exist; and (iii) (1.4) is satisfied on each interval [n,n+ 1) C R with integral
endpoints.

TaEOREM 1.1. Equation (1.1) has a positive w-periodic solution if and only if (1.4) has a
positive w-periodic solution.

Proof. Let y(t) be a positive w-periodic solution of (1.4). It is easy to see that for any
nez,

Y () =yt)f(n,y(n),y(n-1),...,y(n—k)), n<t<n+l. (1.6)
Integrating (1.6) from # to t, we have

y(t) = y(n)exp ((t —n) f (n,y(n),y(n—1),...,y(n—k))). (1.7)

Since limy—. 41y~ y(t) = y(n+ 1), we see further that

y(n+1) = y(n)exp (f (n,y(n),y(n—1),...,y(n—k))). (1.8)

If we now let y, = y(n) for n € Z, then {y,} ez is a positive w-periodic solution of (1.1).

Conversely, let {y,}.cz be a positive w-periodic solution of (1.1). Set y(n) = y,, for
n € Z, and let the function y(t) on each interval [n,n+ 1) be defined by (1.7). Then it
is not difficult to check that this function is a positive w-periodic solution of (1.4). The
proof of Theorem 1.1 is complete. O

Therefore, once the existence of a positive w-periodic solution of (1.1) can be demon-
strated, we may then make immediate statements about the existence of positive w-
periodic solutions of (1.4).

There appear to be several techniques (see, e.g., [4, 8, 10]) which can help to answer
such a question. Among these techniques are fixed point theorems such as that of Kras-
nolselskii, Leggett-Williams, and others; and topological methods such as degree theories.
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Here we will invoke a continuation theorem of Mawhin for obtaining such solutions.
More specifically, let X and Y be two Banach spaces and L: DomL C X — Y is a linear
mapping and N : X — Y a continuous mapping [7, pages 39—-40]. The mapping L will
be called a Fredholm mapping of index zero if dimKer L = codimImL < +o0, and Im L is
closed in Y. If L is a Fredholm mapping of index zero, there exist continuous projectors
P:X—>Xand Q:Y — Y such thatImP = KerL and ImL = Ker Q = Im(I — Q). It follows
that Lipomrrkerp : (I — P)X — ImL has an inverse which will be denoted by Kp. If Q) is an
open and bounded subset of X, the mapping N will be called L-compact on € if QN (Q2)
is bounded and Kp(I — Q)N : Q — X is compact. Since Im Q is isomorphic to Ker L there
exist an isomorphism J : Im Q — KerL.

THEOREM 1.2 (Mawhin’s continuation theorem). Let L be a Fredholm mapping of index
zero, and let N be L-compact on Q. Suppose

(i) foreach A € (0,1), x € 0Q), Lx # ANx;
(ii) for each x € 00 NKerL, QNx # 0 and deg(JQN,Q N Ker,0) # 0.

Then the equation Lx = Nx has at least one solution in Q N dom L.

As a final remark in this section, note that if w = 1, then a positive w-periodic solution
of (1.1) is a constant sequence {c},cyz, that satisfies (1.1). Hence

f(n,¢...,c)=0, neZ. (1.9)

Conversely, if ¢ > 0 such that f(n,c,...,c) = 0 for n € Z, then the constant sequence
{c}nez is an w-periodic solution of (1.1). For this reason, we will assume in the rest of
our discussion that w is an integer greater than or equal to 2.

2. Existence criteria

We will establish existence criteria based on combinations of the following conditions,
where D and M are positive constants:

(a1) f(t,e™,...,e) >0 for t € Rand xo,...,xx = D,

(a2) f(t,e™,...,e%) <0 fort € R and xo,...,xx = D,

(b1) f(t,e™,...,e%) <0 for t € R and xo,...,xx < —D,
(by) f(t,e™,...,e%) >0 for t € R and xo,...,xx < —D,
(c1) f(t,ex(’,... %) = —M for (t,e*,...,e%) € Rk+2,

(c2) f(t,e™,...,e*) < M for (t,e,...,e%) € RF2,

THEOREM 2.1. Suppose either one of the following sets of conditions holds:
(@) (a1), (b1), and (1), or,
(ii) (a2), (b2), and (c1), or,
(iii) (a1), (b1), and (c2), or
(iv) (az), (b2), and (c2).

Then (1.1) has a positive w-periodic solution.

We only give the proof in case (a;), (b1), and (¢;) hold, since the other cases can be
treated in similar manners.
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We first need some basic tools. First of all, for any real sequence {u,},cz, we define a
nonstandard “summation” operation

(P
Uy, a<f,
ﬁ n=ua
@Mn=*0> f=a-1, (2.1)
n=a a-1
- Z Uy, P<a-—1
n=p+1

It is then easy to see if {x,} ez is a w-periodic solution of the following equation

—x0+@fze eh1,..., e k), nelz, (2.2)

then {y,}nez = {€¥},ez is a positive w-periodic solution of (1.1). We will therefore seek
an w-periodic solution of (2.2).

Let X, be the Banach space of all real w-periodic sequences of the form x = {x,} ez,
and endowed with the usual linear structure as well as the norm ||x]|; = maxg<j<e_1 |%;].
Let Y,, be the Banach space of all real sequences of the form y = {y,} ez = {na+h,}nez
such that yy = 0, where « € R and {h,},cz € Xu, and endowed with the usual linear
structure as well as the norm || y|l, = [a| + ||All;. Let the zero element of X,, and Y, be
denoted by 6, and 0, respectively.

Define the mappings L : X, — Y, and N : X, — Y,,, respectively, by

(LX)p = Xp — X0, nEZ, (2.3)
(Nx), = @f(i,e"",e""'l,...,e""'k), ne’. (2.4)
Let
_ n-1 " w-1
hy = € f (i, e, e5F) — ” P fies,e,....e5*), nel. (2.5)
i=0 i=0

Since h = {h,} ez € X, and by = 0, N is a well-defined operator from X, to Y. On the
other hand, direct calculation leads to KerL = {x € X, | x, = x9, n € Z, xo € R} and
ImL =X,NY,.Letus define P: X, —» X, and Q: Y, — Y, respectively, by

(Px)y =x0, n€Z, forx={xy},cs € Xo (2.6)
(Qy)n=na fory={na+h,}, ., €Y. (2.7)

The operators P and Q are projections and X, = KerP @ KerL, Y, = ImL & ImQ. It is
easy to see that dimKerL = 1 = dimIm Q = codimImL, and that

ImL={y€Xyl|y =0} CY, (2.8)

It follows that Im L is closed in Y. Thus the following lemma is true.
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LemMa 2.2. The mapping L defined by (2.3) L is a Fredholm mapping of index zero.

Next we recall that a subset S of a Banach space X is relatively compact if, and only if,
for each & > 0, it has a finite e-net.

LEMMA 2.3. A subset S of X,, is relatively compact if and only if S is bounded.

Proof. Tt is easy to see that if S is relatively compact in X,,, then S is bounded. Conversely,
if the subset S of X, is bounded, then there is a subset

I:={xeX,|lxl <H]}, (2.9)

where H is a positive constant, such that § C I'. It suffices to show that T is relatively
compact in X,,. Note that for each £ > 0, we may choose numbers yy < y; < - -+ < y; such
that yo = —H, ;= H and yj4; — y;<efori=0,...,/ - 1. Then

=1z eXolvie yoyn 0yl j=0.,0 -1} (2.10)

is a finite e-net of I'. This completes the proof. O

LemMA 2.4. Let L and N be defined by (2.3) and (2.4), respectively. Suppose Q is an open
bounded subset of X,,. Then N is L-compact on Q.

Proof. From (2.4), (2.5), and (2.7), we see that for any x = {x,},ez € Q,

w—1

(QNx), = gEBf(i,e"",e""’l,...,e""”‘), neZ. (2.11)
i=0
Thus
n w-1 1 w—1
IQNxll> = HEBf(i,ex',ex”,...,e’”) ==| > flies, e ,..,e5 )|, (2.12)
W ilo » @lic

so that QN(Q) is bounded. We denote the inverse of the mapping L|pomrnkerp : (I —
P)X — ImL by Kp. Direct calculations lead to

n—1 w—1

(Kp(I - Q)Nx), = @f(i,e"",e"”‘,...,e""’k) - g@f(i,e"’,e"‘*‘,...,e""*k). (2.13)

i=0 i=0

It is easy to see that

w—1
[|[Kp(I - Q)Nx||, <2 @f(i,e"",e""*l,...,ex"*k) ) (2.14)
i=0
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Noting that Q is a closed and bounded subset of X,, and f is continuous on R¥*2, rela-
tion (2.14) implies that Kp(I — Q)N (Q) is bounded in X,,. In view of Lemma 2.3, Kp(I —
Q)N(Q) is relatively compact in X,,. Since the closure of a relatively compact set is rela-

tively compact, Kp(I — Q)N(Q) is relatively compact in X,, and hence N is L-compact on
Q. This completes the proof. O

Now, we consider the following equation
n—1
Xp— X0 = /1@f(i,e"",ex"*l,...,e""*"), nez, (2.15)
i=0

where A € (0,1).

LemMaA 2.5. Suppose (a1), (b1), and (c1) are satisfied. Then for any w-periodic solution
x = {xn}nez of (2.15),

llxlli = max |xi| <D+4wM. (2.16)
O<i<w-—1

Proof. Let x = {x,} ez be a w-periodic solution x = {x,} ez of (2.15). Then

w—1
P flies,e,....e5%) = 0. (2.17)
i=0
If we write
G; = max{f(ne™,e",...,e"*),0}, nel, (2.18)
G, =max{ — f(n,e™",e"',...,e"*),0}, nezZ, (2.19)

then {G}},cz and {G;, } ncz are nonnegative real sequences and
f(nen,e,...,e"*) =Gl - G,, neZ, (2.20)
as well as
| f(ne™,e™,....e"*) | =G +G,, neZ. (2.21)
In view of (¢;) and (2.19), we have
|G, | =G, <M, neZl. (2.22)

Thus

e
L

G; < wM, (2.23)

I
(=}

and in view of (2.17), (2.20), and (2.23),

w—1 w—1
PG =PG <wM. (2.24)
i=0 i=0
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By (2.21) and (2.24), we know that

w—1
B | f (e, e5,...,e5*) | <20M. (2.25)

i=0

Let x, = MaXo<ij<e-1%; and xg = ming<;<,1x;, where 0 < «, f < w — 1. By (2.15), we have

a—1
Xo—Xg = |xa—xp| =1 @f(i,e"",e""*l,...,e"‘*") - @f(i,e"",ex"*l,...,e""*k)
i=0 ‘

w-1

<26P | f(ie,e5,...,e5*) | < 4wM.
i=0

If there is some x;, 0 < [ < w — 1, such that |x;| < D, then in view of (2.15) and (2.25), for
any n € {0,1,...,w — 1}, we have

|%n] = T + |20 = ]

n—1
<D+ @f(i,ex",e""*l,...,ex’*k) - @f(i,e"",e""*l,...,e""*k) ‘
i=0 j

ot (2.27)
<D+2 @ | f(ie¥,e5,...,e5%*) |
i=0
<D+4wM.
Otherwise, by (a;), (b;), and (2.17), x, > D and x5 < —D. From (2.26), we have
Xo < xg+4wM < —D +4wM,
(2.28)
Xg = Xo —4wM = D — 4wM.
It follows that
D—4wM < xg <x, <Xo < —D+40M, O0=n<w-1I, (2.29)
or
|x,] <D+40M, 0<n<w-1. (2.30)
This completes the proof. O

We now turn to the proof of Theorem 2.1. Let L, N, P and Q be defined by (2.3), (2.4),
(2.6), and (2.7), respectively. Set

Q={xeX,!lxll <D}, (2.31)

where D is a fixed number which satisfies D > D + 4wM. It is easy to see that Q is an open
and bounded subset of X,,. Furthermore, in view of Lemma 2.2 and Lemma 2.4, L is a
Fredholm mapping of index zero and N is L-compact on Q. Noting that D > D + 4wM,
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by Lemma 2.5, for each A € (0,1) and x € 0Q), Lx # ANx. Next, note that a sequence
X = {Xp}nez € 0Q N Ker L must be constant: {x,} ez = {D}nez O {Xp}nez = {—D}nez.
Hence by (a;), (by), and (2.11),

w—1
(QNx), = g@f(i,ex",...,e"“), nez, (2.32)
i=0
SO
QNx # 0,. (2.33)

The isomorphism J : Im Q — KerL is defined by (J(na)), = «, for « € R, n € Z. Then

1 w—1

(JQNx), = —@f(i,e"",...,e"”) +£0, neZ. (2.34)

i=0

S

In particular, we see that if {x,},cz = {D},cz, then
1 w—1 o .
JQNx) = — D f (i) >0, ne, (2.35)
i=0
and if {x,}sez = {~D},ez, then

(JQNx), = EBf( LeP)<0, new (2.36)

Consider the mapping
H(x,s) =sx+(1—-5)JQNx, 0=<s<]I. (2.37)

From (2.35) and (2.37), for each s € [0,1] and {x,,} nez = {D}ncz, we have
(H(x,5)), = sD+(1—s —@f(ze ver€?) >0, neEL (2.38)
Similarly, from (2.36) and (2.37), for each s € [0,1] and {x,,} yez = {=D} 7, we have
(H(x,s)), = —sD+(1—5) @f( eP)<0, nei (2.39)
By (2.38) and (2.39), H(x,s) is a homotopy. This shows that

deg (JQNx,QyNKerL,6;) = deg(—x,QnKerL,0;) # 0. (2.40)

By Theorem 1.2, we see that equation Lx = Nx has at least one solution in Q N Dom L.
In other words, (2.2) has an w-periodic solution x = {x,},cz, and hence {e**},c7 is a
positive w-periodic solution of (1.1).

CoROLLARY 2.6. Under the same assumption of Theorem 1.1, (1.4) has a positive w-periodic
solution.
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3. Examples

Consider the difference equation

B a(n) — yu—k 0
Vnt+1 = Yn€Xp (r(n) (a(n) +C(n)r(n)yn_k) ), ne, (3.1)

and the semi-discrete “food-limited” population model of
8

o allt]) = ([t~ k)
0= 00 (G ) R 69

In (3.1) or (3.2), 7, a, and ¢ belong to C(R,(0,0)), and r(t + w) = r(t), a(t + w) = a(t),
c(t+w) = c(t) and § is a positive odd integer. Letting

M= max r(1),
)
_ a(t) — ug
f(tug,ur,... uk) = r(t)<a(t)+c(t)r(t)uk> , (3.3)

D = max |Ina(t)| +&, & >0.

O<t<w

It is easy to verify that the conditions (a;), (bz), and (c;) are satisfied. By Theorem 2.1
and Corollary 2.6, we know that (3.1) and (3.2) have positive w-periodic solutions.
As another example, consider the semi-discrete Michaelis-Menton model

, Eoa([)y ([t - i)
y'(t) = y()r( (1_§l+c, ])y([t_i])>, teR, (3.4)

and its associated difference equation

L)y
Yn+l = Yn€Xp (r(n)<1—izol+ci(r%>>, n e Z. (3.5)

In (3.4) and (3.5), , a;, and ¢; belong to C(R, (0, )), r(t + w) = r(t), ai(t + w) = a;(t) and
ci(t+w) =ci(t) fori=0,1,....,kand t € R, and zf:o a;i(t)/ci(t) > 1. Letting

F (o, ug) = r(f) 1—§M (3.6)
sUo,Ur5..., Uk i=01+C 5 .

i(B)u;

then

k a;(t)es
f(te,e",....e%) =r(t)<1—24_>. (3.7)
i=0
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Since

. ai(t)e*
lim i —_—
Xy =+ 00 O<t<w 1+ci(t)exi
(3.8)
lim max Z

XXk = =00 0150 1+Cl e"f ’

we can choose M = maxy<;<, r(t) and some positive number D such that conditions (a,),

(bz), and (c;) are satisfied. By Theorem 2.1 and Corollary 2.6, (3.4), and (3.5) have posi-
tive w-periodic solution.
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