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First, existence criteria for at least three nonnegative solutions to the following boundary
value problem of fourth-order difference equation Δ4x(t− 2) = a(t) f (x(t)), t ∈ [2,T],
x(0)= x(T +2)=0, Δ2x(0)=Δ2x(T)=0 are established by using the well-known Leggett-
Williams fixed point theorem, and then, for arbitrary positive integerm, existence results
for at least 2m− 1 nonnegative solutions are obtained.
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1. Introduction

Recently, boundary value problems (BVPs) of difference equations have received consid-
erable attention from many authors, see [1–5, 7–9, 12–19] and the references therein. In
particular, Zhang et al. [19] established the existence of positive solution to the fourth-
order BVP

Δ4x(t− 2)= λa(t) f
(
t,x(t)

)
, t ∈N , 2≤ t ≤ T ,

x(0)= x(T +2)= 0,

Δ2x(0)= Δ2x(T)= 0

(1.1)

by using the method of upper and lower solutions, and then Sun [15] obtained the exis-
tence of one positive solution for the following fourth-order BVP:

Δ4x(t− 2)= a(t) f
(
x(t)

)
, t ∈ [2,T],

x(0)= x(T +2)= 0,

Δ2x(0)= Δ2x(T)= 0

(1.2)
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2 Solutions to BVPs of fourth-order difference equations

under the assumption that f is either superlinear or sublinear, where T > 2 is a fixed
positive integer, Δm denotes the mth forward difference operator with stepsize 1, and
[a,b] = {a,a + 1, . . . ,b − 1,b} ⊂ Z the set of all integers. Our main tool was the Guo-
Krasnosel’skii fixed point theorem in cone [6, 10].

In this paper we will continue to consider the BVP (1.2). First, existence criteria for
at least three nonnegative solutions to the BVP (1.2) are established by using the well-
known Leggett-Williams fixed point theorem [11], and then, for arbitrary positive in-
teger m, existence results for at least 2m− 1 nonnegative solutions to the BVP (1.2) are
obtained.

Throughout this paper, we assume that the following two conditions are satisfied.

(C1) f : [0,∞)→ [0,∞) is continuous.

(C2) a : [2,T]→ [0,∞) is not identical zero.

In order to obtain our main results, we need the following concepts and Leggett-
Williams fixed point theorem.

Let E be a real Banach space with cone P. A map α : P → [0,+∞) is said to be a non-
negative continuous concave functional on P if α is continuous and

α
(
tx+ (1− t)y

)≥ tα(x) + (1− t)α(y) (1.3)

for all x, y ∈ P and t ∈ [0,1]. Let a, b be two numbers such that 0 < a < b and let α be a
nonnegative continuous concave functional on P. We define the following convex sets:

Pa =
{
x ∈ P : ‖x‖ < a

}
,

P(α,a,b)= {x ∈ P : a≤ α(x), ‖x‖ ≤ b
}
.

(1.4)

Theorem 1.1 (Leggett-Williams fixed point theorem). Let A : Pc → Pc be completely con-
tinuous and let α be a nonnegative continuous concave functional on P such that α(x)≤ ‖x‖
for all x ∈ Pc. Suppose there exist 0 < d < a < b ≤ c such that

(i) {x ∈ P(α,a,b) : α(x) > a} 	= φ and α(Ax) > a for x ∈ P(α,a,b);
(ii) ‖Ax‖ < d for ‖x‖ ≤ d;
(iii) α(Ax) > a for x ∈ P(α,a,c) with ‖Ax‖ > b.

Then A has at least three fixed points x1, x2, x3 in Pc satisfying
∥
∥x1
∥
∥ < d, a < α

(
x2
)
,
∥
∥x3
∥
∥ > d, α

(
x3
)
< a. (1.5)

2. Main results

For convenience, we denote

G1(t,s)= 1
T

⎧
⎨

⎩

(t− 1)(T +1− s), 1≤ t ≤ s≤ T ,

(s− 1)(T +1− t), 2≤ s≤ t ≤ T +1,

G2(t,s)= 1
T +2

⎧
⎨

⎩

t(T +2− s), 0≤ t ≤ s≤ T +1,

s(T +2− t), 1≤ s≤ t ≤ T +2,
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D = max
t∈[0,T+2]

T+1∑

s=1
G2(t,s)

T∑

v=2
G1(s,v)a(v),

C = min
t∈[2,T]

T+1∑

s=1
G2(t,s)

T∑

v=2
G1(s,v)a(v).

(2.1)

It is easily seen from the expression of G2(t,s) that

G2(t,s)≤G2(s,s), (t,s)∈ [0,T +2]× [1,T +1],

G2(t,s)≥ 1
T +1

G2(s,s), (t,s)∈ [1,T +1]× [1,T +1].
(2.2)

Our main result is the following theorem.

Theorem 2.1. Assume that there exist numbers d, a, and c with 0 < d < a < (T + 1)a < c
such that

f (x) <
d

D
, x ∈ [0,d], (2.3)

f (x) >
a

C
, x ∈ [a, (T +1)a

]
, (2.4)

f (x) <
c

D
, x ∈ [0,c]. (2.5)

Then the BVP (1.2) has at least three nonnegative solutions.

Proof. Let the Banach space E = {x : [0,T +2]→ R} be equipped with the norm

‖x‖ = max
t∈[0,T+2]

∣
∣x(t)

∣
∣. (2.6)

We define

P = {x ∈ E : x(t)≥ 0, t ∈ [0,T +2]
}
, (2.7)

then it is obvious that P is a cone in E.
For x ∈ P, we define

α(x)= min
t∈[2,T]

x(t),

(Ax)(t)=
T+1∑

s=1
G2(t,s)

T∑

v=2
G1(s,v)a(v) f

(
x(v)

)
, t ∈ [0,T +2].

(2.8)

It is easy to check that α is a nonnegative continuous concave functional on P with α(x)≤
‖x‖ for x ∈ P and that A : P → P is completely continuous and fixed points of A are
solutions of the BVP (1.2).

We first assert that if there exists a positive number r such that f (x) < r/D for x ∈ [0,r],
then A : Pr → Pr .
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Indeed, if x ∈ Pr , then for t ∈ [0,T +2],

(Ax)(t)=
T+1∑

s=1
G2(t,s)

T∑

v=2
G1(s,v)a(v) f

(
x(v)

)

<
r

D

T+1∑

s=1
G2(t,s)

T∑

v=2
G1(s,v)a(v)

≤ r

D
max

t∈[0,T+2]

T+1∑

s=1
G2(t,s)

T∑

v=2
G1(s,v)a(v)= r.

(2.9)

Thus, ‖Ax‖ < r, that is, Ax ∈ Pr .
Hence, we have shown that if (2.3) and (2.5) hold, then A maps Pd into Pd and Pc

into Pc.
Next, we assert that {x ∈ P(α,a, (T + 1)a) : α(x) > a} 	= φ and α(Ax) > a for all x ∈

P(α,a, (T +1)a).
In fact, the constant function

(T +2)a
2

∈ {x ∈ P
(
α,a, (T +1)a

)
: α(x) > a

}
. (2.10)

Moreover, for x ∈ P(α,a, (T +1)a), we have

(T +1)a≥ ‖x‖ ≥ x(t)≥ min
t∈[2,T]

x(t)= α(x)≥ a (2.11)

for all t ∈ [2,T]. Thus, in view of (2.4), we see that

α(Ax)= min
t∈[2,T]

T+1∑

s=1
G2(t,s)

T∑

v=2
G1(s,v)a(v) f

(
x(v)

)

>
a

C
min
t∈[2,T]

T+1∑

s=1
G2(t,s)

T∑

v=2
G1(s,v)a(v)= a

(2.12)

as required.
Finally, we assert that if x ∈ P(α,a,c) and ‖Ax‖ > (T +1)a, then α(Ax) > a.
To see this, suppose x ∈ P(α,a,c) and ‖Ax‖ > (T +1)a, then in view of (2.2), we have

α(Ax)= min
t∈[2,T]

T+1∑

s=1
G2(t,s)

T∑

v=2
G1(s,v)a(v) f

(
x(v)

)

≥ 1
T +1

T+1∑

s=1
G2(s,s)

T∑

v=2
G1(s,v)a(v) f

(
x(v)

)

≥ 1
T +1

T+1∑

s=1
G2(t,s)

T∑

v=2
G1(s,v)a(v) f

(
x(v)

)

(2.13)
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for t ∈ [0,T +2]. Thus

α(Ax)≥ 1
T +1

max
t∈[0,T+2]

T+1∑

s=1
G2(t,s)

T∑

v=2
G1(s,v)a(v) f

(
x(v)

)

= 1
T +1

‖Ax‖ > 1
T +1

(T +1)a= a.

(2.14)

To sum up, all the hypotheses of the Leggett-Williams theorem are satisfied. Hence
A has at least three fixed points, that is, the BVP (1.2) has at least three nonnegative
solutions u, v, and w such that

‖u‖ < d, a < min
t∈[2,T]

v(t), ‖w‖ > d,

min
t∈[2,T]

w(t) < a.
(2.15)

The proof is complete. �

Corollary 2.2. Let m be an arbitrary positive integer. Assume that there exist numbers dj

(1 ≤ j ≤m) and ah (1 ≤ h ≤m− 1) with 0 < d1 < a1 < (T + 1)a1 < d2 < a2 < (T + 1)a2 <
··· < dm−1 < am−1 < (T +1)am−1 < dm such that

f (x) <
dj

D
, x ∈ [0,dj

]
, 1≤ j ≤m, (2.16)

f (x) >
ah
C
, x ∈ [ah, (T +1)ah

]
, 1≤ h≤m− 1. (2.17)

Then, the BVP (1.2) has at least 2m− 1 nonnegative solutions in Pdm .

Proof. We prove this conclusion by induction.
First, for m = 1, we know from (2.16) that A : Pd1 → Pd1 ⊂ Pd1 , then, it follows from

Schauder fixed point theorem that the BVP (1.2) has at least one nonnegative solution in
Pd1 .

Next, we assume that this conclusion holds form= k. In order to prove that this con-
clusion also holds for m = k + 1, we suppose that there exist numbers dj (1 ≤ j ≤ k + 1)
and ah (1 ≤ h ≤ k) with 0 < d1 < a1 < (T + 1)a1 < d2 < a2 < (T + 1)a2 < ··· < dk < ak <
(T +1)ak < dk+1 such that

f (x) <
dj

D
, x ∈ [0,dj

]
, 1≤ j ≤ k+1,

f (x) >
ah
C
, x ∈ [ah, (T +1)ah

]
, 1≤ h≤ k.

(2.18)

By the assumption, (2.18), we know that the BVP (1.2) has at least 2k− 1 nonnegative
solutions xi (i = 1,2, . . . ,2k − 1) in Pdk . At the same time, it follows from Theorem 2.1
and (2.18) that the BVP (1.2) has at least three nonnegative solutions u, v, and w in Pdk+1
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such that

‖u‖ < dk, ak < min
t∈[2,T]

v(t), ‖w‖ > dk,

min
t∈[2,T]

w(t) < ak.
(2.19)

Obviously, v and w are different from xi (i= 1,2, . . . ,2k− 1). Therefore, the BVP (1.2) has
at least 2k+1 nonnegative solutions in Pdk+1 , which shows that this conclusion also holds
form= k+1. The proof is complete. �
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