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In order to enlarge the set of boundary value problems on time scales, for which we can
use the lower and upper solutions technique to get existence of solutions, we extend this
method to the case when the pair lacks ordering. We use the degree theory and a priori
estimates to obtain the existence of solutions for the second-order Dirichlet boundary
value problems. To illustrate a wider application of this result, we conclude with an ex-
ample which shows that a combination of well- and nonwell- ordered pairs can yield the
existence of multiple solutions.

Copyright © 2006 Petr Stehlik. This is an open access article distributed under the Cre-
ative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

The method of lower and upper solutions is a widely used concept in the study of nonlin-
ear boundary value problems (further abbreviated by BVP). Three quarters of the century
after the pioneering work of Dragoni [8] this method still belongs among the basic tools
and is frequently employed in applied analysis or mechanics. Dragoni’s basic idea was to
transform the BVP with an unbounded right-hand side into a problem with a bounded
right-hand side (this transformation is possible thanks to the existence of lower and upper
solutions) and, in the second step, to show that a solution of the modified problem is also
a solution of the original problem. Together with the later introduced Nagumo conditions
for the derivative dependent right-hand sides this basic scheme forms the foundations of
this method.

On the other hand, the time scales calculus, with its concept to unify and extend dis-
crete and continuous worlds, is a recent idea (the seminal work is due to Hilger, see, e.g.,
[9]). In spite of this, this calculus is already broadly used. It is not surprising that, af-
ter the Schauder fixed point theorem for bounded right-hand sides, the lower and upper
solutions technique was used to investigate the problems with unbounded right-hand
sides. The first results for Dirichlet boundary conditions are due to Akin [2], or Bohner
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and Peterson [3, Section 6.6]. Later, similar statements were obtained also for periodic
conditions, see, for example, Cabada [5], Stehlik [12], or Topal [13].

The main drawback of the concept of lower and upper solutions, which often hinders
its practical application, is the assumption on their existence. Logical reaction to this
objection was a successful attempt to include also the case when the lower and upper
solutions do not satisfy the common ordering, that is, the lower solution is above the
upper solution in some points of the considered interval. The so-called nonwell-ordered
case for differential equations was first studied in 1970s, see, for example, Sattinger [11].

The traditional ways to deal with the nonwell-ordered pairs rely on the periodicity and
boundedness of trigonometric functions, properties of Fucik spectrum and the existence
of intersections of lower and upper solutions (for the survey on lower and upper solu-
tions, see, e.g., De Coster and Habets [6]). Unfortunately, one cannot straightforwardly
extend these concepts to the discrete or time scales context. Therefore, we avoid these
approaches by relying on the degree theory.

We recall the basic definitions and notations concerning time scales calculus, the reader
acquainted with the basic concepts (within the scope of the first chapters of Bohner and
Peterson [3, 4]) can jump over to (1.6).

Time scale T is an arbitrary nonempty closed subset of the real numbers R. The natural
numbers N, the integers Z, or the union of intervals [0,1] U [2,3] are the most natural
examples.

For t € T we define the forward jump operator o : T — T and the backward jump oper-
atorp:T — T by

o(t):==inf{seT:s>t}, o(t) :==supi{seT:s<t}, (1.1)

where we put inf @ = sup T and sup @ = inf T. We say that a point t € T is right-scattered,
left-scattered, right-dense, left-dense if a(t) > t, p(t) <t, o(t) = t, p(t) = t, respectively.
Moreover, we define the forward graininess function p: T — [0, 00) by

u(t):=o(t) —t. (1.2)
In the above references one can find the definition of the so-called delta-derivative x2,
which is equivalent to x" if T = R, or to Ax if T = Z. Similarly, several concepts of in-
tegration have been extended as well, ranging from Cauchy-Newton [3, Section 1.4] to
Henstock-Kurzweil [10] integration.
For the sake of clarity we introduce the closed time scale interval by

[a,b]T = [a,b] NT, (1.3)

with the note that other types of intervals are defined in the analogous way.
To simplify complicated formulae, we use the abridged notations

x(t) =x(a(t)),  x°(t) =x(p(1)). (1.4)
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We define an rd-continuous function as a function that is continuous in all right-dense
points and left-sided limits exist in left-dense points. The set of all rd-continuous func-
tions will be denoted by C.q. The set of twice differentiable functions whose second de-
rivative is rd-continuous will be denoted by C2,. Finally, we define the following function
space:

Clio([0,07(D)]y) := {x € Ciy : x(0) = x(07(1)) = 0}. (1.5)

For the sake of brevity, we often use C% , instead.
In this paper we consider a nonwell-ordered couple of lower and upper solutions for
the following Dirichlet BVP:

—x%(t) = f(,x°(t)) on[0,1]¢

x(0) = x(0(1)) = 0. (16)
The solution of (1.6) is a function x € C; , which satisfies the equation for all € [0,1]y.

We base our work on the existence theorems for the well-ordered case which are pre-
sented in Akin [2]. Therefore, we start, in Section 2, with a slight modification of one
of these results. Namely, we provide further information about the degree of the corre-
sponding operator.

Next, in Section 3, we use this extension to prove the existence in nonwell-ordered set-
ting. Aside from the degree theory, a priori estimate and the properties of first eigenvalue
and eigenfunction are our main tools. If f satisfies certain growth and limit conditions,
we obtain the existence of a solution. The similar approach for the p-Laplacian can be
found in Drébek et al. [7].

Finally, by combining these results we suggest how to acquire the existence of multiple
solutions. This idea is illustrated, in Section 4, on the existence of three solutions.

2. Well-ordered case

In this section we present the basic definitions and notations for lower and upper solu-
tions and we amend the existing results for well-ordered pairs. Let us first define lower
and upper solutions for BVP (1.6).

Definition 2.1. A function a € C%([0,0%(1)]r) is called a lower solution of (1.6) if

a(0) <0, a(o?(1)) <0,

2.1
—aP (1) < f(ta®) Vte[0,6%(1)];. (2.1)
Similarly, a function B € C%([0,0%(1)]7) is called an upper solution of (1.6) if
B0)=0,  B(d*(1) =0,
(2.2)

—B(H) = f(K47) VEe [0,6*(1)];

Next, let us define the ordering in C .
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Definition 2.2. A function x is strictly smaller than y (denoted by x <« y) if
x(t) < y(t) forte (0,6%(1))y, (2.3)

and the following conditions hold on the boundary:
(i) either x(0) < y(0), or x2(0) < y2(0), and
(i) either x(a2(1)) < y(a?(1)), or x*(a(1)) < y2(a(1)).

Using this ordering we can define an important subclass of lower and upper solutions.

Definition 2.3. A function « is a strict lower solution of (1.6) if

(i) « is a lower solution of (1.6),

(ii) every possible solution x of (1.6) satistying « < x satisfies & < x.
Reversing the above inequality we can get the corresponding definition of a strict upper
solution.

As usual, we introduce the solution operator T': Cry y — Cl; ; defined by

a(1)
Tx(t) = L U 669 f (5,2°(9) As (2.4)

where G(t,s) is a Green’s function for (1.6) with f(t,s) = 0 (see, e.g., [3, Corollary 4.76]).
At this stage, we are ready to state an expanded existence theorem.

THEOREM 2.4. Let f be a continuous function. Let a, 3 be lower and upper solutions, respec-
tively, for which o < 3 holds. Then the problem (1.6) has at least one solution x satisfying

a<x<f in[0,06*(1)]; (2.5)

Furthermore, if « and [ are strict and a < f3 holds, then there exists Ry > 0, such that for all
R >R

deg (I — T;Q4,0) =1, (2.6)
where
Q= {x € C4([0,0%(1)]y) 1« < x < B} N B(0,R). (2.7)

Proof. With the purpose of applying the Schauder fixed point theorem, Bohner and Pe-
terson, in [3, Theorem 6.54], define a modified right-hand side function by

f(t,ﬁ“(t))+%|ax(|t) if x> po(t),
ftx) =1 f(t,x) if a%(t) < x < (1), (2.8)
f(t,oc"(t))+%|:(|t) ifx < (1),

Using the continuity and boundedness of this function, it obtains the compactness of T
(defined by (2.4) with f replaced by f) and, consequently, fixed point x of this modified
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operator. Finally, one can show that a(t) < x(t) < (t) which implies that x is also the

fixed point of T defined by (2.4) and thus a solution of (1.6).

We define the constant Ry > 0 as a bound of operator T (the existence of this bound is

ensured by the definition of j?), that is, for each y € C% ; we have
ITDllez,, < Ro.
This guarantees the existence of an admissible homotopy:
H(r,x) =I(x) - tT(x) 7€0,1],
which implies the following equality of degrees:

deg (I — T;B(0,Ry),0) = deg (I;B(0,Ry),0) = 1.

Moreover, since « and f are strict, there is no solution of x = T"(x) with x(t) <

x(t) > B(t) for any t € (0,0%(1))y and we can deduce that
deg(I - T;Q1,0) = deg (I — T;B(0,Ry),0) = 1.
To conclude, the definition of Q; yields that

deg (I — T;Q4,0) = deg (I — T;Ql,o) =1.

3. Nonwell-ordered case

First of all, we recall the basic results concerning the eigenvalue problem:

—x"8(t) = Ax(t)  on [0,67(1)]y,
x(0) = x(0(1)) = 0.

Using the existing oscillation theorem we can prove this simple statement.

(2.9)

(2.10)

(2.11)

a(t) or

(2.12)

(2.13)

(3.1)

LemMMA 3.1. The first eigenvalue A, of (3.1) is positive and the corresponding eigenfunction

@1(t) >0 forall t € (0,02(1))r.

Proof. Obviously, (3.1) has only a trivial solution if A = 0. Now, let us suppose that A < 0 is
an eigenvalue. The corresponding eigenfunction ¢(¢) (or —¢(#)) must attain a maximum
in (0,0%(1))7. Let us suppose that m € (0,0%(1))r is the first point where the maximum

is attained. Let us distinguish between two cases.

(i) m is left-dense. In that case ¢**(m) < 0 and ¢*(m) = 0, which leads to the fol-

lowing contradiction:

0> ¢**(m) = 1¢° (m) = A(p(m) + u(m) g™ (m)) = Ap(m) > 0.

(3.2)
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(ii) m is left-scattered. This implies that x*(m) < 0 and x*(p(m)) >0 and we can
reach a contradiction by

B _ ¢%(m) — ¢ (o(m))
0 < Agp(m) = p**(o(m)) = o om) <0. (3.3)

The positivity of first eigenfunctions is the immediate consequence of oscillation theo-
rem, which is due to Agarwal et al. [1, Theorem 1] or Bohner and Peterson [3, Theorem
4.106). 0

At this stage, we are ready to prove the existence result also in the case when lower and
upper solutions are without ordering.

THEOREM 3.2. Let f be a continuous function satisfying that
(i) there are c,d > 0 such that

| f(t,9)] <c+dlsl, (3.4)
forallt € [0,1]y and for all s € R, and
(ii)
|}|l£rio@ =k (3.5)

Assume that a, B are lower and upper solutions and that there exists T € (0,02(1))y such
that

a(t) > B(7). (3.6)

Then (1.6) has at least one solution in

S:=1{xe Cfd,o :3¢, 1€ (0,02(1)) 1 : x(0) < (), x(n) >/3(11)}C'2d'°. (3.7)

If we define Q, := S N B(0,R) and assume that there is no solution on 0Q),, then there exists
Ry > 0 such that for all R > Ry:

deg (I — T;0y,0) = —1. (3.8)

Proof. We assume that there is no solution on dS (otherwise there is no reason to proceed
with the proof). For the sake of lucidity, we divide our proof into three parts.
(i) A priori estimate. First, let us prove that if we define f,: [0,1]y X R — R by

f(ty) if |yl <r,
fit,y):=1(1+r—1yl) f(t,y) ifr<l|yl<r+1, (3.9)
0 iflyl=r+1,
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then there exists K > 0 such that for any r > 0 and any solution x € S of

_xAA(t) = ff(taxg(t)) on [0,1]]{,
, (3.10)
x(0) = x(a*(1)) =0,
the following a priori estimate holds:
lxllcz,, <K (3.11)
As usual, we suppose that this assumption is not satisfied, that is, there exists a sequence

{ritpe, with 7 >0 and a corresponding sequence of solutions {xx};, satisfying
llxkllcz,, = k and solving

—xfA(t) = f, (x2(8))  on [0,1]7,

(3.12)
x(0) = x(0*(1)) = 0.
Defining yi := xi/ IkaIICﬁ0 and dividing (3.12) by [|xx ||c§d,0 we obtain
(X (t
—yBA(p) = JACEAG) on [0,1]1,
llxellez,, (3.13)

yk(0) = yk(a*(1)) = 0.

The boundedness of the sequence (clearly || yk”Cfdo = 1) and the compactness of T pro-
vide convergence (at least for a subsequence) to some y € Cry

yk—y inCh,. (3.14)

The condition (3.4) implies that for some sufficiently large ¢ = 0 the right-hand sides of
(3.13) are bounded by a constant (and thus integrable) function h(s) = d + € and, more-
over, using the limit assumption (3.5) we can get

Jo (b ®) _ fu (6 O) % ) (3.15)

Falle,  Ialle,

Thus the dominated convergence theorem (see Peterson, Thompson [10, Theorem 2.17]
for its most general form on time scales) yields that y solves the problem:

—y28(t) =M y(t) on[0,1]T,

y(0) = y(c?(1)) =0. (3.16)

Taking into account || y|| = 1 again we obtain that y is a nonzero multiple of the first
eigenfunction ¢(t) >0 for t € (0,02(1))y (see Lemma 3.1). If y is positive, then xi (t) — oo
for all t € (0,0%(1))7 which implies that there is kg € N such that for all k > ko there does
not exist & € (0,0%(1))y such that the inequality x¢(¢) < a(&) holds. Therefore xx ¢ S, a
contradiction.



8 Dynamic lower and upper solutions without ordering

Similarly, if y is negative, then there is k € N such that for all k > k; and for all 4 €
(0,02(1))7 we have x(17) < (1), a contradiction.

(ii) Construction of strict well-ordered lower and upper solutions. Let us consider an
arbitrary R > 0 satisfying

R >Ry := max{K,|lallclIfllc} +1, (3.17)
and the BVP (3.10) with r = R, that is,

—x"(t) = fr(t,x°(t)) on[0,1]y,

x(0) = x(0%(1)) = 0. (3.18)

We show that u:= —R — 2 and v := R+ 2 are lower and upper solutions of (3.18), respec-
tively. Obviously, u is a lower solution since

u(0) = —R—-2<0, u(o*(1)) = -R-2<0,

3.19
ubh(t) =0= fp(t,—-R-2), Vtel[0,1]. (3.19)

Now assume that u is not strict, that is, there exists m € (0,0%(1))y defined by
m:= min {f:x(t)=-R-2}. (3.20)

te(0,02(1))r

Again, we divide our reasoning into two parts.

(a) Let us suppose that m is left-dense. The minimality of x at m implies that x*(m) =
0 and the left-density of m provides the existence of € > 0 such that x(t) < —R—1
for all t € (m — &, m)7, that is, fr(t,x°(¢)) = 0 for these ¢. These two facts suggest
that x22(¢) = 0 for all t € [m, 1]. Thus x(c2(1)) = —R — 2 and x is not a solution
of (3.18), a contradiction.

(b) Now, we assume that m is left-scattered. Since x achieves its minimum first at 1,
we obtain the following two conditions:

x2(m) = 0, x*(o(m)) <O0. (3.21)
But this leads to the following contradiction:

x8(m) — x*(o(m))

— = AA =

> 0. (3.22)

Similarly, one can derive that v = R+ 2 is a strict supersolution of (3.18).
(iii) Computation of the degree. We define Tg : Cy g — Cry by

a(l)

Tr(x):= . G(t,s) fr(s,x7(s)). (3.23)

Obviously, if we find a fixed point xq of Tk, then X, is a solution of (3.18). If, moreover,
X0 € B(o,R), then xy is a solution of (1.6) as well since, thanks to the definition of f,



Petr Stehlik 9

v(t) = R+2

< Bt

— a(t)

iibé

; *u,(t) =R-2
Figure 3.1. Nonwell-ordered case.

operators T and Ty coincide on this ball. We define three sets by

Q) :={xe Crzd,o U< x < v},
Q= xeCa<x <) Qﬁ'—{xeCZ cu < x < f) (3.24)
o rd,0 * > u-= rd,0 * .

Clearly, O, Qﬁ, and Q, are pairwise disjoint subsets. Thus the properties of the degree
and the well-ordered result (Theorem 2.4) enable the following computation:
1 =deg(I — Tr;B(o,R) N Q},0)
=deg (I — Tgr;B(0,R) N Qﬁ,o) +deg (I — Tr;B(0,R) N Q),0) +deg (I — Tgr;,0)
=2+deg (I — Tr;Q2,0).

(3.25)

Therefore (T and Ty coincide on B(o, R)), we obtain the required result:
deg (I — T;0y,0) = —1. (3.26)
O

The statement of Theorem 3.2 and the strict pair u and v from its proof are illustrated
in Figure 3.1.

Remark 3.3. In contrast to Theorem 2.4, Theorem 3.2 gives less transparent information
about the existing solution. This is mainly due to the opaque structure of S (and conse-
quently of ;). In fact, we know only that there exists a bound R on the norm of this
solution (R is closer specified in the proof in (3.17)) and that there exist £, € (0,0%(1))7
such that x(&) < a(§) and x(n) > B(#), respectively.

With respect to this remark, we add one simple example to illustrate the above state-
ment.
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Example 3.4. Let us deal with T = (1/5)Z and a continuous function

M(y+5) if y < -5,
fty)=1-y(y=5)(y+5) if —5<y<5, (3.27)
M(y—=5) if y=5.

Clearly, )7 satisfies conditions (i) and (ii) of Theorem 3.2. Let us consider the correspond-
ing BVP:

7) . (3.28)

It is easy to verify that & and f defined by

1 2 3 4 6 7

t ° 5 5 5 3 L35 3

3 1 3 3

B 1 2 - -

a(t) 2 2 ;0
1 1 3 3 1 1

e i T T S S

are lower and upper solutions of (3.28). Obviously, for all t € [3/5,1]1 we have a(t) >
B(t). Therefore, we can apply Theorem 3.2 and claim that the problem (3.28) has a so-
lution x € C, . The only additional information about this solution is that there exist
&,n € [1/5,6/5]7 such that x(§) < a(&) and x(1) = B(y).

4. Multiple solutions

The combination of the results for well-ordered case and nonwell-ordered counterpart
opens the way for the existence of multiple solutions. As an example of such a process we
state a simple result for the existence of three solutions, which can be generalized to other
cases.

THEOREM 4.1. Let f satisfy the assumptions (i) and (ii) from Theorem 3.2. Assume that o,
and o, are lower solutions and 3, and B, are upper solutions of (1.6) which satisfy

[LEERSS ﬁla o < ﬁz, (41)
and assume that there exist T € (0,02(1))1 such that
(1) > fi(7). (4.2)

Then the problem (1.6) has at least three distinct solutions.
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Figure 4.1. Existence of three solutions.

Proof. First, we apply twice Theorem 2.4 to obtain the existence of solutions x; and x,
satisfying

o < x K [31, RS YIRS ﬁz. (43)

Furthermore, (4.2) allows us to apply Theorem 3.2 to obtain the existence of a solution
x3. Since x3 € S, we know that there exists &, € (0,02(1))y such that x3(§) < az(§) and
x3(17) = B1(#) and this implies that x3 is different to x;, x,. O

The statement of Theorem 4.1 and the solutions x;, i = {1,2,3}, from its proof are
illustrated in Figure 4.1.

Theorem 4.1 basically claims that if you have a nonwell-ordered couple and for each
function from this pair you are able to find a function with which it forms an ordered cou-
ple, you have at least three solutions. We illustrate this idea on the extension of Example
3.4.

Example 4.2. Let us assume that f, o, and f are defined as in Example 3.4. Obviously
a(t) = =5 and B(t) =5 are another lower and upper solutions of (3.28) (note that

f(t,+£5) = 0). Thus we can claim that the problem (3.28) has at least three distinct so-
lutions where x3 is described in Example 3.4, ¢ < x; < fand o < x, < f.
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