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Abel functional equations are associated to a linear homogeneous functional equation
with constant coefficients. The work uses the space S of continuous strictly monotonic
functions. Generalized terms are used, because of the space S, like composite function, it-
erates of a function, Abel functional equation, and linear homogeneous functional equa-
tion in Swith constant coefficients. The classical theory of linear homogeneous functional
and difference equations is obtained as a special case of the theory in space S. Equivalence
of points and orbits of a point are introduced to show the connection between the lin-
ear functional and the linear difference equations in S. Asymptotic behavior at infinity is
studied for a solution of the linear functional equation.
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1. Introduction

The linear functional equations are considered in the space of real-valued functions of
a real variable x ∈ �, � = (−∞,∞). The set N denotes the set of positive integers. The
set Z denotes integers, and the set R denotes real numbers. Symbol C0(�) is the set of
continuous functions on the interval �.

Definitions of the terms which we generalize in the space S can be found in [1–5].
In particular, we generalize the notions of iterates and linear homogeneous functional
equations with constant coefficients.

1.1. Definition of the space S. A function f ∈ C0(�) belongs to S if and only if it maps
the interval � one-to-one onto the interval (a,b), where a ∈ R or a = −∞, b ∈ R or
b =∞.

1.2.Multiplication in S. Let us choose in S an arbitrary function X , a so-called canonical
function, and let X∗ be the inverse function to X . Let F,G ∈ S. The composite function
H = FX∗G(x) will be called a product and denoted byH= F◦G.
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It is easy to show that H ∈ S. The set S with the operation of multiplication ◦ forms
a noncommutative group �, where the canonical function X is the neutral element. Fur-
ther, to each element F ∈ S there is an inverse element F−1 = XF∗X in �, where F∗ ∈ S is
the inverse function to F ∈ S.

Boldface promotion of symbols will be used to denote elements of �. Then F,G ∈ S
correspond to F,G∈� and �-multiplication is defined by composition:

F◦G(x)≡ F
(
X∗
(
G(x)

))
. (1.1)

If f ∈ C0(�), Φ ∈ S, then the product f ◦Φ(x) (not necessarily in �) is defined to be
the composite function f (X∗(Φ(x)))∈ C0(�). In general, f is not one-to-one; boldface
promotion of f is disallowed, because f �∈ S.

1.3. Iteration in S. Let X ∈ S be the canonical function. Let Φ ∈ S. The iterates of the
function Φ in S are given by group operations as follows:

Φ0(x)= X(x),

Φn+1(x)=Φ◦Φn(x), x ∈�, n= 0,1,2, . . . ,

Φn−1(x)=Φ−1 ◦Φn(x), x ∈�, n= 0,−1,−2, . . . ,
(1.2)

where Φ−1 is the inverse element to the element Φ in S according to multiplication ◦ in
group �.

2. Linear functional equations of the kth order with constant coefficients

Let aj ∈R, j = 0,1,2, . . . ,k. Then the equation

ak f ◦Φk(x) + ak−1 f ◦Φk−1(x) + ···+ a1 f ◦Φ1(x) + a0 f ◦Φ0(x)= 0 (2.1)

in S is called a linear homogeneous functional equation of kth order with constant coef-
ficients. The coefficients are the constants aj , j = 0,1,2, . . . ,k. It is assumed that ak �= 0.
A solution of (2.1) is a function f ∈ C0(�) that satisfies the equation for all x. It is not
assumed that f is one-to-one.

Let g(x)= X(x+1) and let Φ∈ S. The generalized Abel functional equation

α ◦Φ(x)= g ◦α(x) (2.2)

is called the associated functional equation to (2.1). A solution of (2.2) is a function α∈ S
such that (2.2) holds for all x.

The algebraic equation

akλ
k + ak−1λk−1 + ···+ a1λ+ a0 = 0 (2.3)

is called the characteristic equation of (2.1). The left side of (2.3) is called the characteristic
polynomial of (2.1).
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Theorem 2.1. Let (2.1) be given. Let λ1,λ2, . . . ,λk be simple positive roots of the characteris-
tic equation (2.3). Let α be a continuous solution of the associated Abel functional equation
(2.2). Then the functions

f1 = λX
∗α(x)

1 , f2 = λX
∗α(x)

2 , . . . , fk = λX
∗α(x)

k , (2.4)

are linearly independent solutions of (2.1).

Proof. Functions (2.4) have the form

f = λX
∗α(x), (2.5)

where α ∈ S is a solution of the Abel equation (2.2) and X∗α(x) denotes the composite
function X∗(α(x)). Substitute (2.5) into (2.1), then

k∑

n=0
anλ

X∗α◦Φn(x) = 0. (2.6)

Abel functional equation (2.2) implies

X∗α◦Φn(x)= X∗X
(
X∗α(x) +n

)= X∗α(x) +n, (2.7)

n= 0,1,2, . . . ,k, and then

λX
∗α(x)

[ k∑

n=0
anλ

n

]

= 0. (2.8)

Thus the function (2.5) is a solution of (2.1) if λ is a root of the characteristic equation
(2.3). Roots of the characteristic equation have to be positive for the functions (2.5) to be
defined.

To show the solutions (2.4) are linearly independent, consider a linear combination
c1 f1(x) + ··· + ck fk(x) = 0 for all x. Choose samples x = X∗(x0), x = X∗(Φ(x0)), x =
X∗(Φ2(x0)), and so forth, and form the matrix equation Ac = 0 for the coefficients c,
using the sampling matrix

A=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

f1 ◦Φ0(x0
)

f2 ◦Φ0(x0
) ··· fk ◦Φ0(x0

)

f1 ◦Φ1(x0
)

f2 ◦Φ1(x0
) ··· fk ◦Φ1(x0

)

...
...

...
...

f1 ◦Φk−1(x0
)

f2 ◦Φk−1(x0
) ··· fk ◦Φk−1(x0

)

⎞

⎟
⎟
⎟
⎟
⎟
⎠
. (2.9)

Abel equation can be used to show that det(A) �= 0 for any x0 in �. The idea is born
from the relation fr ◦Φn(x) = fr(x)λnr and the theory of Vandermonde determinants.
Therefore, c= 0 and the functions are independent. The proof is complete. �

Automorphic functions. A function p ∈ C0(�) is called automorphic over Φ provided
p = p ◦Φ. While constant functions are automorphic with respect to any Φ, there are
examples of nonconstant automorphic functions. One such is p(x) = sin(π(x− n)) on
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n≤ x < n+1, which satisfies p(x)= p(x+1) or p = p ◦Φ forΦ(x)= x+1. Others can be
constructed from this example.

Theorem 2.2. Let (2.1) be given having solution f0. Let p be a continuous automorphic
function, p = p ◦Φ. Then f (x)= p(x) f0(x) is also a solution of (2.1).

A more general solution is of the form

c1 f1 + c2 f2 + ···+ ck fk, (2.10)

where c1,c2, . . . ,ck are automorphic functions over Φ and f1, . . . , fk are solutions of (2.1).

Proof. The details to show f0 satisfies (2.1) are as follows:

k∑

n=0
an
(
p f0
)◦Φn(x)=

k∑

n=0
an
(
p ◦Φn(x)

)(
f0 ◦Φn(x)

)

=
k∑

n=0
an
(
p(x)

)(
f0 ◦Φn(x)

)

= p(x)
k∑

n=0
an
(
f0 ◦Φn(x)

)

= 0.

(2.11)

The proof is complete. �

Theorem 2.3. Let (2.1) be given. Let λ0 be a positive real root of characteristic equation
(2.3), of multiplicity s, 1≤ s≤ k. Let α(x) be a continuous solution of Abel functional equa-
tion (2.2) and let X∗ be the inverse function to canonical function X . Then the functions

fr =
(
X∗α(x)

)r
λX

∗α(x)
0 , 0≤ r < s, (2.12)

are independent solutions of (2.1).

Proof. Let p(λ) denote the characteristic polynomial. Assume for the first part of the

proof that X is the identity map. Define f (x) = (α(x))rλα(x)0 . The following lemmas will
be applied to complete the proof.

Lemma 2.4. If L= λ(d/dλ), then Lq(p(λ))=∑k
n=0nqanλn for q ≥ 0.

Lemma 2.5. If λ= λ0 and 0≤m≤ r < s, then
∑k

n=0nr−manλn = 0.
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Lemma 2.6. {(α(x))rλα(x)0 }s−1r=0 are independent if and only if the powers {(α(x))r}s−1r=0 are
independent.

Lemma 2.7. Let tn = α(x0) +n. Define matrix

A=

⎛

⎜
⎜
⎜
⎜
⎝

1 t1 ··· ts−11

1 t2 ··· ts−11
...

...
...

...
1 ts ··· ts−1s

⎞

⎟
⎟
⎟
⎟
⎠
. (2.13)

Then det(A) �= 0 and the powers of Lemma 2.6 are independent.

The proofs of the lemmas: for Lemma 2.4 use induction on q. For Lemma 2.5 the left
side of the equation is Lq(p(λ)) for q = r−m≥ 0. Apply Lemma 2.4. Expand Lq(p(λ)) by
calculus to verify that being zero at λ= λ0 is possible because the derivatives (d/dλ)np(λ)
are zero at λ = λ0 for 0 ≤ r < s, due to multiplicity of the root λ0. For Lemma 2.6 write

down a linear combination equal to zero. Cancel λα(x)0 . For Lemma 2.7 the determinant is
a Vandermonde determinant, known to be nonzero for distinct sample values t1, . . . , ts.
The connection to the Abel equation is made by choosing sample values x = x0, x =
Φ(x0), and so forth, in the linear combination c1 + c2α(x) + ··· + cs(α(x))s−1 = 0, and
then writing the system Ac= 0 for vector c to show c= 0.

The proof that functions (2.12) satisfy the equation proceeds by inserting f into (2.1).

The binomial formula (a+ b)r =∑r
m=0

(
r
m

)
ambr−m is applied to give

k∑

n=0
an f ◦Φn(x)=

k∑

n=0
an
(
α(x) +n

)r
λα(x)+n0

=
( r∑

m=0

(
r

m

)( k∑

n=0
nr−manλn0

)
(
α(x)

)m
)

λα(x)0

=
( r∑

m=0

(
r

m

)

(0)
(
α(x)

)m
)

λα(x)0

= 0,

(2.14)

the last step is justified by Lemma 2.5.
Independence follows directly from Lemmas 2.6 and 2.7. The details of proof for gen-

eral X parallel the above steps, essentially replacing α by X∗α. The proof is complete. �

Theorem 2.8. If the characteristic equation (2.3) has conjugate complex roots λ1 = λ̄2 =
r(cosω+ isinω), then the corresponding linear homogeneous functional equation possesses
two solutions in the form

f1 = rX
∗α(x) cos

(
ωX∗α(x)

)
, f2 = rX

∗α(x) sin
(
ωX∗α(x)

)
. (2.15)

The proof is left to the reader.
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3. An application

Let S be the space of all continuous functions which map the interval (−∞,∞) one-to-
one onto itself. Let the canonical function be X(x) = x (identity), then X∗(x) = x. Let
Φ(x)= x+1. The Abel functional equation is then

α(x+1)= α(x) + 1. (3.1)

A linear homogeneous functional equation with constant coefficients is

ak fΦ
k(x) + ak−1 fΦk−1(x) + ···+ a1 fΦ

1(x) + a0, fΦ0(x)= 0, (3.2)

where fΦ j(x) is a composite function f (Φ j(x)), j = 1,2, . . . ,k, and Φ j is defined by suc-
cessive composition. Suppose λ > 0 is a root of the characteristic equation. By the theo-
rems above, it has a solution of the form

f = λα(x), (3.3)

where α satisfies Abel equation (3.1).
Linear system (3.2) is a linear difference equation with constant coefficients of the

form

ak f (x+ k) + ak−1 f (x+ k− 1)+ ···+ a1 f (x+1)+ a0 f (x)= 0, (3.4)

becauseΦ(x)= x+1. Abel equation (3.1) has a solution α(x)= x. If λ is a positive root of
the characteristic equation, then the function f = λx is a solution of (3.4).

3.1. Equivalence of points in �, orbit of a point in S. Let Φ∈ S. Two points x, y ∈� are
Φ-equivalent if and only if there are numbers μ,ν∈ Z such that

Φμ(x)=Φν(y). (3.5)

The equivalence is reflexive, symmetric, and transitive. It means that there is a decompo-
sition of the set � into disjoint sets of equivalent points.

The set OΦ(x0) of all points Φ-equivalent to a point x0 ∈ J is called the Φ-orbit of the
point x0.

For the classical difference equation (3.4), in which X(x) = X∗(x) = x and Φ(x) =
x+1, the orbit of 0 is the set Z of integers and the orbit of x0 is the translate of this set by
x0: OΦ(x0)= {x0 +μ}∞μ=−∞.
Lemma 3.1. Let x0 ∈�, μ,ν∈ Z. Let

xμ = X∗Φμ
(
x0
)
. (3.6)

Then the set of points {xμ}∞μ=−∞ is the Φ-orbit of the point x0.
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Proof. Because Φ0 = X and xμ ∈ �, then x0 = X∗Φ0(x0). Let p,q ∈ Z. To show that each
two points xp, xq defined by (3.6) are Φ-equivalent in �, we will show that there are
numbers μ,ν∈ Z such that

Φμ(xp
)=Φν(xq

)
. (3.7)

Use formula (3.6) to show that (3.7) is equivalent to

Φμ(X∗
(
Φp(x0

)))=Φν(X∗
(
Φq(x0

)))
. (3.8)

The definition of multiplication ◦ implies the above is equivalent to

Φμ+p(x0
)=Φν+q(x0

)
. (3.9)

Choose μ= q, ν= p to obtain (3.7). �

3.2. Behavior of solutions at infinity. Consider a linear homogeneous kth-order func-
tional equation with constant coefficients (2.1). Let the characteristic equation (2.3) have
roots satisfying

λ1 > λ2 > ··· > λk > 0. (3.10)

Let α ∈ S be a solution of the Abel functional equation (2.2) and let X∗ be the inverse
function to canonical function X . Assume c1, . . . ,ck are continuousΦ-automorphic func-
tions on J , that is, cj = cj ◦Φ. Then a solution of (2.1) is given by

f (x)= c1(x)λ
X∗α(x)
1 + c2(x)λ

X∗α(x)
2 + ···+ ck(x)λ

X∗α(x)
k . (3.11)

The right side of (3.11) can be rearranged into the expression

f (x)= λX
∗α(x)

1

[

c1(x) + c2(x)
(
λ2
λ1

)X∗α(x)
+ ···+ ck(x)

(
λk
λ1

)X∗α(x)]

. (3.12)

The inequalities

0 <
λj

λ1
< 1, j = 2,3, . . . ,k, (3.13)

imply

lim
x→∞cj(x)

(
λj

λ1

)X∗α(x)
= 0. (3.14)

Formally, at least,

lim
x→∞ f (x)= lim

x→∞c1(x)λ
X∗α(x)
1 . (3.15)
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We will discuss the meaning of (3.15). The following situations can occur.
(1) If λ1 > 1, then limx→∞ f (x)=∞, because limx→∞X∗α(x)=∞.
(2) If λ1 = 1, then limx→∞ f (x) does not generally exist.
(3) If λ1 < 1, then limx→∞ f (x)= 0, because limx→∞X∗α(x)=∞.

Consider (2.1) on the Φ-orbit of a point x0 ∈�. Then sequences

{
λX

∗αX∗Φn(x0)
1

}
,
{
λX

∗αX∗Φn(x0)
2

}
, . . . ,

{
λX

∗αX∗Φn(x0)
k

}
(3.16)

are the solutions evaluated along the Φ-orbit. Because α ∈ S satisfies Abel functional
equation (2.2), then the sequences can be written in the form

{
λα(x0)+n1

}∞
n=1,

{
λα(x0)+n2

}∞
n=1, . . . ,

{
λα(x0)+nk

}∞
n=1. (3.17)

Therefore, we have a solution formula

f
(
x0 +n

)= c1
(
x0
)
λα(x0)+n1 + c2

(
x0
)
λα(x0)+n2 + ···+ ck

(
x0
)
λα(x0)+nk . (3.18)

Using the ideas above, the limits at infinity are determined as follows.

(1) If λ1 > 1, then {λα(x0)+n1 } diverges to∞ and limn→∞ f (x0 +n)=∞.

(2) If λ1 = 1, then {λα(x0)+n1 } is a constant sequence of ones and the sequence {c1(x0)
λα(x0)+n1 } is a constant sequence of numbers c1(x0). Hence limn→∞ f (x0 + n) =
c1(x0).

(3) If 0 < λ1 < 1, then the sequence {c1(x0)λα(x0)+n1 } is a decreasing sequence conver-
gent to zero and limn→∞ f (x0 +n)= 0.

Note 3.2. The limit for x→ −∞ can be determined using the same techniques of analysis.

Note 3.3. The results for behavior of solutions for difference equations can be obtained
from the results for (2.1). The idea is to evaluate along the orbit OΦ(x0), x0 ∈�.
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