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The oscillation and asymptotic behavior of the higher-order delay difference equation
Δlxn +

∑m
i=1pi(n)xn−ki = 0, n = 0,1,2, . . . , are investigated. Some sufficient conditions of

oscillation and bounded oscillation of the above equation are obtained.
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1. Introduction

Consider the following delay difference equation:

�lxn +
m∑

i=1
pi(n)xn−ki = 0, n= 0,1,2, . . . , (1.1)

and its first-order corresponding inequality

�xn +
m∑

i=1
pi(n)xn−ki ≤ 0, n= 0,1,2, . . . , (1.2)

where {pi(n)} are sequences of nonnegative real numbers and not identically equal to
zero, and ki is positive integer, i = 1,2, . . . , and � is the first-order forward difference
operator,�xn = xn+1− xn, and�lxn =�l−1(�xn) for l ≥ 2.

By a solution of (1.1) or inequality (1.2), we mean a nontrival real sequence {xn}
satisfying (1.1) or inequality (1.2) for n ≥ 0. A solution {xn} is said to be oscillatory if
it is neither eventually positive nor eventually negative and nonoscillatory otherwise. An
equation is said to be oscillatory if its every solution is oscillatory.

The oscillatory behavior of difference equations has been intensively studied in recent
years. Most of the literature has been concerned with equations of type (1.1) with l = 1
(see [1–10] and references cited therein). But very little is known regarding the oscillation
of higher-order difference equation similar to (1.1). The purpose of this paper is to study
the oscillatory properties of (1.1).
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2. Main results

We need the following several lemmas in order to prove our results.

Lemma 2.1 [5, 8]. Assume that

liminf
n→∞

m∑

i=1

(
ki +1
ki

)ki+1 n+ki∑

s=n+1
pi(s) > 1, (2.1)

or

limsup
n→∞

m∑

i=1

n+ki∑

s=n
pi(s) > 1. (2.2)

Then inequality (1.2) has no eventually positive solution.

Lemma 2.2 [1]. Let xn be defined for n ≥ n0 and xn > 0 with �lxn eventually of one sign
and not identically zero. Then there exist an integer j, 0≤ j ≤ l with (l+ j) odd for�lxn ≤ 0
and (l+ j) even for�lxn ≥ 0 and an integer N ≥ n0, such that for all n≥N ,

j ≤ l− 1=⇒(−1) j+i�ixn > 0, j ≤ i≤ l− 1,

j ≥ 1=⇒�ixn > 0, 1≤ i≤ j− 1.
(2.3)

Specially, if�lxn ≤ 0 for n≥ n0, and {xn} is bounded, then

(−1)i+1�l−ixn ≥ 0, ∀ large n≥ n0, i= 1, . . . , l− 1,

lim
n→∞�

ixn = 0, 1≤ i≤ l− 1.
(2.4)

Lemma 2.3 [1]. Let xn be defined for n≥ n0, and xn > 0 with�lxn ≤ 0 for n≥ n0 and not
identically zero. If xn is increasing, then there exists a large integer n1 ≥ n0 such that

xn ≥ 22−2l

(l− 1)!
n(l−1)�l−1xn, ∀n≥ 2ln1. (2.5)

Specially,

xn ≥ θ

(l− 1)!
nl−1�l−1xn, for sufficiently large n, (2.6)

where 0 < θ < 1with limn→∞ θ = 1, and n(t) = n(n− 1)···(n− t+1), for every nonnegative
integer t, and n(0) = 1.

Theorem 2.4. Assume that

liminf
n→∞

m∑

i=1

(
ki +1
ki

)ki+1 n+ki∑

s=n+1
pi(s) > (l− 1)!. (2.7)

Then every solution xn of (1.1) oscillates, or xn→ 0 (n→∞).
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Proof. Assume, for the sake of contradiction, that {xn} is an eventually positive solution
of (1.1), then there exists a positive integer N1 such that

xn > 0, xn−ki > 0, i= 1, . . . ,m, n≥N1. (2.8)

Thus,

�lxn =−
m∑

i=1
pi(n)xn−ki ≤ 0, n≥N1, (2.9)

and�lxn 	≡ 0.
By Lemma 2.2,�ixn are eventually of one sign for every i∈{1, . . . , l− 1} and�l−1xn>0

holds for large n, and there exist two cases to consider: (1)�xn > 0 and (2)�xn < 0.
Case 1. This says that xn is increasing. Setting k =max{k1, . . . ,km}, by Lemma 2.3, there
exists an integer N2 ≥max{k,N1} such that

xn ≥ θ

(l− 1)!
nl−1�l−1xn, n≥N2, (2.10)

xn−ki ≥
θ

(l− 1)!

(
n− ki

)l−1�l−1xn−ki

≥ θ

(l− 1)!
(n− k)l−1�l−1xn−ki , i= 1, . . . ,m, n≥N2,

(2.11)

where 0 < θ < 1 and limn→∞ θ = 1.
Letting yn =�l−1xn, we have

yn > 0, yn−ki > 0, i= 1, . . . ,m, n≥N2, (2.12)

which implies that

�yn +
m∑

i=1
pi(n)xn−ki = 0, n≥N2. (2.13)

By (2.11), we get

xn−ki ≥
θ

(l− 1)!
(n− k)l−1yn−ki , i= 1, . . . ,m, n≥N2,

≥ θ

(l− 1)!
yn−ki , i= 1, . . . ,m, n≥N2.

(2.14)

It follows that

�yn +
m∑

i=1
p̃i(n)yn−ki ≤ 0, n≥N2, (2.15)

where p̃i(n)= (θ/(l− 1)!)pi(n), whichmeans that inequality (2.15) has an eventually pos-
itive solution.
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On the other hand, condition (2.7) implies that

liminf
n→∞

m∑

i=1

(
ki +1
ki

)ki+1 n+ki∑

s=n+1
p̃i(s)

= liminf
n→∞

θ

(l− 1)!

m∑

i=1

(
ki +1
ki

)ki+1 n+ki∑

s=n+1
pi(s) > 1.

(2.16)

By Lemma 2.1, (2.15) has no eventually positive solution. This is a contradiction.
Case 2. Note that by Lemma 2.2, the case that l is even is impossible. In what follows, we
only consider the case that l is odd. Case 2 says that xn is monotone and bounded, and so
xn converges a constant a. By Lemma 2.2, we get

(−1)i+1�l−ixn > 0, i= 1, . . . , l− 1, ∀ large n≥N1, (2.17)

lim
n→∞�

l−1xn = 0. (2.18)

By (2.18), there exists an integer N3 ≥N1 such that

0≤�l−1xn ≤ ε, for any ε > 0, n≥N3. (2.19)

It is obvious that a≥ 0. If a= 0, then the problem is solved. We can assume that a > 0 in
the sequel, which implies that there exists an integer N4 ≥N3 such that

xn >
1
2
a, xn−ki >

1
2
a, i= 1,2, . . . ,m, n≥N4. (2.20)

Thus, (1.1) implies that

�lxn +
a

2

m∑

i=1
pi(n)≤ 0, n≥N4. (2.21)

Summing both sides of (2.21) from N4 to n, we obtain

�l−1xn+1−�l−1xN4 +
a

2

n∑

s=N4

m∑

i=1
pi(s)≤ 0, n≥N4. (2.22)

Letting n→∞, we have

a

2

m∑

i=1

n∑

s=N4

pi(s)≤ ε, for large n. (2.23)

On the other hand, condition (2.7) says that there exists an integer N5 ≥N4 such that

m∑

i=1

(
ki +1
ki

)ki+1 n+ki∑

s=n+1
pi(s) >

(l− 1)!
2

, n≥N5. (2.24)
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Noting that ((ki +1)/ki)ki+1 ≤ 2e, we have

a

2

m∑

i=1

n+ki∑

s=n+1
pi(s) >

a(l− 1)!
8e

, for large n, (2.25)

which contradicts (2.23) and (2.25). The proof is completed. �

Similar to the proof of Theorem 2.4, we have Theorem 2.5.

Theorem 2.5. Assume that

limsup
n→∞

m∑

i=1

n+ki∑

s=n
pi(s) > (l− 1)!. (2.26)

Then every solution xn of (1.1) is oscillatory, or xn→ 0 (n→∞).

In fact, in the proof of Theorem 2.4, the condition (2.26) implies that (2.25) always
holds and (2.16) is changed into the following inequality:

limsup
n→∞

m∑

i=1

n+ki∑

s=n
p̃i(s) > 1. (2.27)

The rest of proof is the same as the proof of Theorem 2.4.

Theorem 2.6. Assume that l is even, and the following condition holds:

liminf
n→∞

m∑

i=1

(
ki +1
ki

)ki+1 n+ki∑

s=n+1
sl−1pi(s) > (l− 1)!. (2.28)

Then every bounded solution xn of (1.1) oscillates.

Proof. Assume, for the sake of contradiction, that xn is an eventually positive bounded
solution of (1.1). According to the proof of Theorem 2.4, there exists a positive integerN1

such that (2.8) and (2.9) hold. By Lemma 2.2, we have

�xn > 0, (2.29)

which implies that xn is increasing. In view of the proof of Theorem 2.4, there exists an
integer N2 ≥N1 such that

xn−ki ≥
θ

(l− 1)!
(n− k)l−1yn−ki , i= 1, . . . ,m, n > N2, (2.30)

where k =max{k1, . . . ,km}, 0 < θ < 1 with limn→∞ θ = 1. It follows that

�yn +
m∑

i=1
p̃i(n)yn−ki ≤ 0, n≥N2, (2.31)

where p̃i(n)= (θ/(l− 1)!)(n− k)l−1pi(n), yn =�l−1xn, which implies that (2.31) has an
eventually positive solution.
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On the other hand, condition (2.28) implies that

liminf
n→∞

m∑

i=1

(
ki +1
ki

)ki+1 n+ki∑

s=n+1
p̃i(s)

= liminf
n→∞

θ

(l− 1)!

m∑

i=1

(
ki +1
ki

)ki+1 n+ki∑

s=n+1
(s− k)l−1pi(s) > 1.

(2.32)

By Lemma 2.1, (2.31) has no eventually positive solution. This contradiction completes
the proof. �

Similarly, we have Theorem 2.7.

Theorem 2.7. Assume that l is even, and the following condition holds:

limsup
n→∞

m∑

i=1

n+ki∑

s=n
sl−1pi(s) > (l− 1)!. (2.33)

Then every bounded solution xn of (1.1) oscillates.

Corollary 2.8. Assume that l is even. If (2.7) or (2.26) holds, then every bounded solution
of (1.1) oscillates.

In fact, (2.7) implies that (2.28) holds and (2.26) implies that (2.33) holds.
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