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Essentially nonlinear difference equations in a Euclidean space are considered. Condi-
tions for the existence of periodic solutions and solution estimates are derived. Our main
tool is a combined usage of the recent estimates for matrix-valued functions with the
method of majorants.
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1. Introduction and notation

Periodic solutions of difference equations in Euclidean and Banach spaces have been con-
sidered by many authors, see, for example, [1-3, 5-10, 12] and the references therein.
Mainly equations with separated linear parts and scalar equations were investigated. In
this paper, we consider essentially nonlinear systems in a Euclidean space. We prove the
existence of periodic solutions and derive the estimates for their norms.

Let C" be the set of all complex n-vectors with an arbitrary norm || - ||, I is the unit
matrix, Rs(A) denotes the spectral radius of a matrix A, and

Qr)=1{zeC": |zl <r}. (1.1)
Consider in C” the equation
x(t+1) = B(x(t),t)x(t) + F(x(t),t) (t=0,1,2,...), (1.2)

where F(-,t) continuously maps Q(r) into C", and B(z,t) are n X n-matrices continuous
in z € Q(r) and dependenton t = 0, 1,.... In addition, F(v,t) and B(v,t) are periodic in

F(z,t) =F(z,t+T) (z€Q(r); t=0,1,...),
(1.3)
B(z,t) =B(z,t+T) (z€Q(r); t=0,1,...)
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2 Periodic solutions of nonlinear vector difference equations

for some positive integer T'. It is also assumed that there are nonnegative constants v and
p 8 8
4, such that

[|[F(z,t)|| <lzll+pu  (z€ Q(r), t=0,1,2,...,T - 1). (1.4)
Denote by w(r, T) the set of the finite sequences h = {v(k)},{;o1 whose elements v(k) belong
to Q(r).
Foranh = {v(k)},{:o e w(r,T), put

Un(t,s) =B(v(t—1),t —1)B(v(t —2),t —=2) - - - B(v(s),s),

1.5
Un(t,t) =1 (0<s<t=<T) (1.5)
and assume that
I—U,(T,0) is invertible Vh e w(r,T). (1.6)
2. Statement of the main result
THEOREM 2.1. Under conditions (1.3)—(1.6), with the notation
T-1 B
M(r,T) = sup S |Uw(k,0)(I = Uy(T,0)) " Up(T, j+1)|]
hew(r,T); k=0,...,T—1 j=0
. (2.1)
+ > |Un(k, j + 1]
=0
suppose that
M(r,T)(vr+p) <r. (2.2)

Then system (1.2) has a T-periodic solution. Moreover, that periodic solution satisfies the
estimates

yM(r,T)

..... 1—vM(r,T) <r (2.3)

We remark that if F(0,t) # 0 for some t in {0,1,...,T — 1}, then the solution found in
the above theorem cannot be trivial.
For instance, let

l[B(z,t)|]|<g<1 (z€Q(r), t=0,...,T—1). (2.4)

Then ||Up(k, j)Il < ¢*7 and

1
—qT

1= UW(T,0) || = 5 (2.5)



Therefore
Til | kil . Til 1 24" T-1
M(r,T) < 76]T7j71+max q -t < qj( +1) = qj'
ml-at ki o -4t 1-9" 5
(2.6)
But
T-1 T
R
>q= T (2.7)
j=0 1
Thus
2 T
M(r,T) = 5 4 (2.8)
Now Theorem 2.1 implies the following corollary.
CoROLLARY 2.2. Under conditions (1.3)—(1.4) and (2.4), suppose that
_ T
(rv+p) 21 _q <r. (2.9)

Then system (1.2) has a T-periodic solution. Moreover that periodic solution satisfies the
estimates

T
= #2-a) (2.10)
j=0,1,T~1 1-g-v(2-47)

3. Proof of Theorem 2.1

To achieve our goal, let us first consider the nonhomogeneous periodic problem

y(t+1)=B(v(t),t)y(t)+ f(t), t=0,1,....,T—1 (3.1)
y(0) = y(T), (3.2)

where {f(t)},{;o1 is a given sequence in C" and h = {v(#)} € w(r, T). Thanks to the Vari-
ation of constants formula, solution of (3.1) is given by

k-1
y(k) = Up(k,0)p(0)+ > Upk = 1,j + 1) f(j), k=1,..,T. (3.3)
=0
Thus, the periodic boundary value problem (3.1), (3.2) has a solution provided

T-1
y(0) = y(T) = Up(T,0)y(0) + > U(T,j+1)f(j), (3.4)
i=0
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or

T-1
$(0) = (I - Up(T,0)) " > U(T,j+ 1) f(j), (3.5)
j=0

and in such a case, this solution is given by

T-1 k-1
(k) = Up(k,0)(I = Un(T,0) " X" Un(T,j+ DG+ X, Unlks j+ DF()y k=1,...,T,
j=0 =0
(3.6)
and thus its maximum norm satisfies the inequality
inax, ly(HOI < M(r, T>j:0{11}§§_1 LF DI (3.7)

Let us consider the nonlinear periodic problem (1.2), (3.2).

LemMma 3.1. Under conditions (1.4), (1.6), and (2.2), the periodic problem (1.2), (3.2) has
at least one solution {x(t)}_, € w(r, T). Moreover, that solution satisfies estimates (2.3).

Proof. For an arbitrary h = {v(¢)} € w(r,T), define a mapping Z by

T-1
(Zh)(k) = Un(k,0)(I = Up(T,0)) " 3" Un(T, j+1F(v(j), )
j=0
k-1 (3.8)
+> Unlk,j+ DF(v(j),j), k=0,...,T 1.
j=0
Due to (2.2),
jax IZh (Il = max [IF(v(8),0)||M(r,T)
(3.9)

< <v max ||v(j)||+y)M(r,T) <vr+u.
j=0,T—1

So Z continuously maps w(r,T) into itself. By Browder’s fixed point theorem, Z has a
fixed point x € w(r, T), cf. [11]. It is easily checked that the point is the desired solution
of problem (1.2), (3.2).

Furthermore, if {x(t)}_, € w(r, T) is a solution of (1.2), (3.2), then in view of (3.7)
and (1.4), we will have the relations

max [lx(i)ll < _max  [[FG(0), D)IM(r,T) < (ngg;fT||x(1)ll +#>M(n 1),
(3.10)
which implies (2.3), since under (2.2) vM(r, T) < 1. The proof is complete. O

Assertion of Theorem 2.1 follows from the previous lemma and the periodicity of F(+,)
and B(-,t) in t.
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4. Systems with linear majorants

In this section and the next one it is assumed that the norm is ideal. That is the vectors
z = (z)j_, and |z| = (|zx|)}_; have the same norm. For example,

n p
lzll = llzllp, = [Z |Zk|P] (1<p<oo). (4.1)
k=1

Let there be a variable matrix W (¢t) = (ij(l‘));‘,k:1 t =0,...,T independent of z with
nonnegative entries, such that the relation

|B(z,t)| < W(t) (z€Q(r), t=0,...,T—1) (4.2)
is valid with a positive r < co. Then we will say that B(-,f) = (b{jk}(':t))?,kzl has in Q(r)
the linear majorant W (t).
Inequality (4.2) means that
|bik(z,t) | <wix(t)  (jok=1,...,m2€ Q(r), t = 1,2,...,T). (4.3)
Let us introduce the equation
y(+1)=WH)y(t) (t=1,2,...). (4.4)
LemMa 4.1. Let B(+,t) have a linear majorant W (t) in the ball Q(r). Then

|Un(t9)|| < |V(£9)]] (h€w(r,T),0<s<t<T-1), (4.5)
where V(t,s) = W({t—-1)W(t—2)--- W(s).
Proof. Clearly,
U6 = [[B(v(t = 1), =1) - - B(v(s),9) [ < [[W(t = 1) - - - W(S)]. (4.6)

This proves the result. 0

Furthermore, assume that the spectral radius of V(T,0) is less than one. Then the
matrix [ — V(T,0) is positively invertible. Put

T-1 k-1
m(W,T):= sup > ||[V(k0)(I—-V(T,0)) " V(T,j+ D[+ > ||V(kj+1)|. (47)
k=0,...,T—1 j=0 j=0

Now Theorem 2.1 implies the following theorem.

THEOREM 4.2. Under conditions (1.3)—(1.4) and (4.2) assume that the evolution operator
of (4.4) satisfy the inequality R,(V (T,0)) < 1. In addition, suppose that

(rv+u)ym(W,T) <r. (4.8)
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Then system (1.2) has a T-periodic solution. Moreover, that periodic solution satisfies the
estimates

max x| < (2 WD

— < 4.
j=0,1,.,T—1 1—vym(W,T) r (4.9)

5. Systems with constant majorants

Assume that in (4.2) W (t) = Wy is a constant matrix. Then we will say that B(h,t) has in
set Q(r) the constant majorant W (t). In this case V (t,s) = W[, Set

T-1 .
m(Wo,T) = max_ {||W§(T-wi) " [|+1} X (Wl (5.1)
=0,..,T-1 20

Now Theorem 4.2 yields the following theorem.

THEOREM 5.1. Under conditions (1.3)—(1.4) assume that B(-,s) has in Q(r) a constant
majorant Wy, and R{(Wy) < 1. In addition, suppose that

(p+rv)m(Wy,T) <. (5.2)

Then system (1.2) has a T-periodic solution. Moreover, that periodic solution satisfies the
estimates
. pm(Wo, T)
x| [|x()]] < T v (Wo.T) <r. (5.3)
Let us derive an estimate for m(Wy; T) in terms of the eigenvalues and the Frobenius
norm of Wy as follows. Let || - || be the Euclidean norm in C”, and A be an n X n-matrix.
Let A1(A),...,A,(A) be the eigenvalues of A including their multiplicities. We will make
use of the following quantity

n 2 172
@) = V@ -3 @] (5.4
i-1

where N(A) is the Frobenius (Hilbert-Schmidt) norm of A, thatis, N2(A) = Trace(AA™).
Below we give simple estimates for g(A).
Next, we recall that the following estimates are valid:

n—1 Ck
IA™|], < > R MA)gHA) =2 (m=0,1,...), (5.5)
= 2R T
n—1 k
— -1 < &
(A =AT) ||2_k§0 TR (AL (5.6)

where

.

m m (5.7)
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and p(A,1) is the distance between A € C and the spectrum of A. Estimates (5.5) and
(5.6) are proved in [4, pages 12 and 21]. Thus,

[Wll, < 0m(Ws), m=0,1,2,..., (5.8)

where
O (Wo) = nZ]Rﬁnk(Wo)gk(Wo)%- (5.9)

k=0 :
Furthermore, due to (5.6)

(W =)l = v(T, W), (5.10)

where

n—1 T

v(T, W) = ; 1—1(:TV(M)/0))"“' (5.11)

Then
m(Wo; T) < M(Wo; T), (5.12)

where

T-1

M(WyT) := {V(T, Wo)k:n}a}% 0 (Wo) + 1} ;) 0;(Wp). (5.13)

Under the condition, Ry(Wj) < 1 we have

L max O (Wo) <27~ lzgm). (5.14)

Note also that g(WOT ) < NT(W,). Moreover, if A is a normal matrix: AA* = A*A, then
g(A) = 0. The following inequalities are also true

g2 (A) < N*(A) — | Trace A?|,
1 (5.15)

cf. [4, Section 2.1].
Now Theorem 5.1 implies the following theorem.

THEOREM 5.2. Under conditions (1.3)—(1.4), assume that B(-,t) has in Q(r) a constant
majorant Wy and R(Wy) < 1. In addition, let

(y+rv)A7(W0;T) <r. (5.16)
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Then system (1.2) has a T-periodic solution. Moreover, that periodic solution satisfies the
estimates

M(Wo, T
Cmax |G| < MWD (5.17)
j=0,1,..T—1 1—-vM(Wy,T)
As an example, let W, be a normal matrix, then g(Wy) =0, 0,,(Wy) = R"(Wy) < 1
and

1

(5.18)

Now we can directly apply the previous theorem.
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