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We give conditions under which all solutions of a time-scale first-order nonlinear vari-
able-delay dynamic equation with forcing term are bounded and vanish at infinity, for
arbitrary time scales that are unbounded above. A nontrivial example illustrating an ap-
plication of the results is provided.
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1. Delay dynamic equation with forcing term

Following Hilger’s landmark paper [8], a rapidly expanding body of literature has sought
to unify, extend, and generalize ideas from discrete calculus, quantum calculus, and con-
tinuous calculus to arbitrary time-scale calculus, where a time scale is simply any non-
empty closed set of real numbers. This paper illustrates this new understanding by ex-
tending some continuous results from differential equations to dynamic equations on
time scales, thus including as corollaries difference equations and g-difference equations.
Throughout this work, we consider the nonlinear forced delay dynamic equation

xXA(t) = —p) f(x(z()) +r(t), tE [ty ), tg =0, (1.1)

where T is a time scale unbounded above, f : R — R is continuous, and the functions p:
T — (0,00) and 7 : T — R are both right-dense continuous. Moreover, the variable delay
7:T — T is increasing with 7(t) <t for all ¢ € [y, %)y such that lim;_.. 7(t) = co. The
initial function associated with (1.1) takes the form x(t) = y(¢) for t € [7(ty), o], where
y is rd-continuous on [7(t),]. Equation (1.1) is studied extensively by Qian and Sun
[13] in the case when T = R. See also related discussions on unforced delay equations by
Matsunaga et al. [12] in the continuous case, and by Erbe et al. [6] or Zhang and Yan [14]
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2 Forced delay dynamic equation

in the discrete case. Other papers on delay dynamic equations include [1-3]. For more
on dynamic equations on time scales, skip ahead to the appendix, Section 5, or consult
the recent texts by Bohner and Peterson [4, 5]. To clarify some notation, take 77!(t) :=
sup{s: 7(s) < t}, T "(t) = 771 (r7"(t)) for t € [1(ty), )T, and T"*'(t) = 7(7"(t)) for
t € [t73(f), o)7. By our choice of the delay 7, there exists large T € T such that 7(¢) > f
and 72(¢) < 7(t) <t <77 '(0(t)) for all > T. In addition, we always suppose that

(H1) the continuous function f satisfies | f(x)| < |x| and x f (x) > 0 for x # 0, with

Flx):= max{ sup f(u), sup (—f(—u))} x € R; (1.2)
O<u<|x| O<u<|x|
(H2) using the delay 7, the forcing function r satisfies
ZJ |7(s) | As < 005 (1.3)
n=0 T (ty)
(H3) the coefficient function p satisfies
a(t) o0
f PN Vi€ [foy0)r, J p($)As = oo, (1.4)
(t) to
where
3 1 inf {u(t):t € T}
3,1 ; 1.
A 2+23up{7*1(0(t))—t:t€ﬂ (1.5)

it is understood that A = 3/2 if either inf {u(¢)} = 0 or sup{7~!(0(t)) — t} = oo.

2. Background lemmas
We will need Lemma 2.1 in the proof of Lemma 2.2.

LemMA 2.1 [1, Lemma 2.1]. For a right-dense continuous function p : T — R and points
a,t €T,

Lt (P(S) LU(S)p(u)Au> As = % (Ltp(s)As)2 + % Lty(s)pz(s)As. (2.1)

LeEMMmaA 2.2. Assume (H1), (H2), (H3) hold. Let x be a solution of (1.1), and assume there
exists t; € (172(T), )y such that t>(t;) > to and x(t;)x°(t;) < 0. If for some constant M >
0, |x(t)] <M for t € [12(t),t1]7, then

t
Ix(1)| sz(M)+AJ(t) ()]s forte [o(t),r (o(0))]y. (2.2)

Proof. The techniques employed here syncretize and extend ideas from [13, 14]. We con-
centrate on the case where x(t) = —M for t € [1%(#),t;]7; the case where x(t) < M for
t € [T2(t1),t1]1 is similar and is omitted. Since x(#;)x%(t;) < 0, there exists a real number



Douglas R. Anderson 3
& e[t — 1,t;] such that
x(t1)+[x”(t1)—x(tl)](ﬁ—t1+1):0. (2.3)

By (H1), f is nonnegative and nondecreasing, thus f(x(¢)) > — f(x(¢)) = — f1(M) for
t € [1%(t1),t1]7. From (1.1), we have

B <pOfI M)+ [r0)], telz(n),r7 (1)l (2.4)

so that integration and the fundamental theorem yield

t t
x(tl)—x(‘r(t))str(M)L(t)p(s)As+L(t)|r(s)|As, teltr ()] (25)

Using the characterization of & in (2.3), we obtain that for t € [t;,77!(t1)]r,
f f
x(t(1)) = x(t;) —fT(M)J (t)p(s)As—J " |7(s)| As

=—[x7(n) —x(t)](E-t+1) - f*(M) p(S)As— J :t) |7(s) | As

(2.6)
> — (M) [(f 1) jw') p()As+ j( p(s)As}
B f (t)

31

— =) ) [ = [ ro)ls

T

where we used (2.4) and Theorem 5.4(4) to arrive at the last line. Continuing in this
manner, from (H1) and the fact that f'(x) < x for positive x, we see that

a(ty) a(ty)
xA(t)<p(t)f*<f*(M)[(f—t1)L p(S)AS+J : p(S)AS}

T(t

+(E-ti+)u(t)|r(n)] +Lt:t) |r(s)|As>

(2.7)
<0 [ (109 + 119 )
= p(0)(tr = Eu(tr) (fTM)p(0) + [r(0) ])
for t € [t;,771(f1)]71. Now by (H3) and the choice of &, we know that
a(tr) 7 Ya(tr))
0<(:=(h-¢&) L p(S)AHL(m p(s)As < A, (2.8)

which we consider in the following two cases.



4 Forced delay dynamic equation

Case 1. Suppose that { defined in (2.8) satisfies { € (0,1). For ¢ € [a(t;),7" " (a(t1))]T, we
have

x(t):x”(t1)+r x2(s)As
a(ty)
e (1) — (1) ] (0~ €) + Jr x(s)As

a(ty)
t
Theorem54 (tl —E)H(tl)xA(tl) +J ( )XA(S)AS
a(ty

(2.7)

2 - guiep(e) [ 1009+ 11 s
= (=8 u(e) p () (FH Dp () + [ (1) )
(6= D) 0P + ) [ ploias 29

o(t
p(s>(j (1 (M) p( +|r<u>|)Au>As
a(ty)

a(t)
< f*(M){(tl ~outmpo)| [ pons— - utpto |

7(t1)

t o(ty)
e[ po] [ posu— —f)y(ﬁ)p(to]m}

s)

a(t)
e -outmp) [ 1 ase [ po [ Irto auas,

where the last inequality follows from simple factoring and the dropping of the negative
terms involving |r(#;)]. Continuing,

® (i”f*(M){(n —Ou(t) p(e) A (6 - () p(8)]

7 (o(t)) als)
+j Lo [A - L(m p(w)Au— (f - f)u(n)p(tl)]m}

a(ty)

a(ty) a(ty) t a(tr)
+(t—&) J p(s)AsJ |r(u)| Au+ L(t )p(s) J;@ |r(u)| AuAs

31 7(t)

(2.8) ' (a(t))

2 o] - s - Oute)p(e)T - (- Oute)pt) [ o

A - J n AL ( J::)) p(u)Au> As}
+ (J:l(g(h))p(s)As> <Lt(t1) [7(s) ] As).

(2.10)
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Using Lemma 2.1 on the last double integral involving p,

7 Ha(th))

t) < fT(M){ - [(ta —f)ﬂ(tl)P(tl)]z —(n —E)H(tl)P(tl)J p(s)As

a(tr)

7 1(a(h))

2

5 1 7 1(a(t)) 1
A _2<L(n) P‘”“) )

t
+AJ |r(s)|As
7(t1)

:f*<M>(Ac—[‘:+((“‘f)“(“)f’(“))2+f " o)

2 a(ty)

t
+AI [7(s)|As.
7(t1)

Define

Fp(s, s<t,

m(s) :=
{ u(s)p(s), s>,

so that m is right-dense continuous and

2 (o (t1)) t
x(6) < FHM) (A( _ % _ %L m2<s)As> +AL(t 1r9)as

By the Cauchy-Schwarz inequality [4, Theorem 6.15],

7 (a(t))
J m?(s)As
ty

1 (o (t))
> oy T o)) =1 (Ll m(s)As)

_';31;(%7;:7;((h-—f)Qﬂfﬂ)yzp(h J

(1.5) 3\
> 2<A 2)(.

Thus, for t € [o(t;), 7" (a(t:)]7,

() =< FHom) (AC— 72 _ ()L— %)52> +A£(m I7(s) | As.

2

“Ho(h)

plo )

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)
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If g(x) := Ax — x2/2 — (A — 3/2)x?, then q'(0) >0 and q'(1) = 2 — A > 0 by the choice of A
in (1.5), so that g is increasing on [0, 1]. Consequently,

x(t) < f*(M)+/\L(t) [r(s)|As, te[o(n), T (o(t))];. (2.16)

Case 2. Suppose 1 < { < A for { as in (2.8). Actually, from (H3), we have in this case that
77 p(5)As € [1,A]. Note that

7 Ha(th))
g0= [ poA-1, te [ 0] (2.17)

t

is a delta-differentiable and decreasing function, so that by [4, Theorem 1.16(i)], g is
continuous on t € [#;,77(a(t1))]y. Since g(t1) = 0 and g(77!(a(t1))) = —1 <0, by the
intermediate value theorem [4, Theorem 1.115], there exists t, € [t;,7~'(o(t1)))7 such
that either g(f2) = 0 or g(£2) >0 > g7(t,). Either way,

7 (a(t1)) ! (a(t1)) 1 (a(t1))
J L, pOms<is L p()As = u(t2) p(t2) +j L pO8s28)
ergo there exists a real number ¢ € [£, — 1,1,) such that
7 (a(t1))
J L P8 gu(e)p(n) = 1 (2.19)

Using (2.3) and (2.4), we have for ¢ € [t;,,]y that

t

X(0) = (6= Duln)x ) + | xons

a(t)

< (0= D) (p() 100+ [r(6) D)+ [ (O a0+ 119 s

a(ti)

t
< f*<M>(<t1 ~Ou(tp(e) + [ p(s)As) (2.20)

g

t

Ho=Oun) () |+ [r(6)]as

a(t)

. t t ) t
< FH) L. p(s)As+L Ir(s)| As < f (M)+ALW I7(s) | As,
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where the last inequality follows from our choice of t,. For ¢ € [0(t2),77'(a(t1))]r, with
(2.3), we see that

t
x(t) = (= E)u(h)x () + L(t )xA(s>As

= (0= Dul)x 1) + (9 - o+ Du(t)x (1) +

a(t1)

xA(s)As] (2.21)
+ |:(t2 — (p)‘u(tz)xA(fz) + JU(tZ)XA(S)AS] =851+S,,

where §; is the first grouping and S, is the second. Using (2.4) for S, and (2.7) for S,

a(ty)
Si =< fT(M)((tl =Hu(t)p(t) + (¢ — t)u(t2) p(t2) +J : P(S)AS)

o(t

o(t2)
(1= D) |(0) |+ (9= )l [ ()| + [ 170,

o(t)
S < fIM) (6 — ¢)u(t2) p(2) U p(s)As— (1 —E)u(tl)p(tl)]

7(t2)
(2.22)

7 Ho(t)) a(ty)
+ fT(M) L(m p(s) [ L(S) pw)Au— (t = &u(t )p(tl)] As

a(f)
o) ([ 176185 - Oute) ()]

£ a(ty)
+ JU(tZ)P(S) (L(S) [r(u)|Au— (=& u(t) | r(t) \)As.

Then continuing for ¢ € [0(t;),77 (0 (t1))]1 while recalling (2.19), we have

a(t2)
w02 5400 | (6= Outa) ple) + (6~ euteple) + [ poons|

7 a(tr))
X [J p(S)A5+(tz—¢)l4(fz)P(fz)]

a(t2)

a(ty)
+(t—¢)u(tz) p(f) [J p(s)As— (t — f)#(tl)P(tl)]

7(t)
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T a(t)) a(t)
+J p(S)U pu)Au— (t - E)y(tl)p(tl)]As)

o(t2) 7(s)

o(tz)
+ (= Eu(t) [r(t) | + (¢ — t2)u(ta) | r(t2) | +J |7(s) | As

a(t)

a(t)
+(t = P)u(t) p(t2) (J [7(s)[As— (1 = E)u(n) [r(n) |>

7(t2)

t a(ty)
e[ o J]) 0 au - e e s 23)

7(s

Proceeding by rearranging,

7(s)

T Ho(t)) o(t)
x(t)Sf*(M)(L(” P(S)[(fp—tz)[/l(tz)P(tz)JFJ p(u)Au]As

o(t2)
= on(e)ple)| (6 eu(e)ple) + [ pons]

T

T (a(t)) t o(ty)
+ (0= §u(n) [r(t) | L p(s)As+ L(t )p(S) (L(S) |r(u)| AU) As

a(tr)

- o(e) (ple) |

o(t2)
rolas= 1w )+ [ rolas
7(t2) a(tr)

51

(2.24)

Using (H3) in the first two lines and properties of delta integrals in the last two lines, we
arrive at

7 a(tr)

x(t) < f*(M)j

a(t)

) o(s)
P(S)<(¢—tz).“(t2)P(t2)+)t— p(u)Au>As

o(tz)

+ f1(M) (8 = ) u(t2) p(82) [ (¢ — t2) e (£2) p(82) +A]
“1(0(t)) o(t) o(t) (2.25)
+J p(s)[() |r(u)|AuAs+L(tl> |7(s)|As

o(ty) (s

a(t) a(ty)
+ (LZ p(s)As) <L(t2) [7(s)] As).
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Applying (2.19) to the terms involving (M) and combining some of the remaining
integrals, we see that

(a(t)) o(s) 5
x(t) < f1(M) (A - J t p(s) e )p(u)AuAs —[(ta=P)u(t) p(t2)]
7 (a(h))
- otep(e) [ pons)
a(ty)
7 (o(t1)) o(tr) a(ty)
+ (L p(s)As) (L(m I7(s) | As) + L(m I7(s) | As (2.26)
1 1 7 (a(th)) 1
< f1) (A sl O as= (- ¢)M(t2)P(tz)]2)

7 Ha(t)) a(t2)
+ (L t p(s)As) (L(;) |r(s)|AS>

using Lemma 2.1 and (2.19) again to arrive at the first line, and using the choice of ¢, for
the second. Thus, as in (2.15), for ¢t € [o(t2), 7 (a(t:1))]7,

(1) < ff(M)(A— % - (}L— %)) +A£(m I7(s) | As
(2.27)

:f*(M)HLJ(t) I7(s) | As.
T(h |:|

LemMa 2.3. Suppose that (H1)—(H3) hold. Let x be a solution of (1.1) and let t, € T be as
in Lemma 2.2. Then x is a bounded solution of (1.1).

Proof. The techniques used here are similar to those on R found in [13]. Let M := max
{Ix(0)| : t € [72(t1),t1]1}. Then by Lemma 2.2,

t
|x(0)| sz(M)+/1L(t) ()] as, tefo(t)yr (0(0))];. (2.28)

To prove that x is a bounded solution of (1.1), let
tfi=sup{t e [a(t;), 77 (o (1)) ]y : x(£)x"(t) < 0}; (2.29)
for n = 2, take
t,:==min{t € [t'7"(0(t1)), 77" (0 (tr)) Iy : x()x°(t) = O},

(2.30)
thi=sup{te [t (o(t)), 77" (a(t1)) ]y : x(£)x°(t) < 0}.
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If there is no generalized zero in [t' (0o (t1)),7 (0 (t1))]7, take
t:=1""(0(t1)), thi=1"(a(t1)). (2.31)
By Lemma 2.2, for t € [o(f),0(t])]T,
t o(t})
|x(0)| sff(M)mL(m I7(s) | As sMuL(m #(s) | As. (2.32)

Ift; € [o(tF), 7' (o(t]))]T, then

t
|x(t)] < sup  {|x(t)|} +)LL(t*) |7(s)|As, (2.33)

te[2 ()t v

so that
|x(t)| < M+AJT;“) 17(s)]| AsmLzm Ir(s)]as, e [o(t). 5] (2.34)

On the other hand, if £, > 77 !(o(¢{")), then x has constant sign on [o(¢{),#]7. By (1.1)
and the fact that p,xf(x) >0

0] <x@ o)+ | frlas te o) bl (239)

Moreover, as above,

tf (o (tf))
sl <me[ | snm+y[ r@)8s, te[ol)r (o)) ]y,
T(ty)
(2.36)
so that
tf o (1)) )
(1) ng\J |r(s)|As+AJ |r(s)|As+J I7(s) | As
7(t)) 7(t) (1))
(2.37)
tf t
§M+AJ |r(s)|As+AJ( )|r(s)|As, telo(tf), 6]
7(t) 7(tf
Since £ —t; < 77%(0(t1)) — 7' (0(t1)), on [t5,t5 |1 we have
t
0= sup AIx}+A[Jrolas
te[r2(6),5]r ()
(2.38)

tf t) 5
<Mir| |r(s)|As+/\J |r(s)|As+AJ |r(s)|As.
() 7(t5)

7(t)
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In the same way for t € [t],t;]7 as for the case t € [#]',1;]7, we arrive at

f
|x(t)| < sup {|x(t)|}+AJl(m [r(s)|As

e[ ()6 v

1

tf th 2 t3
sM+)t<J |r(s)|As+J |r(s)|As+J |r(s)|As+J |r(s)|As>
7(t1) T(t}) (t5) (t))

t 1
sM+2)LJ |r(s)|A5+2/1J |7(s)|As
7(t) (t)

72(1y) 773(1)
sM+MJ hﬁHM+MJ I7(s) | As
7(t) t
(2.39)

Fort e [t;)t;]ﬂ')

w0l s (a0} A] (re]as

te[r2(8),85]r

(2.40)
T3 (h) (h) 5
sM+2/1J |r(s)|As+2/1J( |r(s)|As+)LJ [7(s) | As.
() h 7(t5)

Consequently, for ¢ € [t5,#;]7,

4
x0l s sup {lx]}+A] ] (re]as

te[2().5 v
72(t) 73(t)

<M+2\ |7(s)| As+2A |7(s)|As
7(ty) t

5 A
+/1J |r(s)|As+/\J |7(s)| As
(1) w(t)

(2.41)

3 (t)
<M+2)LJ |r(s)| As+2A |7(s |AS+ZAJ |r(s)|As
t

(t1) “(t)

t 7! (t1) tl)
sM+MI)h@ﬂm+MJ |m+mj I7(s)| As
7(t ty

3 (h) 4(h)
+4AJ |As+2AJ |7(s)| As.

“2(t1) ()
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Through recursion, for t € [t}, 1, |1, we obtain

f 7 H(h) “2(h)
| x(t) | 5M+2/1J |7(s)|As+4A |r( |As+6AJ r(s) | As
7(t) t 1(tl)
() () T ()
+---461 |7(s)| As+4A [r(s |As+2/\J |7(s)|As,
T2n(ty) Tion(t)
(2.42)
and for t € [ty,1, 5]
|x(t)] < sup {]x t)|}+)t . |7(s)|As
te[r2(th )t T Tt
o (2.43)
<M+ 6)LJ r(s) | As.

Now as both t;, and ;f go to infinity as n goes to infinity, by (H2) the solution x must be
bounded. O

LemMa 2.4. Suppose that (H1)—(H3) hold. Let x be a solution of (1.1) and let t; € T be as
in Lemma 2.2. Then

t
1x(0)| sf*(B)+)LI(t) ()| As, t€ [o(tr),00), (2.44)

where B := sup,., [x(t).

Proof. By Lemma 2.3, x is a bounded solution of (1.1). Set B := sup,.,, |x(t)], but suppose
that (2.44) is false. Then there exists

T) := inf{t >t o)) : | x(t)] >f‘L(B)+/1Jt(t) |T(S)|AS}- (2.45)

Clearly

|x()] =< f*(B)MLm r(s)|As, te[o(n),Th)y, (2.46)

and we have the following cases.

Case 1. (A) Suppose x(Ty) > f1(B +/1f ) [7(s)|As. By cont1nu1ty and the choice of T,

T is a left-scattered point with |x(p(T7))| < er +)pr Ir(s)|As and x2(p(T})) > 0.
By (1.1) and (H1), x(7(p(T1))) < 0. Set

To:= max{t € [1(p(T1)),p(T1))y : x(£)x°(¢) < 0}. (2.47)

Then x(To)x?(Ty) < 0and 72(t;) < 73(Ty) < 72(To) < Tp < T1. By (2.46),

|x(1)] Sf*(B)MLm r(s)As, te [2(To), Toly. (2.48)
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Consequently, from Lemma 2.2,

#0] < @] Jrlas on[o(T)r @(T)] (249)

Since 7(p(T1)) < To < p(T1) and 7 is increasing, 0(Ty) < T} and

T, Ty
f*(B)+AL(tI) I7(s) | As < x(T}) = f*(B)+)LL(m I7(s) | As, (2.50)

a contradiction.

(B) Suppose x(T) = f1(B) +/\f (1) [7(s)|As. Then Ty is a right-dense point, x2(Ty) =
0, and there exists T, € (Ty, 7~ '(T1)]t such that x(¢) > f1(B +/1f7(t1) |7(s)|As on (T},
T,]7. By (1.1) and (H1), x(7(T)) < 0. Set

To:=max{t € [1(T1),T1)y : x()x°(t) < 0}. (2.51)

Then x(To)x?(To) < 0 and 72() < 73(Ty) < 12(Ty) < Ty < Ts. By (2.46),
|x(1) | sff(B)uLtw ()| As, te [72(To), Toly. (2.52)
As a result, from Lemma 2.2,
5Ol < SB[ (rolas on o) T o)) 253

Since 7(Ty) < Ty < T, and 7 is increasing, o(Ty) < T> < 77! (0(Ty)) and

T, T,
fT(B)+)LL(t> [r(s)|As < x(T,) < fT(B)+AL(t) [7(s)|As, (2.54)

a contradiction.

Case 2. 1If x(Ty) < —f1(B )Lf s)|As, then (2.46) implies either x*(T;) < 0 or
x2(p(Ty)) < 0. Again by (1. 1) and (Hl) either x(7(T)) = 0 or x(7(p(T1))) > 0. Pick T

as above for either case. Just as above, either case leads to a contradiction. O

3. Solutions of (1.1) go to zero

We now state our main result on the global asymptotic behavior of solutions of (1.1).

Taeorem 3.1. If (H1), (H2), (H3) hold, then every solution of (1.1) goes to zero in the limit.

Proof. 1f x is a nonoscillatory solution of (1.1), assume without loss of generality that x is
eventually positive. Then there exist M >0 and Ty = t; such that

0<x(t) < |x(to) | +Lt [r(s)|As< M, te (T 0); (3.1)
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Suppose that liminf;_ x(t) = 2¢ for some & > 0. Pick T € (77! (), o)y such that x(¢) > ¢
fort > 7(T). Since f is continuous and f(x) >0 forx >0, d := inf.<x<p f(x) >0.By (1.1),

x2(t) = —p(t) f (x(z(t))) +r(t) < —dp(t) +r(t), t=T. (3.2)

Integrating from T to t, we see that

x(t) < x(T) dL p()As + JT ()| As— —oo (3.3)

as t — oo by (H2) and (H3), a contradiction of x eventually positive. Consequently,
liminf, .. x(¢) = 0, so there exists an increasing unbounded sequence {t,},-, in T such
that lim,—. x(t,) = 0. Let M" := limsup,_ , x(¢). Again there exists a sequence {t,,},_; in

T with ¢, > t,, such that lim,,—. x(#,) = M'. Using (H2) and the fact that x2(¢t) < r(¢),
t

0<x(t,) sx(ty,)+I |r(s)| As— 0, n— oo. (3.4)

n

Hence M’ = 0 and x goes to zero.
Now let x be an oscillatory solution of (1.1). By Lemma 2.4, (2.44) holds. By the oscil-
latory nature of x, there exists a sequence {t; } in T such that

x(t)x(t5) <0, () =1 (), () >T(E). (3.5)

As in [13], we consider the discrete sequence {X,,} given by

X, =Bi=sup|x(t)],  Xom = f1(X,) +AJ I7(s) | As. (3.6)
T(ty)

=ty

Just as in the proof of Lemma 2.3, we arrive at

sup | x(t)| < Xy sup |x(t)] < X1 (3.7)

te[r2(6),t T t=0(t})

Note that

[

Y
ngl () |

r(s)|As < Z/\J . |r(s)|AssAZJ o |7(s) | As; (3.8)
n=0 JT ") n=0 7 ")

by (H2),

Z/\J [r(s)|As=: > by, < . (3.9)
n=1 27 n=1

Since X, satisfies the difference equation X,+; = f1(X,) + by, using [13, Lemma 2.3] we
have that X,, goes to zero as n — co. By the choice of X,,, the solution x of (1.1) satisfies

lim;_ o x(t) = 0. O



Douglas R. Anderson 15

CoroLLARY 3.2. If (HI1) and (H3) hold, then every solution of the unforced equation
) +p)f(x(z(1)) =0, t€ [ty )y, (3.10)

goes to zero in the limit.

Remark 3.3. The results of this paper could easily be modified to show that every solution
of

() =ep®) f(x(z(t)) —er(t), te[ty,o)y, th=0, (3.11)

goes to zero in the limit, for appropriately adjusted hypotheses (H1), (H2), (H3), where
op(t):=—p(t)/(1+u(t)p(t)) fort € T and p € R (see Definition 5.5).

4. Forced delay equation on isolated time scales

Let T be a time scale unbounded above, with every point both left and right scattered,
and consider the food-limited population model [7, 13] given by the delay differential
equation

N—-y(t-1)

N+cpy(t—1)° (4.1)

y'(t) = py()
where y is the population density, p >0 is a constant growth rate, N > 0 is the carrying
capacity of the habitat, 7 > 0 is the time delay, and ¢ > 0 is constant. From this we obtain
the following modified equation:

Lodyt) _ N-y(ltl-Lr])
y(0) dt  PNvepy(ltl—L7))’

(4.2)

where | ] :=sup{s € T:s <t} is the “time-scale” part of the continuous variable . On
any interval of the form [s,0(s)), integrate (4.2) from s to ¢ to obtain for s < t < o(s) that

y(t) = y(s)exp (p%(t—s)). (4.3)

Replacing t by o(s),

(4.4)

y7(s) = y(s)exp (p‘u(s)L_hJ)))

N+cpy(s—17l

Note thatif T=Zand [ 7] = 0, then 0(s) = s+ 1 and y(s) = 1, and this is the simple geno-
type selection model suggested in [9] and [11, Exercise 1.18(6)]. Thus for any isolated
time scale T that is unbounded above, we consider

0

yy((tt)) = exp (P#(t)

N_y(T(t))) + r(t)) (4.5)

N+cpy(r(1)
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for some delay 7: T — T and some function r : T — R satisfying (H2). In (4.5), let y =
Ne*, y7 = Ne?, and y o T = Ne*°" to obtain

x(t(t) _
Aryy € 1 r(t)
x(t) = PTs cpatr® T Cpe ) + e (4.6)

If

e*—1
1+cper’

flx):= (4.7)

then f is continuous with x f (x) > 0 for x # 0 and f(0) = 0. As shown in [13], if cp > 1/3,
then | f(x)| < |x] for x # 0 as well.
THEOREM 4.1. Suppose cp > 1/3 and T is an isolated time scale with ty, € T. If

> > ] <, (4.8)

n=0 te[r!-"(t),00)7
plo(t)—1(t) <A Vte [t,o)q, (4.9)

then every positive solution of (4.5) goes to N in the limit.

Proof. Let y be a positive solution of (4.5). As above, the substitution y = Ne* makes x a
solution of (4.6). Since cp > 1/3, [13, Theorem 3.1] shows that (H1) is satisfied. To check
(H2), note that on isolated time scales,

[eY] ) A had
ZJ S)| oYY rn)] < (4.10)
=0 T (t0) n=0 te[r!-"(ty),00)1

by assumption. In the same way, (H3) is satisfied for constant p >0, as

f PAs= plo(t) —7(1)) <A, 1€ [to,0)r. (4.11)

Hence by Theorem 3.1, every solution x of (4.6) goes to zero in the limit. But then every
positive solution y = Ne* of (4.5) goes to N. g

Example 4.2. Let T = hZ for some h € (0,1), ¢ >0, and let 7(t) := t — hk for t € T and
ke N.If

[

Z t]r(th)| < oo, (4.12)
t=—k

1 3k+4

3¢ P = onkr )2 (413

then every positive solution of (4.5) goes to N in the limit.
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Proof. Observe that A = (3k +4)/2(k+ 1), and o(t) — 7(t) = h(k +1). Now we show that
(4.12) is equivalent to (4.8) on hZ. In fact, both will be shown to be equivalent to

(Y] [eY)

> D r(sh)| < oo (4.14)

t=—k s=t

the idea of these three equivalences is adapted from the real case found in [10, Lemma
3.3]. First note that (4.8), (4.12), and (4.14) all imply that >.;* _; |r(th)| < 0. To see that
(4.8) implies (4.14), we switch the order of summing in (4.14) to get that

o0 © © nk— 0
> Dl =3 Z Z r(sh)|
t=—k s=t n=0 t=(n—1)k s=t
(4.15)
© nk— )
:Z( Z (t—=(n=Dk+1)|r(th)| +k > |r(th)|).
n=0 (n— t=nk
As a result,
0 00 1 © o0 1 o0 nk—1 )
Z z r(th)| Ezz|r(sh)|=EZ z Z|r(sh)|
n=0 t=n t=—k s=t n=0 t=(n-1k s=t
(4.16)
) nk—1 ) ) )
SISON S =Y S (],
n=0 t=(n—1)k s=(n—1)k n=0 t=(n—1)k
Therefore (4.8) implies (4.14). And since
> e = 20 Y sy = Y ek 1=R) [r(h)], (4.17)
t=—k s=t s=—k t=—k t=—k

(4.12) implies (4.14). Therefore (4.8) implies (4.12). Thus all the hypotheses of Theorem
4.1 are met. (Il
5. Appendix on time scales

The definitions below merely serve as a preliminary introduction to the time-scale calcu-
lus; they can be found in the context of a much more robust treatment than is allowed
here in the textbooks [4, 5] and the references therein.

Definition 5.1. Define the forward (backward) jump operator o(t) at t for t <sup T (resp.,
p(t) attfor t >inf T) by

o(t)=inf{r>t:7€T}, (p(t)=sup{r<t:teT}), VieT. (5.1)

Also define o(supT) = sup T if supT < o0, and p(inf T) = inf T if inf T > —oco. Define the
graininess function y: T — R by u(t) = o(t) — t.
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Throughout this work, the assumption is made that T is unbounded above and has the
topology that it inherits from the standard topology on the real numbers R. Also assume
throughout that a < b are points in T and define the time-scale interval [a,b]y = {t €
T:a <t <b}. The jump operators ¢ and p allow the classification of points in a time
scale in the following way: if () > t, the point ¢ is right-scattered, while if p(¢) < ¢, then
t is left-scattered. If o(t) = ¢, the point ¢ is right-dense; if ¢ > inf T and p(t) = ¢, then ¢ is
left-dense.

Definition 5.2. Fix t € T and let y : T — R. Define y(¢) to be the number (if it exists)
with the property that given € > 0, there is a neighborhood U of ¢t such that for all s € U,

[[y(o(t) = y(s)] = y*(O)[o(t) —s]| <€|a(t) —s]. (5.2)

Call y2(t) the (delta) derivative of y at .
Definition 5.3. If FA(t) = f(t), then define the (Cauchy) delta integral by

f F(s)As = F(t) - F(a). (5.3)

The following theorem is due to Hilger [8].

THEOREM 5.4. Assume that f:T — Randlett € T.
(1) If f is differentiable at t, then f is continuous at t.
(2) If f is continuous at t and t is right-scattered, then f is differentiable at t with

f(a(t) si0)

Mgy —
1o = o)t (5.4)
(3) If f is differentiable and t is right-dense, then
o0 = tim LO=L), (55)

s—t t—s

(4) If f is differentiable at t, then f(o(t)) = f(t)+u(t) f2(¢).

Next we define the important concept of right-dense continuity. An important fact
concerning right-dense continuity is that every right-dense continuous function has a
delta antiderivative [4, Theorem 1.74]. This implies that the delta definite integral of any
right-dense continuous function exists.

Definition 5.5. A function f : T — R is right-dense continuous (denoted by f € C,q(T;R))
provided that f is continuous at every right-dense point t € T, and lim,_.,- f(s) exists
and is finite at every left-dense point ¢ € T. A function p is regressive provided that 1 +
ut)p(t) #0forallt € T, and

R:={peCa(T;R): 1+u(t)p(t) #0, t € T}. (5.6)
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