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We study the extension problem of a given sequence defined by a finite order recurrence
to a sequence defined by an infinite order recurrence with periodic coefficient sequence.
We also study infinite order recurrence relations in a strong sense and give a complete
answer to the extension problem. We also obtain a Binet-type formula, answering several
open questions about these sequences and their characteristic power series.
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1. Introduction

The notion of an ∞-generalized Fibonacci sequence (∞-GFS) has been introduced in [7]
and studied in [1, 8, 10]. This class of sequences defined by linear recurrences of infinite
order is an extension of the class of ordinary (weighted) r-generalized Fibonacci sequences
(r-GFSs) with r finite defined by linear recurrences of rth order (e.g., see [3–6, 9], etc.).
Such sequences are defined as follows. Let {ai}∞i=0 and {α−i}∞i=0 be two sequences of com-
plex numbers, where ai �= 0 for some i. The associated∞-GFS {Vn}n∈Z is defined by

Vn = αn if n≤ 0, (1.1)

Vn =
∞∑

i=0
aiVn−i−1 if n≥ 1. (1.2)

The sequences {ai}∞i=0 and {α−i}∞i=0 are called the coefficient sequence and the initial se-
quence, respectively. As is easily observed, the general terms Vn may not necessarily exist.
In [1], necessary and sufficient conditions for the existence of the general terms have
been studied. When there exists an r ≥ 1 such that ai = 0 for all i ≥ r, we call the se-
quence {Vn}n≥−r+1 an r-GFS with initial sequence {V−r+1,V−r+2, . . . ,V0}. For an r-GFS,
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the numbering often starts with V1 instead of V−r+1. In such a case, all the numberings
shift by r.

The case where the coefficient sequence {ai}∞i=0 is periodic, that is, the case where there
exists an r ≥ 1 such that ai+r = ai for every i≥ 0 is considered in [2]. It was shown that in
such a case, the associated∞-GFS is an r-GFS associated with the coefficient sequence

{
a0,a1, . . . ,ar−2,ar−1 + 1

}
, (1.3)

and the initial sequence {V1,V2, . . . ,Vr}, where r ≥ 1, is the period. Thus, the following
problem naturally arises. Given an r-GFS, can one always extend it to an∞-GFS associated
with a periodic coefficient sequence? If it is not always the case, then characterize those r-GFSs
which can be extended to an∞-GFS associated with a periodic coefficient sequence.

In this paper, we first show that under a mild condition on the coefficients, an r-
GFS can always be extended to an∞-GFS associated with a periodic coefficient sequence
(Proposition 2.1).

On the other hand, it was shown that a root of the characteristic polynomial of an
r-GFS does not always give an∞-GFS associated with a periodic coefficient sequence (see
[2, Example 3.4]). In order to analyze this type of phenomena, in Section 3, we introduce
the notion of a strongly∞-GFS, imposing the condition (1.2) not only for n≥ 1, but for
all n∈ Z. In a sense, this condition is more natural than requiring the equation only for
n ≥ 1, and it has already appeared in [7, Problem 3.11]. The main result of this paper
is a characterization theorem of those r-GFSs which can be extended to a strongly ∞-
GFS associated with a periodic coefficient sequence (Theorem 3.2). This gives a complete
solution to the problem mentioned above in the case of strongly∞-GFSs. The character-
ization will be given in terms of the zeros of the characteristic polynomial.

As a corollary, we will give a Binet-type formula for such sequences in terms of the
roots of the associated characteristic polynomial (Corollary 3.7). The characteristic poly-
nomial of an r-GFS is closely related to the characteristic power series of the associated
periodic coefficient sequence (see Remark 3.4), and we will see that this Binet-type for-
mula uses only those zeros of the characteristic power series inside the circle of conver-
gence. This gives a positive answer to [7, Problem 4.5] in the case of periodic strongly
∞-GFSs. We will also see that our characterization theorem gives a complete solution to
[7, Problem 3.11] in the case where the coefficient sequence is periodic (Corollary 3.8).

2. Extending an r-GFS to a periodic∞-GFS

Let {ai}∞i=0 be a coefficient sequence. If there exists a positive integer r such that

ai+r = ai ∀i≥ 0, (2.1)

then we call the associated sequence {Vn}n∈Z defined by (1.1) and (1.2) a periodic
∞-generalized Fibonacci sequence. It was shown that in such a case, the subsequence
{Vn}∞n=1 is an r-GFS associated with the coefficient sequence (1.3) and the initial sequence
{V1,V2, . . . ,Vr} (see [2]).

Conversely, suppose that an r-GFS {Vn}∞n=1 associated with the coefficient sequence
(1.3) is given.We would like to determine whether it can be extended to a periodic∞-GFS
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associated with the periodic coefficient sequence

{
a0,a1, . . . ,ar−1,a0,a1, . . . ,ar−1, . . .

}
(2.2)

or not.
Set

T(x)=
r−1∑

i=0
aix

r−1−i. (2.3)

Then we have the following.

Proposition 2.1. Let {Vn}∞n=1 be an r-GFS associated with the coefficient sequence (1.3).
If T(x) does not have any root ξ ∈ C with ξr = 1, then there exists a sequence {V−n}∞n=0 such
that {Vn}n∈Z is an∞-GFS associated with the periodic coefficient sequence (2.2).

Proof. In the following, we set ak = ak′ for k ≥ r, where k′ ≡ k (mod r) and 0 ≤ k′ ≤
r− 1.

Let us consider the following set of r linear equations with respect to the variables
α0,α−1, . . . ,α−r+1:

V1 = a0α0 + a1α−1 + ···+ ar−1α−r+1,

V2 = a0V1 + a1α0 + a2α−1 + ···+ ar−1α−r+2 + a0α−r+1,

V3 = a0V2 + a1V1 + a2α0 + a3α−1 + ···+ ar−1α−r+3 + a0α−r+2 + a1α−r+1,

...

Vr = a0Vr−1 + a1Vr−2 + ···+ ar−2V1 + ar−1α0 + a0α−1 + a1α−2 + ···+ ar−2α−r+1.

(2.4)

Set Ii = (ai−1,ai, . . . ,ar+i−2) for i= 1,2, . . . ,r− 1. Furthermore, define I′i inductively by I1 =
I′1 and

I′i = a0I
′
i−1 + a1I

′
i−2 + ···+ ai−2I′1 + Ii (2.5)

for i≥ 2. Then the above set of r equations can be written as

⎛
⎜⎜⎜⎜⎝

V1

V2
...
Vr

⎞
⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎝

I′1
I′2
...
I′r

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

α0
α−1
...

α−r+1

⎞
⎟⎟⎟⎟⎠
. (2.6)

Since the r× r matrices
⎛
⎜⎜⎜⎜⎝

I′1
I′2
...
I′r

⎞
⎟⎟⎟⎟⎠
, A=

⎛
⎜⎜⎜⎜⎝

I1
I2
...
Ir

⎞
⎟⎟⎟⎟⎠

(2.7)

have the same determinants, the above set of r equations has a solution if detA �= 0.
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On the other hand, by our assumption on T(x), we have detA �= 0 (for details, see [2,
the proof of Proposition 2.2]). Therefore, there exist α0,α−1, . . . ,α−r+1 which satisfy the
above set of r linear equations.

Set Vn = αn for n= 0,−1, . . . ,−r +1 and Vn = 0 for n <−r +1. Let us show that the se-
quence {Vn}n∈Z thus defined is an∞-GFS associated with the coefficient sequence (2.2).

Since α0,α−1, . . . ,α−r+1 satisfy the above r equations, we see that (1.2) is valid for n =
1,2, . . . ,r. Suppose by induction that (1.2) is valid for n = 1,2, . . . ,k with k ≥ r. Since
{Vn}∞n=1 is an r-GFS associated with the coefficient sequence (1.3), we have

Vk+1 = a0Vk + a1Vk−1 + ···+ ar−2Vk−r+2 + (ar−1 + 1)Vk−r+1

= a0Vk + a1Vk−1 + ···+ ar−2Vk−r+2 + ar−1Vk−r+1

+
(
a0Vk−r + a1Vk−r−1 + ···

)

=
∞∑

i=0
aiVk−i.

(2.8)

This shows that (1.2) is valid for n= k+1 as well. Hence the sequence {Vn}n∈Z is a peri-
odic∞-GFS associated with the coefficient sequence (2.2). �

Remark 2.2. As the above proof shows, if the vector t(V1,V2, . . . ,Vr) belongs to the vector
space spanned by the r vectors tI1, tI2, . . . , tIr , then we have the same conclusion without
the assumption on T(x).

Remark 2.3. In the above proposition, we have constructed an extension {Vn}n∈Z such
that Vn = 0 for all n < −r + 1. If we impose this condition, then the extension is unique
as the above proof shows. However, an extension is not unique in general. For example,
for α0,α−1, . . . ,α−r+1 as constructed in the proof, and for arbitrary β0,β−1, . . . ,β−r+1, define
{V−n}∞n=0 by

Vn =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

βn, 0≥ n≥−r +1,

αn+r −βn+r , −r ≥ n≥−2r +1,

0, n≤−2r.
(2.9)

Then it is easy to see that {Vn}n∈Z is also a required extension.

Example 2.4. As in [2, Example 3.4], let us consider the coefficients a0 = 4/3, a1 = 1/3
with r = 2. Then the sequence {Vn}∞n=1 withVn = (−2/3)n is an r-GFS associated with the
coefficient sequence (1.3). If we put V0 = −4/5, V−1 = 6/5, and Vn = 0 for n < −1, then
the sequence {Vn}n∈Z is an ∞-GFS with respect to the coefficient sequence (2.2). Note
that the sequence {(−2/3)n}n∈Z is not an∞-GFS associated with the coefficient sequence
(2.2) as pointed out in [2, Example 3.4].
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3. Strongly∞-GFSs

In this section, we introduce the notion of a strongly∞-GFS and give a characterization
theorem of periodic strongly ∞-GFSs. As a corollary, we give a Binet-type formula for
such sequences.

Definition 3.1. A sequence {Vn}n∈Z is called a strongly ∞-generalized Fibonacci sequence
(strongly ∞-GFS) if (1.2) holds for all n ∈ Z. Note that this notion already appeared in
[7, Problem 3.11].

Let us consider an r-GFS {Vn}∞n=1 associated with the coefficient sequence (1.3). Let
P(x) be the associated characteristic polynomial given by

P(x)= xr − a0x
r−1− a1x

r−2−···− ar−2x−
(
ar−1 + 1

)
. (3.1)

For the moment, let us assume the condition

ar−1 �= −1. (3.2)

We denote by λi, 1≤ i≤ k, the roots of P(x) with |λi| > 1, and by λ′j , 1≤ j ≤ �, the roots
of P(x) with 0 < |λ′j| ≤ 1. We assume that they are mutually distinct and denote bymi ≥ 1
andm′

j ≥ 1 the multiplicities of the roots λi and λ′j , respectively. Note that

k∑

i=1
mi +

�∑

j=1
m′

j = r. (3.3)

Since {Vn}∞n=1 is an r-GFS associated with the coefficient sequence (1.3) with ar−1 +
1 �= 0, there exist complex numbers αi,s and α′j,t such that

Vn =
k∑

i=1

mi−1∑

s=0
αi,sn

sλni +
�∑

j=1

m′
j−1∑

t=0
α′j,tn

t
(
λ′j
)n

(3.4)

holds for all n≥ 1 by the Binet-type formula (for details see, e.g., [4]).
Then we have the following characterization theorem of those r-GFSs which can be

extended to a periodic strongly∞-GFS.

Theorem 3.2. Suppose that the condition (3.2) above holds. The sequence {Vn}∞n=1 given by
(3.4) can be extended to a strongly ∞-GFS {Vn}n∈Z associated with the periodic coefficient
sequence (2.2) if and only if α′j,t = 0 for all j and all t.

Example 3.3. Let us consider the coefficient sequence as in Example 2.4. Then λ1 = 2 and
λ2 =−2/3 are the roots of the characteristic polynomial P(x), which is of degree 2. Then
the sequence {2n}n∈Z is a periodic strongly∞-GFS, while {(−2/3)n}n∈Z is not.
Remark 3.4. Consider the characteristic power series Q(z) associated with the coefficient
sequence {ai}∞i=0 defined by

Q(z)= 1−
∞∑

i=0
aiz

i+1 (3.5)
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(see [1, Section 6]). If the sequence {ai}∞i=0 satisfies (2.1), then Q(z) converges for |z| < 1
and the equality

Q
(
x−1
)= P(x)

xr − 1
(3.6)

holds (see [2]). Furthermore, by [2], λi are exactly the inverses of the zeros of the power
series Q(z) which lie inside the circle of convergence, and mi coincides with the order of
the zero λ−1i .

Proof of Theorem 3.2. In the following, we use the notation {ai}∞i=0 as in the proof of
Proposition 2.1.

Let us first assume that α′j,t = 0 for all j and all t. In order to show that the sequence
{Vn}n∈Z given by (3.4) for all n ∈ Z is a strongly ∞-GFS associated with the periodic
coefficient sequence (2.2), let us consider the sequence {Wn}n∈Z with Wn = nsλn, where
λ is a root of P(x) with |λ| > 1 with multiplicitym and 0≤ s≤m− 1. Since it is an r-GFS
associated with the coefficient sequence (1.3), for every n∈ Z and N > 0, we have

Wn+1 = a0Wn + a1Wn−1 + ···+ ar−2Wn−r+2 +
(
ar−1 + 1

)
Wn−r+1

= a0Wn + a1Wn−1 + ···+ ar−2Wn−r+2 + ar−1Wn−r+1 +Wn−r+1

= a0Wn + a1Wn−1 + ···+ ar−2Wn−r+2 + ar−1Wn−r+1

+ a0Wn−r + a1Wn−r−1 + ···

+ ar−2Wn−2r+2 +
(
ar−1 + 1

)
Wn−2r+1

= ··· =
Nr−1∑

i=0
aiWn−i +Wn−Nr+1.

(3.7)

Note that

lim
N→∞

Wn−Nr+1 = lim
N→∞

(n−Nr +1)sλn−Nr+1 = 0 (3.8)

holds, since |λ| > 1 and r > 0. Therefore, we have

Wn+1 =
∞∑

i=0
aiWn−i, (3.9)

where the series on the right-hand side converges. Hence the sequence {Wn}n∈Z is a
strongly∞-GFS associated with the periodic coefficient sequence (2.2).

Therefore, if α′j,t = 0 for all j and all t, then the sequence {Vn}n∈Z given by (3.4) for all
n∈ Z is a strongly∞-GFS associated with the periodic coefficient sequence (2.2).

Conversely, suppose that the sequence {Vn}∞n=1 can be extended to a periodic strongly
∞-GFS {Vn}n∈Z associated with the coefficient sequence (2.2). Let us first show that then
Vn should be given by (3.4) even for n < 0.
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Let us fix an arbitrary negative integer h. First, note that the sequence {Vn}∞n=h is an
r-GFS with respect to the coefficient sequence (1.3), since {Vn}n∈Z is a strongly ∞-GFS.
Therefore, there exist complex numbers βi,s and β′j,t such that

Vn =
k∑

i=1

mi−1∑

s=0
βi,sn

sλni +
�∑

j=1

m′
j−1∑

t=0
β′j,tn

t
(
λ′j
)n

(3.10)

holds for all n ≥ h. Since the sequences {nsλni }∞n=0 (1 ≤ i ≤ k, 0 ≤ s ≤ mi − 1) and
{nt(λ′j)n}∞n=0 (1≤ j ≤ �, 0≤ t ≤m′

j − 1) are linearly independent over the complex num-
bers, we see that βi,s = αi,s and β′j,t = α′j,t for all i, s, j, and t. Therefore, Vn with h≤ n < 0
should be given by (3.4). Since h is an arbitrary negative integer, we see that everyVn with
n < 0 should be given by (3.4).

We set

An =
k∑

i=1

mi−1∑

s=0
αi,sn

sλni , Bn =
�∑

j=1

m′
j−1∑

t=0
α′j,tn

t
(
λ′j
)n
. (3.11)

Since Vn exists for all n∈ Z, the series

∞∑

i=0
ai+n−1V−i =

∞∑

i=1
ai+n−1

(
A−i +B−i

)
(3.12)

converges for all n ≥ 1 by [1]. It is easy to see that the series
∑∞

i=0 ai+n−1A−i converges
(absolutely). Hence, the series

∑∞
i=0 ai+n−1B−i should also converge. In particular, we have

limi→∞ ai+n−1B−i = 0 for all n≥ 1. Since the coefficient sequence is periodic and ai �= 0 for
some ai, we should have limi→∞B−i = 0.

Hence, it suffices to prove the following.

Lemma 3.5. Let λ′1, . . . ,λ
′
� be distinct complex numbers such that 0 < |λ′j| ≤ 1 for all 1≤ j ≤

�. Letm′
j be positive integers, 1≤ j ≤ �. If

lim
i→∞

�∑

j=1

(m′
j−1∑

t=0
α′j,t(−i)t

)
(
λ′j
)−i = 0 (3.13)

for complex numbers α′j,t, then α′j,t = 0 for all 1≤ j ≤ � and all 0≤ t ≤m′
j − 1.

Proof. We will prove the lemma by induction on �. When � = 1, we have

B−i =
(m′

1−1∑

t=0
α′1,t(−i)t

)
(
λ′1
)−i

. (3.14)

Suppose that α′1,t �= 0 for some t. Let t̃ be the largest t with α′1,t �= 0. Then we have

lim
i→∞

∣∣∣∣∣

m′
1−1∑

t=0
α′1,t(−i)t

∣∣∣∣∣=
⎧
⎨
⎩
+∞ if t̃ > 0,
∣∣α′1,0

∣∣( �= 0) if t̃ = 0,
(3.15)
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and hence we have limi→∞ |B−i| = +∞ or |α′1,0|, since |λ′1| ≤ 1. This is a contradiction. So,
the assertion is valid for � = 1.

Suppose now that � ≥ 2 and that the assertion is true for �− 1. We may assume that
|λ′�| ≤ |λ′j| for all 1≤ j ≤ �− 1 and thatm′

� ≥m′
j for all j with |λ′�| = |λ′j|. Since

lim
i→∞

B−i = lim
i→∞

�∑

j=1

(m′
j−1∑

t=0
α′j,t(−i)t

)
(
λ′j
)−i = 0, (3.16)

we have

0= lim
i→∞

1
(−i)m′

�−1

�∑

j=1

(m′
j−1∑

t=0
α′j,t(−i)t

)(
λ′�
λ′j

)i

= lim
i→∞

[ �−1∑

j=1

(m′
j−1∑

t=0
α′j,t(−i)t−m

′
�+1

)(
λ′�
λ′j

)i
+

(m′
�−1∑

t=0
α′�,t(−i)t−m

′
�+1

)]
.

(3.17)

Set

Λ= {1≤ j ≤ �− 1 :
∣∣λ′j
∣∣= ∣∣λ′�

∣∣}, Λ̃= { j ∈Λ :m′
j =m′

�

}
. (3.18)

Note that for j with |λ′�| < |λ′j|, we have

lim
i→∞

(m′
j−1∑

t=0
α′j,t(−i)t−m

′
�+1

)(
λ′�
λ′j

)i
= 0. (3.19)

Therefore, we obtain

lim
i→∞

[
∑

j∈Λ

(m′
j−1∑

t=0
α′j,t(−i)t−m

′
�+1

)(
λ′�
λ′j

)i
+

(m′
�−1∑

t=0
α′�,t(−i)t−m

′
�+1

)]
= 0. (3.20)

Furthermore, we have

lim
i→∞

m′
�−1∑

t=0
α′�,t(−i)t−m

′
�+1 = α′�,m′

�−1, (3.21)

and for all j ∈Λ− Λ̃, we have

lim
i→∞

m′
j−1∑

t=0
α′j,t(−i)t−m

′
�+1 = 0. (3.22)

Therefore, we obtain

lim
i→∞

∑

j∈Λ̃

(m′
�−1∑

t=0
α′j,t(−i)t−m

′
�+1

)(
λ′�
λ′j

)i
= lim

i→∞

∑

j∈Λ̃
α′j,m′

�−1

(
λ′�
λ′j

)i
=−α′�,m′

�−1. (3.23)
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If we set

bi =
∑

j∈Λ̃
α′j,m′

�−1

(
λ′�
λ′j

)i
, (3.24)

then this implies that

lim
i→∞

(
bi+1− bi

)= lim
i→∞

∑

j∈Λ̃
α′j,m′

�−1

(
λ′�
λ′j
− 1
)(

λ′�
λ′j

)i
= 0, (3.25)

and hence that

lim
i→∞

∑

j∈Λ̃
α′j,m′

�−1

(
λ′�
λ′j

)i
= 0. (3.26)

Note that |λ′�/λ′j| = 1. Since the number of elements of Λ̃ is strictly smaller than �, we

have, by our induction hypothesis, that α′j,m′
�−1 = 0 for all j ∈ Λ̃.

Repeating this procedure finitely many times, we can finally show that α′j,t = 0 for all
1≤ j ≤ � and all 0≤ t ≤mj − 1. This completes the proof of Lemma 3.5. �

This completes the proof of Theorem 3.2. �

Remark 3.6. If the condition (3.2) is not satisfied, then Vn, n ≥ 1, may not be given by
(3.4). More precisely, let r′ be the largest integer with r′ < r such that ar′−1 �= 0, and set
u= r − r′ +1. If such an ar′−1 does not exist, then set r′ = 0. Then the sequence {Vn}∞n=u
is an r′-GFS, and the terms Vn with 1 ≤ n < u may not satisfy (3.4), where a “0-GFS”
conventionally means the sequence that is constantly zero.

As a corollary to Theorem 3.2, we have a Binet-type formula for periodic strongly∞-
GFSs as follows, where we do not assume the condition (3.2) any more.

Corollary 3.7. Let {Vn}n∈Z be a periodic strongly ∞-GFS associated with the periodic
coefficient sequence (2.2). Then

Vn =
k∑

i=1

mi−1∑

s=0
αi,sn

sλni (3.27)

for all n ∈ Z for some complex numbers αi,s, where λi are the inverses of the zeros of the
characteristic power series given by (3.5) and satisfy |λi| > 1.

In other words, the roots of P(x) whose moduli are less than or equal to 1 do not
appear in the formula. In view of Remark 3.4, Corollary 3.7 gives a positive solution to
[7, Problem 4.5] for periodic strongly ∞-GFSs. In order to get a Binet-type formula, we
should not take the zeros of an analytic continuation of Q(z), but take the zeros of Q(z)
inside the circle of convergence.

Proof of Corollary 3.7. If the condition (3.2) is satisfied, then the conclusion follows im-
mediately from Theorem 3.2.
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Suppose that the condition (3.2) is not satisfied. Take the integer r′ as in Remark 3.6.
Let us first assume that r′ > 0. Since {Vn}n∈Z is a periodic strongly ∞-GFS associated
with the coefficient sequence (2.2), the sequence {Vn}∞n=h is an r′-GFS associated with
the coefficient sequence

{
a0,a1, . . . ,ar′−1

}
(3.28)

for any h ∈ Z by [2]. Therefore, Vn, n ≥ 1, can be expressed as in (3.4), where λi and λ′j
are the roots of the characteristic polynomial associated with the truncated coefficient
sequence (3.28). Then the argument in the proof of Theorem 3.2 can be applied to prove
the desired conclusion.

If r′ = 0, then a0 = a1 = ··· = ar−2 = 0 and ar−1 = −1. In this case, the sequence
{Vn}n∈Z is easily seen to be constantly zero. Hence the conclusion trivially holds. This
completes the proof. �

In fact, we have the following characterization of strongly ∞-GFSs associated with a
periodic coefficient sequence, which follows from the proof of Theorem 3.2 together with
Corollary 3.7.

Corollary 3.8. A sequence {Vn}n∈Z is a strongly ∞-GFS associated with the periodic co-
efficient sequence (2.2) if and only if

Vn =
k∑

i=1

mi−1∑

s=0
αi,sn

sλni (3.29)

holds for all n∈ Z for some complex numbers αi,s, where λi are the inverses of the zeros of the
characteristic power series given by (3.5) and satisfy |λi| > 1.

Note that Corollary 3.8 gives a complete solution to [7, Problem 3.11] in the case where
the coefficient sequence is periodic.

Remark 3.9. As has been observed in [2, Remark 2.5], the subsequence {Vn}∞n=1 of a
periodic ∞-GFS {Vn}n∈Z can be considered as a kr-GFS with respect to the coefficient
sequence {a0, . . . ,akr−2,akr−1 + 1}, where k is an arbitrary positive integer. Let P(k) be the
associated characteristic polynomial. Then we have

P(k)(x)= xkr − a0x
kr−1−···− akr−2x−

(
akr−1 + 1

)

= xkr − 1− (a0xr−1 + ···+ ar−1
)xkr − 1
xr − 1

= xkr − 1
xr − 1

P(x).

(3.30)

Thus the roots of P = P(1) are also roots of P(k). The other roots of P(k) are all krth roots of
unity and these roots do not appear in the Binet-type formula according to Corollary 3.7.

Let us end this section by posing a problem, which is closely related to [7, Problem
3.11].
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Problem 3.10. Suppose that a sequence {Vn}∞n=1 can be extended to an∞-GFS. Then, can
it be extended to a strongly∞-GFS? If yes, then is such an extension unique?

Remark 3.11. We can also define a strongly r-GFS, imitating Definition 3.1. As we can eas-
ily show, if the coefficient sequence {ai}r−1i=0 satisfies ar−1 �= 0, then every r-GFS {Vn}∞n=1
can be extended uniquely to a strongly r-GFS associated with the same coefficient se-
quence.
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