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We prove that if there exists « < f3, a pair of lower and upper solutions of the first-order
discrete periodic problem Au(n) = f(n,u(n));n € Iy ={0,...,N — 1}, u(0) = u(N), with
f acontinuous N-periodic function in its first variable and such that x + f (n,x) is strictly
increasing in x, for every n € Iy, then, this problem has at least one solution such that its
N-periodic extension to N is stable. In several particular situations, we may claim that
this solution is asymptotically stable.

1. Introduction

It is well known that one of the most important concepts in the qualitative theory of dif-
ferential and difference equations is the stability of the solutions of the treated problems.
Classical tools, as approximation by linear equations or Lyapunov functions, have been
developed for both type of equations, see [7] for ordinary differential equations and [8]
for difference ones.

More recently, some authors as, among others, de Coster and Habets [6], Nieto [9],
or Ortega [10], have proved the stability of solutions of adequate ordinary differential
equations that lie between a pair of lower and upper solutions. In this case, fixed points
theorems and degree and index theory are the fundamental arguments to deduce the
mentioned stability results. Stability for order-preserving operators defined on Banach
spaces have been obtained by Dancer in [4] and Dancer and Hess in [5]. On these papers,
the authors describe the assymptotic behavior of the iterates that lie between a lower and
an upper solution of suitable operators.

Our purpose is to ensure the stability of at least one periodic solution of a first-order
difference equation. We will prove such result by using a monotone nondecreasing oper-
ator. In this case, the defined operator does not verify the conditions imposed in [5]. The
so-obtained results are in the same direction as the ones proved by the authors in [3] for
the first-order implicit difference equation Au(i) = f(i,u(i+ 1)) coupled with periodic
boundary conditions. In that situation, we give some optimal conditions on function f
and on the number of the possible periodic solutions of the considered problem, that
warrant the existence of at least one stable solution. The arguments there are different

Copyright © 2005 Hindawi Publishing Corporation
Advances in Difference Equations 2005:3 (2005) 333-343
DOI: 10.1155/ADE.2005.333


http://dx.doi.org/10.1155/S1687183904401010

334  Stability of periodic solutions

from the ones used in this paper because in that situation, due to the lack of unique-
ness of solutions of the initial problem, the discrete operator considered here cannot be
defined.

The paper is organized as follows. In Section 2, we present some fundamental prop-
erties of the set of solutions of initial and periodic problems. In Section 3, we prove the
existence of at least one N-periodic stable solution. Finally, Section 4 is devoted to give
some examples that point out the, in some sense, optimality of the obtained results.

2. Preliminaries

This paper is devoted to study the stability, by using the method of lower and upper
solutions, of the N-periodic solutions of the following first-order difference equation:

(P)
Au(n) = f(n,u(n)); neN, (2.1)

where, for every n € N, Au(n) = u(n+1) —u(n), f : N xR — R is a continuous function,
N-periodic in its first variable for some N € N* = N'\ {0} given.

Throughout the paper, having x = (x(0),...,x(N)) and y = (y(0),..., y(N)), we will
say that x < y in Jy = {0,...,N} if x(j) < y(j) for all j € ]y, we will say that x < y in Jy
when x < y in Jy and there is at least one jy € Jy such that x(jo) < y(jo), moreover x < y
in Jy when x(j) < y(j) for all j € Jy. We will denote

[x,y] = {z = (2(0),...,z2(N)); x <z < yin Jn }. (2.2)

We say that u: N — R is an N-periodic solution of problem (P) if it satisfies equation
(P)in N and u(n) = u(N +n) for all n € N. From the periodicity of f in its first variable,
it is obvious that to look for an N-periodic solution of (P) is equivalent to solve equation

(Pn)

Au(i) = f(i,u(i)); i€ly=10,..,N—1}, u(0) = u(N). (2.3)

Below, we will denote u: [y — Rand & : N — R as a solution of (Py) and its N-periodic
extension to N, respectively.
We define the concept of lower and upper solutions for problem (Py) as follows.

Definition 2.1. Let N € N* be given. Say that & = (a(0),...,a(N)) is a lower solution of
problem (Py) if it satisfies

Aa(i) < f(i,a(i)); i€ ly, a(0) < a(N). (2.4)

The concept of upper solution is given by reversing the previous inequalities.

It is important to note, see [1, 2], that the existence of & and f, a pair of lower and
upper solutions of problem (Py ), such that « < 8 in Jy, does not imply the existence of a
solution of this problem.
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Now, by defining for each n € N, h, : R — R as h,(x) := x + f(n,x) for all x € R, and
g:R—Rasg:=hy_jo---ohjohgy we have that problem (Py) has a solution if and
only if g has a fixed point.

If for every n € Iy, h, is a strictly increasing function on [«a(n),3(n)], with & <  a pair
of lower and upper solutions of problem (Py), then it turns out that for every n € Iy,

a(n+1) <h,(a(n)) <h,(f(n)) <p(n+1), (2.5)

which implies that g([«(0),3(0)]) C [«(0),3(0)].

Now, we assume the following properties.

(H) There exist « and f a pair of lower and upper solutions that are no solutions of
problem (Py), such that & < f in Jy.

(Hf) f:NXR — R is N-periodic in its first variable and for all n € Iy, the func-
tion f(n,-) is continuous on [a(n),B(n)], with « and f given in (H). Moreover,
hy(x) := x+ f(n,x) is strictly increasing on [a(n),B(n)].

As a consequence of the ideas exposed above, we deduce the following existence result

for problem (P).

LEMMA 2.2. Assume that conditions (H) and (H f) are fulfilled, then problem (P) has at
least one N -periodic solution o1 such that u(= ulj,) € [, ].

Remark 2.3. One can see in [1] that the previous property is optimal in the sense that if
hy is not monotone increasing on [a(n),3(n)] for some n € Iy, then the existence result
is not guaranteed.

On the other hand, plainly for every & € R, the initial problem
(P¢)

Au(n) = f(n,u(n)); neN, u(0) = ¢, (2.6)

has a unique solution which will be denoted throughout the paper as u;.
If we denote its restriction to the interval Iy as
(PY)

Au(n) = f(n,u(n)); nely, u(0) =&, (2.7)

then, one can see in [2, Example 2.2] that the existence of & < f3, a pair of lower and upper
solutions of this problem, that is,

Aali) - f(ha(i)) <0< AB() - f(i,f(1)); i€y,  a(0)=<&=<p(0), (2.8)

is not sufficient to ensure that the unique solution of problem (PéV ) lies in [, B]. However,
with an analogous argument to the periodic case, whenever h, is a strictly increasing
function for all n € Iy, we derive that this solution belongs to the sector formed by «
and f3. Moreover, the strict monotony of 4, allows to ensure that the solutions starting at
different initial conditions are not equal at any point.
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From this arguments, one can prove the following result.

LemMa 2.4. If conditions (H) and (H f) hold, then for all £ € [a(0),5(0)], the unique
solution of the initial problem (PfQ’ ) belongs to the sector [a, B]. Moreover, the unique solution
ug of problem (Py) is such that ug|j, € [, f].

If&n € [a(0),5(0)] are such that £ < n, then, & < uglj, < uyly, < pin]y.

Below, we give a more precise description of the set of solutions of problem (Py).

LEmMA 2.5. Assume conditions (H) and (H f). Let u, v € [a, 5] be two solutions of problem
(Pn). Then, one of the following statements is true:
a<u=v<fin]n;
(i) e <u<v << Pin]y;
(i) s <« v < u < fin Jy.

Proof. First we show that @ < uin Jy.

Suppose that there exists 1y € Jy such that a(ng) = u(ng), by using inequalities (2.5),
we obtain that a(n) = u(n) for all n € {0,...,nq}. Therefore, a(N) = u(N), and so a(n) =
u(n) for all n € Jy, which implies that « is a solution of (Py) and it contradicts hypothesis
(H).

Hence, o < u in Jy. Inequality v < 8 in Jy can be proven in a similar way.

Now, if 4(0) = v(0), then, from the uniqueness of solutions of the initial problem, we
conclude that u = v in Jy, and so assertion (i) holds.

However, if 4(0) < v(0), then, from Lemma 2.4 we may assert that u(n) < v(n) for all
n € Jn, so that claim (ii) is proved.

Claim (iii) is fulfilled whenever u(0) > v(0). Il

Previous result establishes that the set of solutions in [a, 3] of problem (Py) (and their
N-periodic extensions of problem (P)) is totally ordered and bounded. From the conti-
nuity of function f, we know that it is closed. Thus, we conclude that there exist y and
¢ the minimum and the maximum of the aforementioned set and, clearly, they match up
the minimal and the maximal solutions, respectively, in [«, ] of problem (Py).

3. Stability

In this section, we prove the stability of at least one N-periodic solution i of problem (P)
such that u belongs to the sector [a, 8].

Here, we say that ug:N—R, the unique solution of the initial problem (Pg), is stable
if and only if for all € > 0, there exists § = 6(¢) € (0,¢) such that [ug(n) — ug(n)| < & for all
n € N*, whenever & € (£ — 8,E+0).

It is asymptotically stable if and only if it is stable and there exists y > 0 such that
limy, o (ug — ug)(n) = 0 forall § € (& - ‘u,f_+‘u).

We will say that it is stable from above if the interval (E-6,E+0)is replaced by (£ E+
0). Similar comment is valid for stable from below and from asymptotically stable from
above and from below.

We will call attractivity set of u; to the biggest interval Vi such that Ee Vg and
limy, .o (ug — ug)(n) = 0 forall § € V.
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Now, for every u: Jy — R, let T'(u) denote the unique solution of problem (PuN(N)).
Note that, from Lemma 2.4, we know that T([a,f3]) C [a,].
Following properties for operator T, carry over.

ProprosITION 3.1. Let & € R be given, then ug : N — R is the solution of the initial prob-
lem (P¢) if and only if ug(n) = T*v(i,), with v: Jy — R the unique solution of the initial
problem (P?I), k, €N, i, €Iy, andn=k,N +i,.

Proof. Let ug and v be the unique solutions of (P¢) and (Pf,\’ ), respectively. By definition,
ug = v in Jy. Since f is N-periodic in its first variable, for every k € N, the values of u¢
on the intervals {kN,...,kN + N — 1} match up the values of the unique solution of the
initial problem (PuNE( k) on Iy, that is, with the values of T*v on Iy. O

As a straightforward consequence of the previous result, we obtain the following char-
acterization of the set of solutions of problem (Py).

CoROLLARY 3.2. Let u: ]y — R, then u is a solution of problem (Py) if and only if u is a
fixed point of operator T.

ProrosITION 3.3. Assume that conditions (H) and (H f) are satisfied, then operator T is
monotone nondecreasing on [a, B].
Moreover, if u,v € [a, ] are such that u(N) < v(N), then Tu < Tv in Jy.

Proof. Letu,v € [a, 3] be such that u < v in Jy. Thus, (Tu)(0) = u(N) < v(N) = (Tv)(0).
The monotonicity of operator T is a direct consequence of condition (H f).
Last part can be easily obtained from Lemma 2.4. O

Remark 3.4. Note that, despite Proposition 3.3 is valid, operator T is not strictly increas-
ing on [a, 8], thatis, if u,v € [«, ] are such that u < vin Jy, then Tu < Tv in Jy. Indeed, it
is enough to consider a pair of functions u,v € [a, 8] such that u(N) = v(N). It is obvious
that Tu = Twv.

This property guarantees that the results given in [5] for strictly increasing operators,
defined on Banach spaces, cannot be applied to the operator T defined above.

PrOPOSITION 3.5. Assume that conditions (H) and (H f) are fulfilled, then a < Ta < T <
ﬁ in ]N-

Proof. Let u = Ta, by definition
u(n+1) =u(n)+ f(n,u(n)), néely; u(0) = a(N) = «(0). (3.1)

Condition (H f) ensures that & < T« in Jy. If the equality holds, then we have that « is
a solution of the periodic problem (Py) which contradicts hypothesis (H). Hence, « < T«
in Jy and the proof of the first inequality is complete.

One can prove in a similar way the fact that T <  in Jy.

As we have proved Lemma 2.5, « < fin ], so that the second inequality follows from
Proposition 3.3. U
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PrOPOSITION 3.6. Assume that conditions (H) and (H f) are fulfilled. Let ag = o, o = f3
and for all m = 1, o, = Taty—1 and By, = TPm-1. Then, the two following properties hold.
(1) {a&m}men is a strictly increasing sequence which converges uniformly in Jy to vy, the
minimal solution in [, 8] of problem (Py).
(2) {Bm}men is a strictly decreasing sequence which converges uniformly in ]y to ¢, the
maximal solution in [a, ] of problem (Py).

Proof. We only prove the first assertion; the second one holds similarly.

If 21 (0) = a1 (N), then «; is a solution of problem (Py). Thus, equality a;(0) = a(N)
establishes that this case is not possible because it contradicts Lemma 2.5.

Moreover, inequality a;(0) > a1 (N) does not hold, so that «;(0) < a;(N). Inequality
a1(0) = ag(N) < y(N) = w(0), Proposition 3.3, and Lemma 2.4 yield ) = Tag < Tty <
y = Ty in Jy. Inductively by using Proposition 3.3, we deduce that o, < Tar,, < Ty =y
in ]N.

The conclusion follows from the boundness from above by y of the sequence {a,; } men
and the definition of y. O

This property allows us to deduce the one-sided asymptotic stability of the N-periodic
extensions of the extremal solutions of the periodic problem (Py). The obtained result is
the following theorem.

Tueorem 3.7. If assumptions (H) and (H f) hold, then ¢ is asymptotically stable from
above and v is asymptotically stable from below. Moreover, sets [¢(0),(0)] and [«(0),y(0)]
are contained in the attractivity sets of ¢ and , respectively.

Proof. We only prove the claim for ¢. The other one can be proven by similar arguments.

Let £ € (¢(0),5(0)]; we know, from Lemma 2.5, that (¢(0),5(0)] is not empty. There
exists, by Proposition 3.6, ip > 1 such that & € (;,(0),i,-1(0)].

Let v: Jy — R be the unique solution of the initial problem (Pé\’ ); monotony proper-
ties of operator T ensure that the sequence {T™v} ey is strictly decreasing in Jy and it
converges uniformly in Jy to ¢.

Proposition 3.1 leads to the desired result. O

Plainly from this result, we may establish the asymptotic stability by assuming unique-
ness of solutions in [a, 3] of problem (Py).

CoroLLARY 3.8. If assumptions (H) and (H f) hold and there exists a unique solution u of
problem (Py) in [a, B, then it is asymptotically stable. Moreover, set [«(0), 3(0)] is contained
in the attractivity set of .

Whenever f is a strictly decreasing function in its second variable, we achieve the
following result.

CoROLLARY 3.9. Suppose that conditions (H) and (H f) hold and that for every n € Iy,
f(n,-) is strictly decreasing on [a(n), 3(n)]. Then, problem (Py) has a unique solution u in
[, B] and @1 is asymptotically stable. Moreover, set [«(0),3(0)] is contained in the attractivity
set of ni.

Proof. Let u and v be two different solutions of problem (Py) in [«, 8]. From Lemma 2.5,
we may assume, without loss of generality, that u < v in Jy. As a consequence, we obtain
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the following contradiction:

N-1 N-
0=u(N)-u(0)= Z n,u(n)) > Z n,v(n)) = v(N) —v(0) = 0. (3.2)
n=0 n=0

O

Remark 3.10. One could intend to prove the previous result by replacing decreasing with
increasing. However, under this assumption, we have that

N-1 N-1
a(N) = a(0) < > f(na(n) < > f(n,B(n) <B(N)-p(0), (3.3)
n=0 n=0

which contradicts hypothesis (H).

Below, for every & € (y(0),¢(0)), we analyse the behavior of the solution of the ini-
tial problem (P¢). In order to do thlS, we study the orbits of the operator T in [y, ¢].
We achieve similar properties to the ones proved by Dancer and Hess in [5] for strictly
increasing operators defined on an arbitrary Banach space. However, as we have noted
in the previous section, we cannot deduce the stability results as a consequence of the
proved results in that reference, because we are not in the presence of a strictly increasing
operator.

Moreover, Theorem 3.7 allows us to prove the following property of one-sided asymp-
totic stability.

ProrosITION 3.11. Assume that conditions (H) and (H f) hold. Let u, v be two solutions
of the periodic problem (Py) such that u < v in Jy and there is no solution of this problem
lying between both functions. Then one of the two following assertions holds.
(1) The N-periodic solution v is asymptotically stable from below. Moreover, set (u(0),
v(0)] is contained in the attractivity set of v.
(2) The N-periodic solution i is asymptotically stable from above. Moreover, set [u(0),
v(0)) is contained in the attractivity set of .

Proof. Suppose that there exists & € (1(0),v(0)) such that u¢(0) < ug(N). By defining of
ao : Jv — R as the unique solution of the initial problem (P?I ), it turns out that oy and
verify condition (H) and v is the minimal solution in [y, 3] of problem (Py).

Hence, the first part of assertion (1) follows from Theorem 3.7.

Now, for all m = 1, let a,, be the unique solution of the final problem

Au(n) = f(n,u(n)); nely, u(N) = au-1(0); (3.4)

it follows from condition (H f) that {a,,}men is a strictly decreasing sequence of lower
solutions of problem (Py) and it converges uniformly in Jy to u.
Now, given 7 € (u(0),£], there exists mg > 0 such that 5 € (m,(0), dm,—1(0)] and so
Uyl € (Cmys Xme—11. The second part of claim (1) follows from Theorem 3.7.
Statement (2) is true provided that there exists & € (1(0),v(0)) such that ug(0) >ug (N).
a
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As a consequence of this result, we can ensure asymptotic stability by assuming a finite
number of solutions of problem (Py) in [a, ].

TaEOREM 3.12. If assumptions (H) and (H f) are fulfilled and problem (Py) has a finite
number of solutions in [a, 3], then at least one N-periodic solution of (P) is asymptotically
stable.

Proof. Define
C:={u € [a,B] :@is an N-periodic solution of (P) and a.s.b.}, (3.5)

where a.s.b. means asymptotically stable from below.

From Theorem 3.7, we know that this set is not empty (¢ € C), moreover it is bounded
from above by ¢ finite, and by Lemma 2.5 well ordered. Proposition 3.11 establishes that
function max C is asymptotically stable. O

Lastly, we consider the opposite case to the previous one, that is, there are not finite
number of solutions of problem (Py) in [«,f]. In this situation, we only guarantee sta-
bility, not asymptotic stability.

TaEOREM 3.13. Ifassumptions (H) and (H f) hold and problem (Py) does not have a finite
number of solutions in [a, 3], then at least one N -periodic solution of (P) is stable.

Proof. Consider set C defined in (3.5); given that it is not empty, bounded from above,
there exists function ug := sup C. Due to the fact that the set of solutions of (Py) is closed
and well ordered, we conclude that us is a solution of problem (Py).

If ug is isolated from below, it is clear that ug € C, and so it is asymptotically stable
from below.

Suppose that ug is not isolated from below, by supremum’s definition and Lemma 2.5,
there exists a strictly increasing monotone sequence {u,} men C C which converges uni-
formly in Jy to us.

Therefore, given € > 0, we know that there exists my € N such that 0 < ug(n) — uy,(n) <
€ for all n € Jy and m = my. Hence, since i, is asymptotically stable from below for
every m € N, Proposition 3.1 together with the nondecreasing properties of operator T
guarantees that i is stable from below.

If us is the limit of a decreasing sequence of solutions of (Py), then it is stable from
above. Otherwise, if it is isolated from above, then it is asymptotic stable from above and
we conclude the proof. O

4. Examples and counterexamples

In this section, we present two examples which illustrate the results obtained in the pre-
vious section. In the first one, we consider a problem with a unique N-periodic solution
in the whole space; we show that this solution is asymptotically stable.

In the second example, we show that Theorem 3.13 cannot be improved, in the sense
that it is possible to find a nontrivial function f such that the set of N-periodic solutions
of problem (P) is not finite and none of these solutions is asymptotically stable.
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Example 4.1. Let N € N* be fixed, consider the following problem

Au(n) = —arctan (u(n) —i,), né€[kN,kN+N—1], k€N, (4.1)

where for every k € N, i, € Iy is given as n = kN +ij,.

Obviously f(n,x) = —arctan(x — i,) is a continuous and strictly decreasing function
in its second variable and N-periodic in the first one.

Let D >0, it is clear that, for D large enough, ap and Bp, defined for every n € Jy
as ap(n) = n—D and Bp(n) = —n+ D, is a pair of lower and upper solutions that are
no solutions of problem (Py) (with f defined above) and they are such that a < f in
Jn, that is, condition (H) is fulfilled. Since f satisfies condition (H f), we deduce, from
Corollary 3.9, that this problem has a unique solution such that its restriction to Jy be-
longs to [ap,Sp] and it is asymptotically stable.

Due to the fact that ap — —c0 and p — 400 whenever D — +co, we claim that the
restriction to Jy of problem (4.1) has only a solution in RN*!, and so problem (4.1) has
a unique N-periodic solution defined in N. Moreover, the attractive set of this solution is
the whole space R.

Remark 4.2. Note that in the previous example, we may ensure the character not only lo-
cal as in the obtained results above, but global of the asymptotic stability of the considered
solution.

Example 4.3. Let f :[—1,2] — R be defined as follows:

X

-5 ifx € [-1,0],
f(x) = {limi—o fix), ifx€[0,1], (4.2)
-2 ifx e [1,2].

Here, the functional sequence f;: [0,1] — R is defined in the following way: f;(x) = 0,
and for i = 1, consider D; = U?:;(aj»,bj-) the union of the 20~V open intervals dropped
from [0,1] in the ith step of the construction of the classical ternary Cantor set.

We define fi(x) = fi_1(x) forall x ¢ D; and, for any j € {1,...,2"°1},

U e [0
. — 4.3
f(x) x—b; . (Jlj-l-bj ( )
f b
, el

It is clear that this function is continuous and nonpositive on [0, 1], moreover the set
of zeros of f is the ternary Cantor set.



342  Stability of periodic solutions

If we look for the constant solutions of problem
Au(n) = f(u(n)), neN, (4.4)

we know that they are the zeros of f, that is, the ternary Cantor set.

On the other hand, since x + f(x) < x on [0, 1], we have that all the constant solutions
are stables from above and solution 0 is asymptotically stable from below. Given that 0 is
not isolated in the set of constant solutions of this problem, it is not asymptotically stable
from above.

Note that « = —1 and § = 2 is a pair of lower and upper solutions that are no solutions
of this problem and conditions (H) and (H f) hold in [a, 5] for N = 1.

Remark 4.4. It is important to note that in spite of the fact that in the previous example
there is not any asymptotic stable solutions of that problem, if we consider solution 0
as a fixed point of operator T, then it is the limit of a strictly increasing sequence of
strict lower solutions (y, < Ty, in Jiy) and a strictly decreasing sequence of strict upper
solutions (Tz, < z, in Jy); that is, it is a strongly order-stable fixed point of T (see [5]).

Thus we may assert that the concepts of asymptotic stable solution and strongly order-
stable fixed point are not equivalent.
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