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We consider a rational system of first-order difference equations in the plane with four parameters
such that all fractions have a common denominator. We study, for the different values of
the parameters, the global and local properties of the system. In particular, we discuss the
boundedness and the asymptotic behavior of the solutions, the existence of periodic solutions,
and the stability of equilibria.

1. Introduction

In recent years, rational difference equations have attracted the attention of many researchers
for varied reasons. On the one hand, they provide examples of nonlinear equations which
are, in some cases, treatable but whose dynamics present some new features with respect to
the linear case. On the other hand, rational equations frequently appear in some biological
models, and, hence, their study is of interest also due to their applications. A good example
of both facts is Ricatti difference equations; the richness of the dynamics of Ricatti equations
is very well-known (see, e.g., [1, 2]), and a particular case of these equations provides the
classical Beverton-Holt model on the dynamics of exploited fish populations [3]. Obviously,
higher-order rational difference equations and systems of rational equations have also been
widely studied but still have many aspects to be investigated. The reader can find in the
following books [4–6], and the works cited therein, many results, applications, and open
problems on higher-order equations and rational systems.

A preliminar study of planar rational systems in the large can be found in the paper
[7] by Camouzis et al. In such work, they give some results and provide some open questions
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for systems of equations of the type

xn+1 =
α1 + β1xn + γ1yn

A1 + B1xn + C1yn

yn+1 =
α2 + β2xn + γ2yn

A2 + B2xn + C2yn

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

, n = 0, 1, . . . , (1.1)

where the parameters are taken to be nonnegative. As shown in the cited paper, some of those
systems can be reduced to some Ricatti equations or to some previously studied second-order
rational equations. Further, since, for some choices of the parameters, one obtains a system
which is equivalent to the case with some other parameters, Camouzis et al. arrived at a list of
325 nonequivalent systems to which the attention should be focused. They list such systems
as pairs (k, l) where k and l make reference to the number of the corresponding equation in
their Tables 3 and 4.

In this paper, we deal with the rational system labelled ((21) and (23)) in [7]. Note
that, for nonnegative coefficients, such a system is neither cooperative nor competitive, but
it has the particularity that denominators in both equations are equal. This allows us to use
some of the techniques developed in [8] to completely obtain the solutions and give a nice
description of the dynamics of the system. In principle, we will not restrict ourselves to the
case of nonnegative parameters, although this case will be considered in detail in the last
section. Hence, we will study the general case of the system

xn+1 =
α1 + β1xn

yn

yn+1 =
α2 + β2xn

yn

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

, n = 0, 1, . . . , (1.2)

where the parameters α1, α2, β1, β2 are given real numbers, and the initial condition (x0, y0)
is an arbitrary vector of R2. It should be noticed that when α1β2 = α2β1 the system can be
reduced to a Ricatti equation (or it does not admit any complete solution, which occurs
for α2 = β2 = 0) and therefore these cases will be neglected. Since we will not assume
nonnegativeness for neither the coefficients nor the initial conditions, a forbidden set will
appear. We will give an explicit characterization of the forbidden set in each case. Obviously,
all the results concerning solutions that we will state in the paper are to be applied only
to complete orbits. We will focus our attention on three aspects of the dynamics of the
system: the boundedness character and asymptotic behavior of its solutions, the existence
of periodic orbits (in particular, of prime period-two solutions), and the stability of the
equilibrium points. It should be remarked that, depending on the parameters, they may
appear asymptotically stable fixed points, stable but not asymptotically stable fixed points,
nonattracting unstable fixed points, and attracting unstable fixed points.

The paper is organized, besides this introduction, in three sections. Section 2 is devoted
to some preliminaries and some results which can be mainly deduced from the general
situation studied in [8]. Next, we study the case β2 = 0 since such assumption yields the
uncoupled globally 2-periodic equation yn+1 = α2/yn and the system is reduced to a linear
first-order equation with 2-periodic coefficients; this will be our Section 3. The main section
of the paper is Section 4, where we give the solutions to the system and the description of the
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dynamics in the general case β2 /= 0. We finish the paper by describing the dynamics in the
particular case where the coefficients and the initial conditions are taken to be nonnegative.

2. Preliminaries and First Results

Systems of linear fractional difference equations Xn+1 = F(Xn) in which denominators are
common for all the components of F have been studied in [8]. If one denotes by q themapping
given by q(a1, a2, . . . , ak+1) = (a1/ak+1, a2/ak+1, . . . , ak/ak+1) for (a1, a2, . . . , ak+1) ∈ R

k+1 with
ak+1 /= 0 and � :Rk → R

k+1 is given by �(a1, a2, . . . , ak) = (a1, a2, . . . , ak, 1), it is shown in such
work that the system can bewritten in the formXn+1 = q◦A◦�(Xn), whereA is a (k+1)×(k+1)
square matrix constructed with the coefficients of the system. In the special case of our system
(1.2) one actually has

(
xn+1

yn+1

)

= q ◦

⎛

⎜
⎜
⎝

β1 0 α1

β2 0 α2

0 1 0

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

xn

yn

1

⎞

⎟
⎟
⎠. (2.1)

This form of the system lets us completely determine its solutions in terms of the powers of
the associated matrix

A =

⎛

⎜
⎜
⎝

β1 0 α1

β2 0 α2

0 1 0

⎞

⎟
⎟
⎠. (2.2)

Actually, the explicit solution to the system with initial condition (x0, y0) is given by

(
xn+1, yn+1

)t = q ◦An(x0, y0, 1
)t
, (2.3)

where Mt stands for the transposed of a matrix M. Therefore, our system can be completely
solved, and the solution starting at (x0, y0) is just the projection by q of the solution of the
linear system Xn+1 = AXn with initial condition X0 = (x0, y0, 1)

t whenever such projection
exists.

Remark 2.1. When such projection does not exist, then (x0, y0) lies in the forbidden set. Clearly,
this may only happen when, for some n ≥ 1, one has

(0, 0, 1)An(x0, y0, 1
)t = 0. (2.4)

Therefore, if ai(n) ∈ R, 0 ≤ i ≤ 2 are such that An = a0(n)I + a1(n)A + a2(n)A2, then one
immediately obtains that the forbidden set is given by the following union of lines:

F =
⋃

n≥1

{(
x0, y0

) ∈ R
2 : a1(n)y0 + a2(n)β2x0 + a2(n)α2 + a0(n) = 0

}
. (2.5)
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The explicit calculation of ai(n), 0 ≤ i ≤ 2 for each n ≥ 3 may be done in several ways. For
instance, one has that a0(n) + a1(n)x + a2(n)x2 is the remainder of the division of xn by the
characteristic polynomial of A. Further, by elementary techniques of linear algebra one can
also compute them in terms of the eigenvalues of A (an approach using the solutions to an
associated linear difference equation may be seen in [9]).

Remark 2.2. As mentioned in the introduction, all through the paper we will consider that

β2α1 /= β1α2, (2.6)

(this is to say that the matrix A is nonsingular) since the cases with β2α1 = β1α2 may be
reduced to a single Ricatti equation. Actually, if α2 = β2 = 0, then the system does not admit
any complete solution, whereas, for α2 /= 0 or β2 /= 0, one has that there exists a constant C such
that α1 = Cα2 and β1 = Cβ2, and hence the first equation of the system may be substituted by
xn+1 = Cyn+1 and then the second one reduces to the Ricatti equation

yn+2 =
α2 + β2Cyn+1

yn+1
, n = 0, 1, . . . , (2.7)

with initial condition y1 = (α2 + β2x0)/y0.

Our main goal will be to give a description of the dynamics of the system in terms of
the eigenvalues of the associated matrix A given in (2.2). We begin with the following result
concerning 2-periodic solutions which is the particularization to our system of the analogous
general result given in Theorem 3.1 and Remark 3.1 of [8].

Proposition 2.3. Consider the system (1.2) with α1β2 /=α2β1. One has the following:

(1) If β2 /= 0, then there are exactly as many equilibria as distinct real eigenvalues of the matrix
A. More concretely, for each real eigenvalue λ, one gets the equilibrium ((λ2 − α2)/β2, λ).

(2) When β2 = 0, one finds that:

(a) if α2 < 0, then there are no fixed points,
(b) if 0 < α2 /= β21, then there are two fixed points at (α1/(

√
α2 − β1),

√
α2) and (−α1/

(
√
α2 + β1),−√α2),

(c) if α2 = β21 and α1 /= 0, then the only equilibrium point is (−α1/2β1,−β1),
(d) if α2 = β21 and α1 = 0, then there is an isolated fixed point (0,−β1) and a whole line of

equilibria (x0, β1).

(3) There exist periodic solutions of prime period 2 if and only if α1β2 = 0.

Proof. As stated in [8], a point (a, b) ∈ R
2 is an equilibrium if and only if (a, b, 1) is an

eigenvector of the associated matrix A. When β2 /= 0, it is straightforward to prove that, for
each real eigenvalue λ, the vector ((λ2 − α2)/β2, λ, 1) is an eigenvector. In the case β2 = 0, the
equilibrium points can be easily computed directly from the equations α2 = y2, α1+β1x = xy.

For the proof of affirmation (2.3), it suffices to bear in mind that, according to [8], the
existence of prime period-two solutions is only possible when the associated matrix A has
an eigenvalue λ such that −λ is also an eigenvalue. Since A is a 3 × 3 square matrix, this
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obviously implies that the trace of A is also an eigenvalue. Hence, β1 is an eigenvalue, but
this is only possible if α1β2 = 0. If α1 = 0, then the initial condition (0, y0) gives a prime period
2 solution whenever y2

0 /=α2 whereas, if α1 /= 0 and β2 = 0, a direct calculation shows that the
solution with initial conditions (0,−β1) is periodic of prime period 2.

We now study the stability of fixed points in some of the cases. Recall that a fixed point
of our system (x∗, y∗) always verifies y∗ = λ for some real eigenvalue λ of the matrix A. We
will say in such case that the fixed point (x∗, y∗) is associated to λ.

Proposition 2.4. Consider the system (1.2) with α1β2 /=α2β1. Let ρ(A) be the spectral radius of the
matrix A given in (2.2), and let λ be an eigenvalue of A.

(1) If |λ| < ρ(A), then the associated equilibrium is unstable.

(2) If |λ| = ρ(A) and all the eigenvalues of A whose modulus is ρ(A) are simple, then the
associated fixed point is stable. Further, if in this case λ is the unique eigenvalue whose
modulus is ρ(A), then it is asymptotically stable.

Proof. The Jacobian matrix of the map F(x, y) = ((α1 + β1x)/y, (α2 + β2x)/y) at a fixed point
(x∗, y∗) is given by

DF
(
x∗, y∗) =

⎛

⎜
⎜
⎜
⎜
⎝

β1
y∗ −x∗/y∗

β2
y∗ −1

⎞

⎟
⎟
⎟
⎟
⎠

. (2.8)

Consider an eigenvalue λ of A, and let λ2, λ3 be the other (nonnecessarily different)
eigenvalues of A. Let us show that the eigenvalues of the Jacobian matrix at a fixed point
associated to λ are just λ2/λ and λ3/λ. The result is trivial when β2 = 0 since the eigenvalues
of A are β1 and ±√α2 and fixed points are always associated to one of the eigenvalues ±√α2.
If β2 /= 0, then x∗ = (λ2 − α2)/β2 and y∗ = λ and, therefore, one obtains

trace
(
DF

(
x∗, y∗)) =

β1 − λ

λ
=

λ2 + λ3
λ

det
(
DF

(
x∗, y∗)) =

−β1λ + λ2 − α2

λ2
=

det(A)
λ3

=
λ2λ3
λ2

,

(2.9)

showing that the eigenvalues of DF(x∗, y∗) are as claimed. Now, the first statement follows at
once since, if |λ| < ρ(A), then at least one of the eigenvalues of DF(x∗, y∗) lies outside the unit
circle. Moreover, when |λ| = ρ(A) and it is the unique eigenvalue with such property, then the
eigenvalues of DF(x∗, y∗) are inside the (open) unit ball, and, hence, the equilibrium (x∗, y∗)
is asymptotically stable, which proves the second part of (2.2).

For the proof of the first part of (2.2), let us recall that if (x∗, y∗) is a fixed point of (1.2)
associated to the real eigenvalue λ, then X∗ = (x∗, y∗, 1)t is a fixed point of the linear system
Xn+1 = (1/λ)AXn. The eigenvalues of the matrixM = (1/λ)A are obviously 1, λ2/λ and λ3/λ.
Since the eigenvalues of A having modulus ρ(A) are simple, so are the eigenvalues of M
having modulus 1. Therefore, the fixed pointX∗ is stable [2, Theorem 4.13]. Now, the stability
of (x∗, y∗) follows at once from (2.3) and the continuity of q in the semispace z > 0.
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3. Case β2 = 0

Recall that, since we are assuming that inequality (2.6) holds, we have β1α2 /= 0. In this case,
the forbidden set of the system reduces to the line y = 0. Since β2 = 0, the second equation of
the system becomes the uncoupled equation

yn+1 =
α2

yn
, (3.1)

which, as far as α2 /= 0, for each initial condition y0 /= 0 gives

yn =

⎧
⎪⎨

⎪⎩

y0 for even n,

α2

y0
for odd n.

(3.2)

Substituting such values in the first equation of the system, we obtain a first-order linear
difference equation with 2-periodic coefficients whose solution is given by x1 = (α1+β1x0)/y0

and, for n > 1,

xn =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(
β21
α2

)n/2
⎡

⎣x0 +
α1

(
β1 + y0

)

α2

n/2∑

k=1

(
α2

β21

)k
⎤

⎦ for even n,

α1

y0
+
β1
y0

(
β21
α2

)(n−1)/2⎡

⎣x0 +
α1

(
β1 + y0

)

α2

(n−1)/2∑

k=1

(
α2

β21

)k
⎤

⎦ for odd n.

(3.3)

Hence, we have proved the following.

Proposition 3.1. If β2 = 0 and β2α1 /= β1α2, then the system (1.2) is solvable for any initial condition
(x0, y0) with y0 /= 0 and the solution (xn, yn) is given by (3.2) and (3.3) where, explicitly, one finds
the following:

(1) If α2 = β21, then for n > 1

xn =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x0 −
α1

(
β1 + y0

)
n

2β21
for even n,

α1

y0
+
β1x0

y0
− α1

(
β1 + y0

)
(n − 1)

2β1y0
for odd n.

(3.4)

(2) If α2 /= β21, then for n > 1

xn =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(
β21
α2

)n/2
⎡

⎣x0 +
α1

(
β1 + y0

)

β21 − α2

⎛

⎝1 −
(

α2

β21

)n/2
⎞

⎠

⎤

⎦ for even n,

α1

y0
+
β1
y0

(
β21
α2

)(n−1)/2⎡

⎣x0 +
α1

(
β1 + y0

)

β21 − α2

⎛

⎝1 −
(

α2

β21

)(n−1)/2⎞

⎠

⎤

⎦ for odd n.

(3.5)
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From the proposition above, one can easily derive the following result which
completely describes the asymptotic behaviour of the solutions to the system.

Corollary 3.2. Consider β2 = 0 and β1α2 /= 0.

(1) When β21 = α2 one finds that

(a) if α1 /= 0, then every solution to the system is unbounded except those with initial
condition (x0,−β1), which are 2-periodic,

(b) if α1 = 0, the system is globally 2-periodic.

(2) If β21 = −α2, then the system (1.2) is globally 4-periodic. Further, the solution corresponding
with the initial condition (x0, y0) is of prime period 2 if and only if 2β21x0+α1(β1+y0) = 0.

(3) If β21 /= |α2|, then the solutions with initial condition ((α1(β1+y0))/(α2−β21), y0) are period-
two solutions. Moreover,

(a) if β21 > |α2|, then any other solution to the system (1.2) is unbounded,

(b) if β21 < |α2|, then any other solution of (1.2) is bounded and tends to one of the period-
two solutions described above.

Proof. The proof is a straightforward consequence of the explicit formulas for xn and yn

given in Proposition 3.1. It should, however, be mentioned that the globally periodicity of
the system in the case β21 = −α2 can be easily seen since the associated matrix A given by
(2.2) in such case verifies A4 = β41I, where I stands for the identity matrix. Actually, a simple
calculation proves that the solution starting at (x0, y0) is the 4-cycle

{
(
x0, y0

)
,

(
α1 + β1x0

y0
,
−β21
y0

)

,

(

−x0 −
α1

(
β1 + y0

)

β21
, y0

)

,

(−β21x0 + α1y0

β1y0
,
−β21
y0

)}

, (3.6)

which is obviously 2-periodic if and only if x0 = −x0 − (α1(β1 + y0))/β21.

From the above result and Proposition 2.4, one easily get the following information
about the stability of the fixed points.

Corollary 3.3. Consider β2 = 0 and β1α2 /= 0.

(1) If β21 = α2, then

(a) for α1 /= 0, the unique fixed point of (1.2) is unstable,

(b) for α1 = 0, every fixed point of (1.2) is stable but not asymptotically stable.

(2) If β21 /=α2 > 0, then

(a) for β21 > α2, both fixed points of (1.2) are unstable,

(b) for β21 < α2, the fixed points of (1.2) are stable but not asymptotically stable.
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4. Case β2 /= 0

Proposition 4.1. Suppose β2 /= 0 and (x0, y0) is an initial condition not belonging to the forbidden
set F. In such case, the solution of system (1.2) is given by

xn =
vn+1

vn−1

1
β2

− α2

β2
, yn =

vn

vn−1
, (4.1)

where vn is the unique solution of the linear difference equation

vn+3 − β1vn+2 − α2vn+1 +
(
β1α2 − β2α1

)
vn = 0, (4.2)

with initial conditions v−1 = 1, v0 = y0, and v1 = β2x0 + α2.

Proof. As we have seen in Section 2, the solution to System (1.2) starting at a point (x0, y0) not
belonging to the forbidden set is just the projection by q of the solution of the linear system
(un+1, vn+1, wn+1)

t = A(un, vn,wn)
t with initial condition (x0, y0, 1)

t, whereA is given by (2.2).
Since the third equation of such linear systems readswn+1 = vn, it can be reduced to the planar
linear system of second-order equations

un+1 = β1un + α1vn−1,

vn+1 = β2un + α2vn−1,
(4.3)

and hence, if (un, vn) is the solution to (4.3) obtained for the initial conditions (u0, v0, v−1) =
(x0, y0, 1), then the solution of our rational system for the initial values (x0, y0) will be

xn+1 =
un

vn−1
, yn+1 =

vn

vn−1
. (4.4)

It is clear that for β2 /= 0, we have that un can be completely determined by (4.3) in terms of
vn+1 and vn−1, and hence it suffices to solve the third-order linear equation

vn+3 − β1vn+2 − α2vn+1 +
(
β1α2 − β2α1

)
vn = 0 (4.5)

trivially deduced from (4.3) and substitute the corresponding values in (4.4) to obtain the
result claimed.

In the following results, we will discuss the behavior of the solutions to (1.2) by
using Proposition 4.1. We shall consider three different cases depending on the roots of the
characteristic polynomial of the linear equation (4.2). Recall that such roots are also the
(possibly complex) eigenvalues of the matrix A given in (2.2).

From Proposition 4.1, we see that the asymptotic behavior of the solutions of System
(1.2) will depend on the asymptotic behavior of the sequences vn/(vn−1), vn being solutions
of the linear difference equation (4.2). The theorem of Poincaré [2, Theorem 8.9] establishes
a general result for the existence of limn→∞vn/(vn−1). In our case, since (4.2) has constant
coefficients, we can directly do the calculations, even in the cases not covered by the Theorem
of Poincaré, to describe the dynamics of system (1.2).
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4.1. The Characteristic Polynomial Has No Distinct
Roots with the Same Module

Let λ1, λ2, and λ3 be the three roots of the characteristic polynomial of the linear difference
equation (4.2) in this case. A condition on the coefficients for this case can be given by

(
(2/3)β1α2 − β2α1 − (2/27)β31

2

)2

≤
(

α2 + (1/3)β21
3

)3

, (4.6)

with α1 /= 0 or α2 ≤ 0. Recall that we assume here that β2α1 /= β1α2 and β2 /= 0.
If λ1 is the characteristic root of maximal modulus, we will denote by L the line

L =
{(

x, y
)
: β2x =

(
β1 − λ1

)(
y + λ1

)}
. (4.7)

Proposition 4.2. Suppose that β2 /= 0 and every root of the characteristic polynomial of the linear
difference equation (4.2) is real and no two distinct roots have the same module. When (x0, y0) is not
in the forbidden set, one finds the following:

(1) If |λ1| > |λ2| > |λ3|, then

(a) System (1.2) admits exactly the three equilibria ((λ2i − α2)/β2, λi), i = 1, 2, 3,

(b) the fixed point ((λ21 − α2)/β2, λ1) attracts every complete solution starting on a point
(x0, y0) which does not belong to the line L,

(c) the corresponding solution to the system with initial condition (x0, y0)/= ((λ23 −
α2)/β2, λ3) and (x0, y0) ∈ L converges to ((λ22 − α2)/β2, λ2).

(2) If |λ1| > |λ2| and λ1 has algebraic multiplicity 2, then

(a) System (1.2) admits exactly the two equilibria ((λ2i − α2)/β2, λi), i = 1, 2,

(b) the fixed point ((λ21 − α2)/β2, λ1) attracts every complete solution except the other
fixed point.

(3) If |λ1| > |λ2| and λ2 has algebraic multiplicity 2, then

(a) System (1.2) admits exactly the two equilibria ((λ2i − α2)/β2, λi), i = 1, 2,

(b) the fixed point ((λ21 − α2)/β2, λ1) attracts every complete solution starting on a point
(x0, y0) which does not belong to the line L,

(c) the corresponding solution to the system with initial condition (x0, y0) ∈ L converges
to ((λ22 − α2)/β2, λ2).

(4) If λ1 has multiplicity 3, then

(a) System (1.2) has a unique equilibrium ((λ21 − α2)/β2, λ1),

(b) the equilibrium is a global attractor.
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Proof. In all the cases, the equilibrium points are directly given by Proposition 2.3. The
assertions concerning the asymptotic behaviour can be derived as a consequence of Case
1 in [2, page 240], bearing in mind that

xn =
vn+1

vn−1

1
β2

− α2

β2
, yn =

vn

vn−1
, (4.8)

and that vn is the solution to the linear equation (4.2) with initial conditions v−1 = 1, v0 = y0,
and v1 = β2x0 + α2.

4.2. The Characteristic Polynomial Has Two Distinct Real
Roots with the Same Module

It is easy to check that this case occurs when β1 /= 0, β2 /= 0, α1 = 0 and α2 > 0. Thus, the roots
of the characteristic polynomial of the linear difference equation (4.2) are β1 and ±√α2.

Proposition 4.3. Suppose β1 /= 0, β2 /= 0, α1 = 0 and α2 > 0. Assume also that (x0, y0) is not in the
forbidden set.

(1) If β21 = α2, then

(a) there are two equilibrium points (0,±β1),
(b) the equilibrium point (0, β1) attracts every complete solution not starting on a point

of the line x = 0,
(c) the solutions starting on a point (x0, y0) of the line x = 0 are prime period-two

solutions except the two equilibrium points (0,±β1).

(2) If β21 > α2, then

(a) there are three equilibrium points ((β21 − α2)/β2, β1) and (0,±√α2),
(b) the equilibrium point ((β21 − α2)/β2, β1) attracts every complete solution not starting

on a point of the line x = 0,
(c) the solutions starting on a point (x0, y0) of the line x = 0 are prime period-two

solutions except the two equilibrium points (0,±√α2),

(3) If β21 < α2, then

(a) there are three equilibrium points ((β21 − α2)/β2, β1) and (0,±√α2),
(b) the solutions starting on a point of the line x = 0 are prime period-two solutions except

the two equilibrium points (0,±√α2),
(c) the solutions starting on a point of the lines β2x + ((α2 − β21)/β1)y = 0 or x = (β21 −

α2)/β2 are unbounded with the only exception of the fixed point ((β21 − α2)/β2, β1),
(d) the solutions starting on any other point (x0, y0) are bounded and each tends to one

of the two-periodic solutions.

Proof. In all cases, the affirmation (a) is a consequence of Proposition 2.3.
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When β21 = α2, the roots are β1, with algebraic multiplicity two, and −β1. By
Proposition 4.1, we know that any solution of the system can be written as

β2xn =
(n + 1)P1 + P2 + P3(−1)n+1
(n − 1)P1 + P2 + P3(−1)n−1

β21 − β21,

yn =
nP1 + P2 + P3(−1)n

(n − 1)P1 + P2 + P3(−1)n−1
β1,

(4.9)

where P1, P2, and P3 actually satisfy

P1 + P2 − P3 =
β2x0 + β21

β1
, P2 + P3 = y0, −P1 + P2 − P3 = β1. (4.10)

If P1 /= 0, then (xn, yn) obviously tends to (0, β1). From (4.10), we see that P1 = 0 if and only
if x0 = 0 and, in such case, xn = 0 and yn takes alternatively the values Aβ1 and A−1β1 with
A = (P2 + P3)/(P2 − P3). Notice that y0 /= 0 guaranties P2 + P3 /= 0 and, since β1 /= 0, we can not
have P1 = 0 and P2 − P3 = 0. This completes the proof of (1.2).

In the case β21 /=α2, by Proposition 4.1, we can write the general solution of the system
as

β2xn =
P1 +

[
P2 + P3(−1)n+1

](√
α2/β1

)n+1

P1 +
[
P2 + P3(−1)n−1

](√
α2/β1

)n−1 β
2
1 − α2,

yn =
P1 +

[
P2 + P3(−1)n

](√
α2/β1

)n

P1 +
[
P2 + P3(−1)n−1

](√
α2/β1

)n−1 β1,

(4.11)

where P1, P2, and P3 satisfy

P1β1 + (P2 − P3)
√
α2 = β2x0 + α2,

P1 + P2 + P3 = y0,

P1β
−1
1 + (P2 − P3)

√

α−1
2 = 1.

(4.12)

When β21 > α2, one immediately gets the results of statement (2.2) with an argument similar
to that of the previous case. Therefore, we will focus our attention on the case β21 < α2. The
condition x0 = 0 is, according to (4.12), equivalent to P1 = 0, and, in such case, one gets xn = 0
and yn takes alternatively the valuesK

√
α2 andK−1√α2 withK = (P2+P3)/(P2−P3) = y0/α2.

Now, if P1 /= 0 and the initial conditions are taken such that P2 + P3 /= 0/=P2 − P3, then (xn, yn)
tends obviously to the 2-cycle {(0, K√

α2), (0, K−1√α2)}whereK = (P2 +P3)/(P2 −P3). On the
contrary, if either P2 + P3 = 0 or P2 − P3 = 0 (and only one of both equalities holds), then both
sequences xn and yn are unbounded. From System (4.12), one gets that P2 −P3 = 0 if and only
if x0 = (β21 −α2)/β2 and that P2 +P3 = 0 is equivalent to β2x0 +((α2 −β21)/β1)y0 = 0. This shows
the validity of (c).
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4.3. The Characteristic Polynomial Has Complex Roots

Now, we consider the case in which the characteristic polynomial of the linear difference
equation has a couple of complex roots ρe±iθ, with sin θ > 0. Let λ/= 0 be the real root. It can
be easily shown that

β1 = λ + 2ρ cos θ, α2 = −
(
2λρ cos θ + ρ2

)
, β2α1 = λρ2 + β1α2, (4.13)

and that this situation occurs when
(

(2/3)β1α2 − β2α1 − (2/27)β31
2

)2

>

(
α2 + (1/3)β21

3

)3

. (4.14)

By Proposition 2.3, we know that the unique equilibrium is ((λ2 − α2)/β2, λ). Denote by L the
line

L =
{(

x, y
)
: β2x =

(
β1 − λ

)(
y + λ

)}
. (4.15)

Notice that (β1 − λ)(y + λ) = 2yρ cos θ − α2 − ρ2. Also, observe that the equilibrium does not
belong to L.

Theorem 4.4. Suppose β2 /= 0 and the characteristic polynomial of the linear difference equation have
complex roots and assume that (x0, y0) is not in the forbidden set.

(1) The solutions starting on the line L remain on it, and they are either all periodic or all
unbounded.

(2) If |λ| > ρ, then the unique equilibrium attracts all the solutions not starting on L.

(3) If |λ| < ρ, then every nonfixed bounded subsequence of a solution accumulates on L.

(4) If |λ| = ρ, then every complete solution (neither starting on the fixed point nor on L) lies on
a nondegenerate conic, which does not contain the equilibrium.

Proof. Assume that (x0, y0) is not the fixed point. Using Proposition 4.1, we have

α2 + β2xn =
Pλn+1 + 2ρn+1 cos(a + (n + 1)θ)
Pλn−1 + 2ρn−1 cos(a + (n − 1)θ)

,

yn =
Pλn + 2ρn cos(a + nθ)

Pλn−1 + 2ρn−1 cos(a + (n − 1)θ)
,

(4.16)

where the constants P ∈ R and a ∈ [0, 2π), together with k ∈ R
+, are given by

⎛

⎜
⎜
⎜
⎜
⎝

λ ρeiθ ρe−iθ

1 1 1

1
λ

e−iθ

ρ

eiθ

ρ

⎞

⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎝

kP

keia

ke−ia

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

α2 + β2x0

y0

1

⎞

⎟
⎟
⎠. (4.17)

Observe that we may consider P ≥ 0, by replacing, if necessary, a with a + π .
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Let us consider the sequences

σn = 2
(ρ

λ

)n

cos(a + nθ), τn = 2
(ρ

λ

)n

sin(a + nθ). (4.18)

It can be easily proved that

α2 + β2xn = λ2
P + σn+1

P + σn−1
, yn = λ

P + σn

P + σn−1
, (4.19)

λσn+1 = ρσn cos θ − ρτn sin θ, ρσn−1 = λσn cos θ + λτn sin θ. (4.20)

As a consequence, λ2σn+1 − 2λρσn cos θ + ρ2σn−1 = 0, and then

α2 + β2xn = 2ρyn cos θ − ρ2 + P
λ2 − 2ρλ cos θ + ρ2

P + σn−1
, (4.21)

which is equivalent to

β2xn −
(
β1 − λ

)(
yn + λ

)
= P

λ2 − 2ρλ cos θ + ρ2

P + σn−1
. (4.22)

Using (4.17), one has that (x0, y0) ∈ L if and only if P = 0, and, from (4.22), we then get that
(xn, yn) ∈ L for all n ≥ 1.

Furthermore, by (4.19), we see that if (x0, y0) ∈ L, then the solution (xn, yn) is periodic
whenever θ/π is a rational number and unbounded otherwise.

Assume now that the solution (xn, yn) does not start on L, this to say, P /= 0. We will
now distinguish the three cases: |λ| > ρ, |λ| < ρ, and |λ| = ρ.

If |λ| > ρ, then by (4.19), one immediately has xn → (λ2 − α2)/β2 and yn → λ.
Suppose now that |λ| < ρ. If (xnk , ynk) is a subsequence satisfying that infk| cos(a+(nk−

1)θ)| > 0, then one obviously has σnk−1 → ∞. Using the definition of σn, one easily gets that
σnk/(σnk−1) is bounded. Then, (xnk , ynk) is a bounded subsequence, and (4.22) shows that it is
attracted by the line L.

On the other hand, if cos(a+(nk −1)θ) → 0, then the left equation in (4.20) leads us to
|σnk(λ/ρ)

nk | → 2 sin θ > 0. Thus, σnk → ∞ and, using (4.20) once more, we get σnk/σnk−1 →
∞. Therefore, (xnk , ynk) is an unbounded subsequence.

Finally, let us suppose ρ = |λ|. If we consider the change of variables

x =
(
β2x + α2 − ρ2

) λ

2λ cos θ − 2ρ
− (

y − λ
) ρλ cos θ
λ cos θ − ρ

,

y =
(
β2x + α2 − ρ2

) 1
2 sin θ

− (
y − λ

)
(
λ + ρ cos θ

)

sin θ
,

(4.23)
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then one may deduce from (4.20) that xn = ρλσn−1/(P + σn−1), yn = ρλτn−1/(P + σn−1).
Therefore, one immediately gets that

xn
2 + yn

2 = 4

(
ρλ

)2

(P + σn−1)2
,

(
xn − ρλ

)2 = P 2

(
ρλ

)2

(P + σn−1)2
, (4.24)

which clearly shows that (xn, yn) lies in the conic x2 + y2 = (4/P 2)(x − ρλ)2, having its focus
in (0, 0), its directrix in the line x = ρλ and eccentricity 2/P . Further, one immediately sees
that the fixed point ((λ2 − α2)/β2, λ) is transformed by the change of variables above in (0, 0)
and, hence, it does not belong to the conic.

Remark 4.5. In the case |λ| < ρ of this last theorem, one might conjecture that every
subsequence of a solution (even a nonbounded one) actually approaches the line L, but this is
not the case. Let us take, for example, the systemwith α1 = 1, and β1 = 3, α2 = −4, β2 = −10, in
which the characteristic roots of the associated polynomial are given by λ = 1 and

√
2eiπ/4 and

consider the solution starting on (x0, y0) = (−11/20, 3/2). We then have that a = 0, P = 1, and
σ2+4k = 0 for all k ≥ 0. One may use (4.22) to show that all the points of the form (x3+4k, y3+4k)
lay on the line 10x + 2y + 3 = 0 while the line L is given by 10x + 2y + 2 = 0. Note, however,
that the subsequences (x4k, y4k), (x1+4k, y1+4k), and (x2+4k, y2+4k) are all bounded and converge
respectively to (−3/5, 2), (−2/5, 1), and (−1/5, 0), which do belong to L.

It should also be noticed that the fixed point lays on the line 10x + 2y + 3 = 0. This is
also the case in the general setting. It follows from (4.22) that whenever σnk−1 = 0 then the
point (xn−k, yn−k) is on the line containing the fixed point which is parallel to L.

Remark 4.6. Notice that, according to the results in [8], when |λ| = ρ and the argument θ of
the complex root is a rational multiple of π , the system is globally periodic.

4.4. Stability of Fixed Points

We finish this section with the complete study of the stability of the fixed points in the case
β2 /= 0.

Theorem 4.7. Suppose that β2 /= 0, let λ be a real eigenvalue of the matrix A given in (2.2). Let
((λ2 − α2)/β2, λ) be the associated fixed point and denote by ρ(A) the spectral radius of A.

(1) If |λ| < ρ(A), then the associated fixed point is unstable.

(2) If |λ| = ρ(A), then the associated equilibrium is stable if and only if every eigenvalue whose
modulus is ρ(A) is a simple eigenvalue. Moreover, the stability is asymptotic if and only if
λ is a simple eigenvalue and it is the unique eigenvalue of A whose modulus is ρ(A).

Proof. The first statement was already proved in Proposition 2.4. Besides, in such proposition,
we have shown that if every eigenvalue whose modulus is ρ(A) is simple then the associated
equilibrium is stable. Let us prove the converse.

According to the results of the previous subsections, the only cases in which one has
a nonsimple eigenvalue of maximal modulus are the cases treated in Proposition 4.2(1) and
(4) and the first case of Proposition 4.3. We will see that in such cases the equilibrium points
associated to eigenvalues of maximal modulus are unstable.

We begin with the case of an eigenvalue λ1 of maximal modulus with multiplicity 2.
For each N ∈ N, N > 1, one may consider the solution with initial conditions (x0, y0) =
((λ21 − α2)/β2 − 2λ21N/((N2 + 1)β2), λ1 − λ1N/(N2 + 1)). The solution of (4.2) in such case is
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given by vn = λn+11 (N2 + 1 − Nn − N)/(N2 + 1), which cannot vanish since N > 1. For this
solution, one has |yN −λ1| = |λ1|N, proving that the equilibrium ((λ21 −α2)/β2, λ1) is unstable.

Similarly, if A has a unique eigenvalue λ of multiplicity 3 then, for each N ∈ N, N /= 0
let us consider (x0, y0) = ((λ2 − α2)/β2 − 2(λ2/β2N2), λ). The corresponding solution to (4.2)
is given by vn = ((N2 − n − n2)λn+1)/N2. It is not difficult to see that vn /= 0 for all n ≥ 1, and
then the solution to our System (1.2) is complete. Further, since yn = vn/vn−1, one gets that
|yN − λ| = 2|λ|. Therefore, the fixed point ((λ2 − α2)/β2, λ) is not stable.

When α1 = 0, β21 = α2 /= 0, there are two equilibrium points associated to eigenvalues
of maximal modulus: (0,±β1). The fixed point (0,−β1) is, according to the result of
Proposition 4.3, unstable since the other equilibrium attracts all the solutions not starting
on the line x = 0. To see that (0, β1) is also unstable, let us choose, for each odd N ∈ N,
the solution starting at (x0, y0) = (−2β21/Nβ2, β1). Then, using (4.10) and the expression for yn

given just above such equation, we have vn = βn+11 +P1nβ
n
1 if n is even and vn = βn+11 +P1(n+1)βn1

if n is odd, where P1 = −β1/N. SinceN is odd, we see that yn exists for all n ∈ N and, further,
we get that |yN − β1| = 2|β1|, which clearly implies that (0, β1) cannot be stable.

Finally, it only remains to prove that when A has distinct simple eigenvalues whose
modulus equal ρ(A), then the fixed point is not asymptotically stable, but this situation can
only happen if either one has the situation described in Proposition 2.3(4) or the one given
in Proposition 4.3(3). In the case of complex eigenvalues, we had seen that all the orbits lie
on conics not going through the fixed point, and, hence, it cannot be asymptotically stable. In
the other case, it is clear that the fixed points (0,±√α2) are not attracting, since every solution
starting on the line x = 0 is 2-periodic.

Remark 4.8. It is interesting to notice that, in the three cases in which there is an eigenvalue of
maximal modulus with multiplicity larger than 1, the corresponding fixed point is attracting
but unstable.

5. Nonnegative Solutions to the System with
Nonnegative Coefficients

When the coefficients of our System (1.2) are nonnegative and we restrict ourselves to
nonnegative initial conditions, many of the cases studied in the previous sections cannot
appear. Further, in such case, one may describe which kind of orbits appear and their
asymptotic behaviour without the previous calculation of the characteristic roots.

It should be noticed that whenever the coefficients in System (1.2) are nonnegative and
α1β2 /=α2β1, every initial condition (x0, y0) with x0 ≥ 0, y0 > 0 gives rise to a complete orbit
except for α2 = 0 where the condition x0 > 0 is also necessary.

It will be convenient to independently study the case α1β2 = 0. The next result is a
simple summary of the results in Section 3 and Proposition 4.3, and, hence, we omit its proof.

Corollary 5.1. Consider that the coefficients in System (1.2) are nonnegative and α1β2 = 0/=α2β1.

(1) If β2 = 0, one has the following.

(a) When α2 ≤ β21, there are no nonnegative periodic orbits and all nonnegative solutions
are unbounded, with the only exception of the case α2 = β21, α1 = 0, which is globally
2-periodic.

(b) When α2 > β21, there exists a nonattractive fixed point (α1/(
√
α2 − β1),

√
α2) and the

whole line (α2 − β21)x0 = α1(β1 + y0) of 2-periodic solutions. Every other nonnegative
solution is bounded and converges to one of the 2-cycles.
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(2) If β2 /= 0 = α1, then every nonnegative solution is bounded and the ones starting in the line
x0 = 0 are 2-periodic. Moreover,

(a) when α2 < β21, there are two nonnegative fixed points: ((β21 − α2)/β2, β1), which
attracts all nonperiodic nonnegative solutions, and (0,

√
α2).

(b) When α2 = β21, there is a unique nonnegative equilibrium (0, β1) which attracts all
nonperiodic nonnegative solutions.

(c) When α2 > β21, the unique nonnegative equilibrium is (0,
√
α2) which is not an

attractor. Every nonnegative solution converges to one of the periodic solutions.

The remaining cases are jointly treated in the following result. All the definitions and
results on nonnegative matrices, which are used in its proof, may be found in [10, Chapter 8].

Proposition 5.2. Suppose that System (1.2) has nonnegative coefficients and that α1β2 /= 0.

(1) If α2 /= 0 or β1 /= 0, then there is a unique nonnegative (actually, positive) stable equilibrium
which attracts all nonnegative solutions.

(2) If α2 = β1 = 0, the system is globally 3-periodic with a unique equilibrium.

Proof. Let us consider A as in (2.2). A simple calculation shows that (A + I)2 is positive
and, therefore, A is irreducible. Then, the spectral radius ρ(A) is a strictly positive simple
eigenvalue of A.

If there exists another eigenvalue λ such that |λ| = ρ(A) then, since A is nonnegative
and irreducible, the eigenvalues of A should be λk+1 = ρ(A)eikπ/3 where k = 0, 1, 2 and,
consequently, A3 = ρ(A)3I. The direct computation of A3 shows that this is possible if and
only if α2 = β1 = 0 and, hence, in that case, the system is 3-periodic, and the only equilibrium
is the one associated to the real eigenvalue ρ(A).

In the remaining cases, λ1 = ρ(A) is a dominant eigenvalue and, according to our
results of Propositions 2.4, 4.2 and Theorem 4.4, the corresponding fixed point is stable and
attracts all complete solutions except those starting on the line

L =
{(

x, y
)
: β2x =

(
β1 − λ1

)(
y + λ1

)}
. (5.1)

Since λ1 is the largest eigenvalue of A, one has that det(A − μI) < 0 for all μ > λ1. However,
det(A − β1I) = α1β2 > 0, showing that β1 < λ1. Thus, for every x0 ≥ 0 and y0 > 0, one obtains
β2x0 ≥ 0 and (β1 − λ1)(y0 + λ1) < 0, which proves that (x0, y0) /∈ L.

The equilibrium associated to the eigenvalue λ1 = ρ(A) is ((λ21 − α2)/β2, λ1), which is
positive since, as before, one sees that det(A − √

α2I) = α1β2 > 0 and hence λ1 >
√
α2.
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