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An easy proof of the John-Nirenberg inequality is provided by merely using the Calderón-
Zygmund decomposition. Moreover, an interpolation inequality is presented with the help of the
John-Nirenberg inequality.

1. Introduction

It is well known that various interpolation inequalities play an important role in the study of
operational equations, partial differential equations, and variation problems (see, e.g., [1–6]).
So, it is an issue worthy of deep investigation.

Let Q0 be either Rn or a fixed cube in Rn. For f ∈ L1
loc(Q0), write

∥
∥f

∥
∥
BMO := sup

Q⊂Q0

1
|Q|

∫

Q

∣
∣f − fQ

∣
∣dx, (1.1)

where the supremum is taken over all cubes Q ⊂ Q0 and fQ := (1/|Q|) ∫Q fdx.
Recall that BMO(Q0) is the set consisting of all locally integrable functions on Q0

such that ‖f‖BMO < ∞, which is a Banach space endowed with the norm ‖ · ‖BMO. It is clear
that any bounded function on Q0 is in BMO(Q0), but the converse is not true. On the other
hand, the BMO space is regarded as a natural substitute for L∞ in many studies. One of the
important features of the space is the John-Nirenberg inequality. There are several versions
of its proof; see, for example, [2, 7–9]. Stimulated by these works, we give, in this paper, an
easy proof of the John-Nirenberg inequality by using the Calderón-Zygmund decomposition
only. Moreover, with the help of this inequality, an interpolation inequality is showed for Lp

and BMO norms.
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2. Results and Proofs

Lemma 2.1 (John-Nirenberg inequality). If f ∈ BMO(Q0), then there exist positive constants c1,
c2 such that, for each cube Q ⊂ Q0,

∣
∣
{

x ∈ Q :
∣
∣f(x) − fQ

∣
∣ > t

}∣
∣ ≤ c1 exp

{

− c2
∥
∥f

∥
∥
BMO

t

}

|Q|, t > 0. (2.1)

Proof. Without loss of generality, we can and do assume that ‖f‖BMO = 1.
For each t > 0, let F(t) denote the least number for which we have

∣
∣
{

x ∈ Q :
∣
∣f(x) − fQ

∣
∣ > t

}∣
∣ ≤ F(t)|Q|, (2.2)

for any cube Q ⊂ Q0. It is easy to see that F(t) ≤ 1(t > 0) and F(t) is decreasing.
Fix a cube Q ⊂ Q0. Applying the Calderón-Zygmund decomposition (cf., e.g., [2, 9])

to |f(x) − fQ| on Q, with 2n as the separating number, we get a sequence of disjoint cubes
{Qj} and E such that

Q =

⎛

⎝
⋃

j

Qj

⎞

⎠ ∪ E, (2.3)

∣
∣f(x) − fQ

∣
∣ ≤ 2n, for a.e. x ∈ E, (2.4)

2n <
1

∣
∣Qj

∣
∣

∫

Qj

∣
∣f − fQ

∣
∣dx ≤ 4n. (2.5)

Using (2.5), we have

∑

j

∣
∣Qj

∣
∣ <

1
2n

|Q|. (2.6)

From (2.3), (2.4), and (2.6), we deduce that for t > 4n,

∣
∣
{

x ∈ Q :
∣
∣f(x) − fQ

∣
∣ > t

}∣
∣ =

∣
∣
∣
∣
∣
∣

⋃

j

{

x ∈ Qj :
∣
∣f(x) − fQ

∣
∣ > t

}

∣
∣
∣
∣
∣
∣

≤
∑

j

∣
∣
{

x ∈ Qj :
∣
∣f(x) − fQ

∣
∣ > t − 4n

}∣
∣

=
∑

j

∣
∣Qj

∣
∣

1
∣
∣Qj

∣
∣

∣
∣
{

x ∈ Qj :
∣
∣f(x) − fQ

∣
∣ > t − 4n

}∣
∣

≤ 1
2n

F(t − 4n)|Q|.

(2.7)
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This yields that

F(t) ≤ 1
2n

F(t − 4n), t > 4n. (2.8)

Let γ = [(t − 1)4−n] (t > 4n), μ = 1 + γ4n. Then 0 < μ ≤ t. By iterating, we get

F(t) ≤ F
(

μ
)

= F
(

1 + γ4n
) ≤ 2−nγ ≤ 2−n((t−1)4

−n−1)

= 2n(1+4
−n) exp

(−(log 2)n4−nt), t > 4n.
(2.9)

Thus, letting

c1 = 2n(1+4
−n), c2 =

(

log 2
)

n4−n (2.10)

gives that

F(t) ≤ c1e
−c2t, t > 0, (2.11)

since

F(t) ≤ 1 ≤ c1e
−c2t, 0 < t ≤ 4n. (2.12)

This completes the proof.

Remark 2.2. (1) As we have seen, the recursive estimation (2.8) justifies the desired
exponential decay of F(t).

(2) There exists a gap in the proof of the John-Nirenberg inequality given in [2].
Actually, for a decreasing function G(t) : (0,∞) → [0, 1], the following estimate:

G(2 · 2nα) ≤ 1
α
G(2nα), α > 1 (2.13)

does not generally imply such a property, that is, the existence of constants c1, c2 > 0 such
that

G(t) ≤ c1e
−c2t, t > 0. (2.14)

We present the following function as a counter example:

G(t) = exp

{

−
(

log
5
3

)−1
log2(t + 1)

}

, t > 0. (2.15)
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In fact, it is easy to see that there are no constants c1, c2 > 0 such that (2.14) holds. On the
other hand, we have

G′(t)
G(t)

=

{

−
(

log
5
3

)−1
2
log(t + 1)

t + 1

}

, t > 0. (2.16)

Integrating both sides of the above equation from 2nα to 2 · 2nα, we obtain

G(2 · 2nα) = exp

{

−2
(

log
5
3

)−1 ∫2·2nα

2nα

log(t + 1)
t + 1

dt

}

G(2nα)

= exp

{

−
(

log
5
3

)−1(
log2(2 · 2nα + 1) − log2(2nα + 1)

)
}

G(2nα)

= exp

{

−
(

log
5
3

)−1
log((2 · 2nα + 1)(2nα + 1)) · log

(
2 · 2nα + 1
2nα + 1

)}

G(2nα)

≤ exp
{− log((2 · 2nα + 1)(2nα + 1))

}

G(2nα)

=
1

(2 · 2nα + 1)(2nα + 1)
G(2nα)

≤ 1
α
G(2nα),

(2.17)

where the fact that

2 · 2nα + 1
2nα + 1

>
5
3

(α > 1) (2.18)

is used to get the first inequality above. This means that

G(2 · 2nα) ≤ 1
α
G(2nα), α > 1. (2.19)

Next, we make use of the John-Nirenberg inequality to obtain an interpolation
inequality for Lp and BMO norms.

Theorem 2.3. Suppose that 1 ≤ p < r < ∞ and f ∈ Lp(Q0) ∩ BMO(Q0). Then we have

∥
∥f

∥
∥
Lr ≤ (const)

∥
∥f

∥
∥
p/r

Lp

∥
∥f

∥
∥
1−p/r
BMO . (2.20)
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Proof. If ‖f‖BMO = 0, the proof is trivial; so we assume that ‖f‖BMO /= 0. In view of the
Calderón-Zygmund decomposition theorem, there exists a sequence of disjoint cubes {Qj}
and E such that

Q0 =

⎛

⎝
⋃

j

Qj

⎞

⎠ ∪ E, (2.21)

∣
∣f(x)

∣
∣
p ≤ ∥

∥f
∥
∥
p

BMO for a.e. x ∈ E, (2.22)

∥
∥f

∥
∥
p

BMO <
1

∣
∣Qj

∣
∣

∫

Qj

∣
∣f(x)

∣
∣
p
dx ≤ 2n

∥
∥f

∥
∥
p

BMO. (2.23)

From (2.23), we get

∑

j

∣
∣Qj

∣
∣ <

1
∥
∥f

∥
∥
p

BMO

∫

Q0

∣
∣f(x)

∣
∣
p
dx =

∥
∥f

∥
∥
p

Lp
∥
∥f

∥
∥
p

BMO

,

∣
∣f
∣
∣
Qj

=
1

∣
∣Qj

∣
∣

∫

Qj

∣
∣f(x)

∣
∣dx ≤

(

1
∣
∣Qj

∣
∣

∫

Qj

∣
∣f(x)

∣
∣
p
dx

)1/p

≤ 2n/p
∥
∥f

∥
∥
BMO.

(2.24)

Using (2.21)–(2.24), together with Lemma 2.1, yields that, for λ > 2n/p‖f‖BMO,

∣
∣
{

x ∈ Q0 :
∣
∣f(x)

∣
∣ > λ

}∣
∣ =

∣
∣
∣
∣
∣
∣

⋃

j

{

x ∈ Qj :
∣
∣f(x)

∣
∣ > λ

}

∣
∣
∣
∣
∣
∣

≤
∑

j

∣
∣
∣

{

x ∈ Qj :
∣
∣
∣f(x) − fQj

∣
∣
∣ > λ −

∣
∣
∣fQj

∣
∣
∣

}∣
∣
∣

≤
∑

j

∣
∣Qj

∣
∣

1
∣
∣Qj

∣
∣

∣
∣
∣

{

x ∈ Qj :
∣
∣
∣f(x) − fQj

∣
∣
∣ > λ − 2n/p

∥
∥f

∥
∥
BMO

}∣
∣
∣

≤
∑

j

c1 exp

{

− c2
∥
∥f

∥
∥
BMO

(

λ − 2n/p
∥
∥f

∥
∥
BMO

)
}

∣
∣Qj

∣
∣

≤ c1 exp

{

− c2
∥
∥f

∥
∥
BMO

(

λ − 2n/p
∥
∥f

∥
∥
BMO

)
} ∥

∥f
∥
∥
p

Lp

∥
∥f

∥
∥
p

BMO

.

(2.25)
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From (2.25), we obtain

∥
∥f

∥
∥
r

Lr = r

∫∞

0
λr−1

∣
∣
{

x ∈ Q0 :
∣
∣f(x)

∣
∣ > λ

}∣
∣dλ

= r

∫2n/p‖f‖BMO

0
λr−1

∣
∣
{

x ∈ Q0 :
∣
∣f(x)

∣
∣ > λ

}∣
∣dλ

+ r

∫∞

2n/p‖f‖BMO

λr−1
∣
∣
{

x ∈ Q0 :
∣
∣f(x)

∣
∣ > λ

}∣
∣dλ

≤ r

∫2n/p‖f‖BMO

0
λr−1

∥
∥f

∥
∥
p

Lp

λp
dλ

+ r

∫∞

2n/p‖f‖BMO

λr−1c1 exp

{

− c2
∥
∥f

∥
∥
BMO

(

λ − 2n/p
∥
∥f

∥
∥
BMO

)
}

f
∥
∥f

∥
∥
p

Lp

∥
∥f

∥
∥
p

BMO

dλ

=
r

r − p
2(n/p)(r−p)

∥
∥f

∥
∥
r−p
BMO

∥
∥f

∥
∥
p

Lp +
rc1
c2

2(n/p)(r−1)
∥
∥f

∥
∥
r−p
BMO

∥
∥f

∥
∥
p

Lp

≤ (const)
∥
∥f

∥
∥
r−p
BMO

∥
∥f

∥
∥
p

Lp .

(2.26)

Hence, the proof is complete.
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