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We use the Krasnoselskii fixed point principle to obtain the existence of pseudo almost
automorphic mild solutions to some classes of nonautonomous partial evolutions equations in
a Banach space.

1. Introduction

LetX be a Banach space. In the recent paper byDiagana [1], the existence of almost automorphic
mild solutions to the nonautonomous abstract differential equations

u′(t) = A(t)u(t) + f(t, u(t)), t ∈ R, (1.1)

where A(t) for t ∈ R is a family of closed linear operators with domains D(A(t)) satisfying
Acquistapace-Terreni conditions, and the function f : R × X �→ X is almost automorphic in
t ∈ R uniformly in the second variable, was studied. For that, the author made extensive
use of techniques utilized in [2], exponential dichotomy tools, and the Schauder fixed point
theorem.

In this paper we study the existence of pseudo-almost automorphic mild solutions to
the nonautonomous partial evolution equations

d

dt
[u(t) +G(t, u(t))] = A(t)u(t) + F(t, u(t)), t ∈ R, (1.2)
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where A(t) for t ∈ R is a family of linear operators satisfying Acquistpace-Terreni conditions
and F,G are pseudo-almost automorphic functions. For that, we make use of exponential
dichotomy tools as well as the well-known Krasnoselskii fixed point principle to obtain
some reasonable sufficient conditions, which do guarantee the existence of pseudo-almost
automorphic mild solutions to (1.2).

The concept of pseudo-almost automorphy is a powerful generalization of both the
notion of almost automorphy due to Bochner [3] and that of pseudo-almost periodicity
due to Zhang (see [4]), which has recently been introduced in the literature by Liang et
al. [5–7]. Such a concept, since its introduction in the literature, has recently generated
several developments; see, for example, [8–12]. The question which consists of the existence
of pseudo-almost automorphic solutions to abstract partial evolution equations has been
made; see for instance [10, 11, 13]. However, the use of Krasnoselskii fixed point principle
to establish the existence of pseudo-almost automorphic solutions to nonautonomous partial
evolution equations in the form (1.2) is an original untreated problem, which is the main
motivation of the paper.

The paper is organized as follows: Section 2 is devoted to preliminaries facts related
to the existence of an evolution family. Some preliminary results on intermediate spaces are
also stated there. Moreover, basic definitions and results on the concept of pseudo-almost
automorphy are also given. Section 3 is devoted to the proof of the main result of the paper.

2. Preliminaries

Let (X, ‖·‖) be a Banach space. If L is a linear operator on the Banach spaceX, then,D(L), ρ(L),
σ(L), N(L), and R(L) stand, respectively, for its domain, resolvent, spectrum, null-space or
kernel, and range. If L : D = D(L) ⊂ X �→ X is a linear operator, one sets R(λ, L) := (λI − L)−1

for all λ ∈ ρ(A).
If Y,Z are Banach spaces, then the space B(Y,Z) denotes the collection of all bounded

linear operators from Y into Z equipped with its natural topology. This is simply denoted by
B(Y) when Y = Z. If P is a projection, we set Q = I − P .

2.1. Evolution Families

This section is devoted to the basic material on evolution equations as well the dichotomy
tools. We follow the same setting as in the studies of Diagana [1].

Assumption (H.1) given below will be crucial throughout the paper.

(H.1) The family of closed linear operators A(t) for t ∈ R on X with domain
D(A(t)) (possibly not densely defined) satisfy the so-called Acquistapace-Terreni
conditions, that is, there exist constants ω ≥ 0, θ ∈ (π/2, π), K,L ≥ 0, and
μ, ν ∈ (0, 1] with μ + ν > 1 such that

Sθ

⋃
{0} ⊂ ρ(A(t) −ω) 	 λ, ‖R(λ,A(t) −ω)‖ ≤ K

1 + |λ| ,

‖(A(t) −ω)R(λ,A(t) −ω)[R(ω,A(t)) − R(ω,A(s))]‖ ≤ L|t − s|μ|λ|−ν,
(2.1)

for t, s ∈ R, λ ∈ Sθ := {λ ∈ C \ {0} : | argλ| ≤ θ}.
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It should mentioned that (H.1) was introduced in the literature by Acquistapace et
al. in [14, 15] for ω = 0. Among other things, it ensures that there exists a unique evolution
family

U = {U(t, s) : t, s ∈ R such that t ≥ s}, (2.2)

on X associated with A(t) such that U(t, s)X ⊂ D(A(t)) for all t, s ∈ Rwith t ≥ s, and

(a) U(t, s)U(s, r) = U(t, r) for t, s, r ∈ R such that t ≥ s ≥ r;

(b) U(t, t) = I for t ∈ R where I is the identity operator of X;

(c) (t, s) �→ U(t, s) ∈ B(X) is continuous for t > s;

(d) U(·, s) ∈ C1((s,∞), B(X)), (∂U/∂t)(t, s) = A(t)U(t, s) and

∥∥∥A(t)kU(t, s)
∥∥∥ ≤ K(t − s)−k, (2.3)

for 0 < t − s ≤ 1, k = 0, 1;

(e) (∂+U(t, s)/∂s)(x) = −U(t, s)A(s)x for t > s and x ∈ D(A(s))withA(s)x ∈ D(A(s)).

It should also be mentioned that the above-mentioned proprieties were mainly
established in [16, Theorem 2.3] and [17, Theorem 2.1]; see also [15, 18]. In that case we say
that A(·) generates the evolution family U(·, ·). For some nice works on evolution equations,
which make use of evolution families, we refer the reader to, for example, [19–29].

Definition 2.1. One says that an evolution family U has an exponential dichotomy (or is
hyperbolic) if there are projections P(t) (t ∈ R) that are uniformly bounded and strongly
continuous in t and constants δ > 0 and N ≥ 1 such that

(f) U(t, s)P(s) = P(t)U(t, s);

(g) the restriction UQ(t, s) : Q(s)X → Q(t)X of U(t, s) is invertible (we then set
ŨQ(s, t) := UQ(t, s)

−1);

(h) ‖U(t, s)P(s)‖ ≤ Ne−δ(t−s) and ‖ŨQ(s, t)Q(t)‖ ≤ Ne−δ(t−s) for t ≥ s and t, s ∈ R.

Under Acquistpace-Terreni conditions, the family of operators defined by

Γ(t, s) =

⎧
⎨

⎩
U(t, s)P(s), if t ≥ s, t, s ∈ R,

−ŨQ(t, s)Q(s) if t < s, t,∈ R

(2.4)

are called Green function corresponding toU and P(·).
This setting requires some estimates related to U(t, s). For that, we introduce the

interpolation spaces for A(t). We refer the reader to the following excellent books [30–32]
for proofs and further information on theses interpolation spaces.

LetA be a sectorial operator on X (for that, in assumption (H.1), replaceA(t)with (A)
and let α ∈ (0, 1). Define the real interpolation space

X
A
α :=

{
x ∈ X : ‖x‖Aα := sup

r>0
‖rα(A −ω)R(r,A −ω)x‖ < ∞

}
, (2.5)
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which, by the way, is a Banach space when endowed with the norm ‖ · ‖Aα . For convenience
we further write

X
A
0 := X, ‖x‖A0 := ‖x‖, X

A
1 := D(A),

‖x‖A1 := ‖(ω −A)x‖.
(2.6)

Moreover, let X̂A := D(A) of X. In particular, we have the following continuous embedding:

D(A) ↪→ X
A
β ↪→ D

(
(ω −A)α

)
↪→ X

A
α ↪→ X̂

A ↪→ X, (2.7)

for all 0 < α < β < 1, where the fractional powers are defined in the usual way.
In general,D(A) is not dense in the spaces XA

α and X. However, we have the following
continuous injection:

X
A
β ↪→ D(A)

‖·‖Aα (2.8)

for 0 < α < β < 1.
Given the family of linear operators A(t) for t ∈ R, satisfying (H.1), we set

X
t
α := X

A(t)
α , X̂

t := X̂
A(t) (2.9)

for 0 ≤ α ≤ 1 and t ∈ R, with the corresponding norms.
Now the embedding in (2.7) holds with constants independent of t ∈ R. These

interpolation spaces are of class Jα [32, Definition 1.1.1], and hence there is a constant c(α)
such that

∥∥y
∥∥t

α ≤ c(α)
∥∥y

∥∥1−α∥∥A(t)y
∥∥α

, y ∈ D(A(t)). (2.10)

We have the following fundamental estimates for the evolution family U(t, s).

Proposition 2.2 (see [33]). Suppose that the evolution family U = U(t, s) has exponential
dichotomy. For x ∈ X, 0 ≤ α ≤ 1, and t > s, the following hold.

(i) There is a constant c(α), such that

‖U(t, s)P(s)x‖tα ≤ c(α)e−(δ/2)(t−s)(t − s)−α‖x‖. (2.11)

(ii) There is a constant m(α), such that

∥∥∥ŨQ(s, t)Q(t)x
∥∥∥
s

α
≤ m(α)e−δ(t−s)‖x‖. (2.12)

In addition to above, we also assume that the next assumption holds.
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(H.2) The domain D(A(t)) = D is constant in t ∈ R. Moreover, the evolution family
U = (U(t, s))t≥s generated by A(·) has an exponential dichotomy with constants
N,δ > 0 and dichotomy projections P(t) for t ∈ R.

2.2. Pseudo-Almost Automorphic Functions

Let BC(R,X) denote the collection of all X-valued bounded continuous functions. The
space BC(R,X) equipped with its natural norm, that is, the sup norm is a Banach space.
Furthermore, C(R,Y) denotes the class of continuous functions from R into Y.

Definition 2.3. A function f ∈ C(R,X) is said to be almost automorphic if, for every sequence
of real numbers (s′n)n∈N, there exists a subsequence (sn)n∈N such that

g(t) := lim
n→∞

f(t + sn) (2.13)

is well defined for each t ∈ R, and

lim
n→∞

g(t − sn) = f(t) (2.14)

for each t ∈ R.

If the convergence above is uniform in t ∈ R, then f is almost periodic in the classical
Bochner’s sense. Denote byAA(X) the collection of all almost automorphic functions R �→ X.
Note that AA(X) equipped with the sup-norm ‖ · ‖∞ turns out to be a Banach space.

Among other things, almost automorphic functions satisfy the following properties.

Theorem 2.4 (see [34]). If f, f1, f2 ∈ AA(X), then

(i) f1 + f2 ∈ AA(X),

(ii) λf ∈ AA(X) for any scalar λ,

(iii) fα ∈ AA(X), where fα : R → X is defined by fα(·) = f(· + α),

(iv) the range Rf := {f(t) : t ∈ R} is relatively compact in X, thus f is bounded in norm,

(v) if fn → f uniformly on R, where each fn ∈ AA(X), then f ∈ AA(X) too.

Let (Y, ‖ · ‖
Y
) be another Banach space.

Definition 2.5. A jointly continuous function F : R × Y �→ X is said to be almost automorphic
in t ∈ R if t �→ F(t, x) is almost automorphic for all x ∈ K (K ⊂ Y being any bounded subset).
Equivalently, for every sequence of real numbers (s′n)n∈N, there exists a subsequence (sn)n∈N
such that

G(t, x) := lim
n→∞

F(t + sn, x) (2.15)
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is well defined in t ∈ R and for each x ∈ K, and

lim
n→∞

G(t − sn, x) = F(t, x) (2.16)

for all t ∈ R and x ∈ K.
The collection of such functions will be denoted by AA(Y,X).

For more on almost automorphic functions and related issues, we refer the reader to,
for example, [1, 4, 9, 13, 34–39].

Define

PAP0(R,X) :=
{
f ∈ BC(R,X) : lim

r→∞
1
2r

∫ r

−r

∥∥f(s)
∥∥ds = 0

}
. (2.17)

Similarly, PAP0(Y,X) will denote the collection of all bounded continuous functions
F : R × Y �→ X such that

lim
T →∞

1
2r

∫ r

−r
‖F(s, x)‖ds = 0 (2.18)

uniformly in x ∈ K, where K ⊂ Y is any bounded subset.

Definition 2.6 (see Liang et al. [5, 6]). A function f ∈ BC(R,X) is called pseudo-almost
automorphic if it can be expressed as f = g + φ, where g ∈ AA(X) and φ ∈ PAP0(X). The
collection of such functions will be denoted by PAA(X).

The functions g and φ appearing in Definition 2.6 are, respectively, called the almost
automorphic and the ergodic perturbation components of f .

Definition 2.7. A bounded continuous function F : R × Y �→ X belongs to AA(Y,X) whenever
it can be expressed as F = G +Φ, where G ∈ AA(Y,X) and Φ ∈ PAP0(Y,X). The collection of
such functions will be denoted by PAA(Y,X).

An important result is the next theorem, which is due to Xiao et al. [6].

Theorem 2.8 (see [6]). The space PAA(X) equipped with the sup norm ‖ · ‖∞ is a Banach space.

The next composition result, that is Theorem 2.9, is a consequence of [12, Theorem 2.4].

Theorem 2.9. Suppose that f : R×Y �→ X belongs to PAA(Y,X); f = g+h, with x �→ g(t, x) being
uniformly continuous on any bounded subset K of Y uniformly in t ∈ R. Furthermore, one supposes
that there exists L > 0 such that

∥∥f(t, x) − f
(
t, y

)∥∥ ≤ L
∥∥x − y

∥∥
Y

(2.19)

for all x, y ∈ Y and t ∈ R.
Then the function defined by h(t) = f(t, ϕ(t)) belongs to PAA(X) provided ϕ ∈ PAA(Y).
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We also have the following.

Theorem 2.10 (see [6]). If f : R × Y �→ X belongs to PAA(Y,X) and if x �→ f(t, x) is uniformly
continuous on any bounded subsetK ofY for each t ∈ R, then the function defined by h(t) = f(t, ϕ(t))
belongs to PAA(X) provided that ϕ ∈ PAA(Y).

3. Main Results

Throughout the rest of the paper we fix α, β, real numbers, satisfying 0 < α < β < 1 with
2β > α + 1.

To study the existence of pseudo-almost automorphic solutions to (1.2), in addition to
the previous assumptions, we suppose that the injection

Xα ↪→ X (3.1)

is compact, and that the following additional assumptions hold:

(H.3) R(ω,A(·)) ∈ AA(B(X,Xα)). Moreover, for any sequence of real numbers (τ ′n)n∈N
there exist a subsequence (τn)n∈N and a well-defined function R(t, s) such that for
each ε > 0, one can find N0,N1 ∈ N such that

‖R(t, s) − Γ(t + τn, s + τn)‖B(X,Xα) ≤ εH0(t − s) (3.2)

whenever n > N0 for t, s ∈ R, and

‖Γ(t, s) − R(t − τn, s − τn)‖B(X,Xα) ≤ εH1(t − s) (3.3)

whenever n > N1 for all t, s ∈ R, where H0,H1 : [0,∞) �→ [0,∞) with H0,H1 ∈
L1[0,∞).

(H.4) (a) The function F : R×Xα �→ X is pseudo-almost automorphic in the first variable
uniformly in the second one. The function u �→ F(t, u) is uniformly continuous
on any bounded subset K of Xα for each t ∈ R. Finally,

‖F(t, u)‖∞ ≤ M(‖u‖α,∞
)
, (3.4)

where ‖u‖α,∞ = supt∈R‖u(t)‖α and M : R+ �→ R
+ is a continuous, monotone

increasing function satisfying

lim
r→∞

M(r)
r

= 0. (3.5)
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(b) The functionG : R×X �→ Xβ is pseudo-almost automorphic in the first variable
uniformly in the second one. Moreover,G is globally Lipschitz in the following
sense: there exists L > 0 for which

‖G(t, u) −G(t, v)‖β ≤ L‖u − v‖ (3.6)

for all u, v ∈ X and t ∈ R.

(H.5) The operator A(t) is invertible for each t ∈ R, that is, 0 ∈ ρ(A(t)) for each t ∈ R.
Moreover, there exists c0 > 0 such that

sup
t,s∈R

∥∥∥A(s)A(t)−1
∥∥∥
B(X,Xβ)

< c0. (3.7)

To study the existence and uniqueness of pseudo-almost automorphic solutions to
(1.2) we first introduce the notion of a mild solution, which has been adapted to the one
given in the studies of Diagana et al. [35, Definition 3.1].

Definition 3.1. A continuous function u : R �→ Xα is said to be a mild solution to (1.2)
provided that the function s → A(s)U(t, s)P(s)G(s, u(s)) is integrable on (s, t), the function
s → A(s)UQ(t, s)Q(s)G(s, u(s)) is integrable on (t, s) and

u(t) = −G(t, u(t)) +U(t, s)(u(s) +G(s, u(s)))

−
∫ t

s

A(s)U(t, s)P(s)G(s, u(s))ds +
∫s

t

A(s)UQ(t, s)Q(s)G(s, u(s))ds

+
∫ t

s

U(t, s)P(s)F(s, u(s))ds −
∫ s

t

UQ(t, s)Q(s)F(s, u(s))ds,

(3.8)

for t ≥ s and for all t, s ∈ R.

Under assumptions (H.1), (H.2), and (H.5), it can be readily shown that (1.2) has a
mild solution given by

u(t) = −G(t, u(t)) −
∫ t

−∞
A(s)U(t, s)P(s)G(s, u(s))ds

+
∫∞

t

A(s)UQ(t, s)Q(s)G(s, u(s))ds +
∫ t

−∞
U(t, s)P(s)F(s, u(s))ds

−
∫∞

t

UQ(t, s)Q(s)F(s, u(s))ds

(3.9)

for each t ∈ R.
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We denote by S and T the nonlinear integral operators defined by

(Su)(t) =
∫ t

−∞
U(t, s)P(s)F(s, u(s))ds −

∫∞

t

UQ(t, s)Q(s)F(s, u(s))ds,

(Tu)(t) = −G(t, u(t)) −
∫ t

−∞
A(s)U(t, s)P(s)G(s, u(s))ds

+
∫∞

t

A(s)UQ(t, s)Q(s)G(s, u(s))ds.

(3.10)

The main result of the present paper will be based upon the use of the well-known
fixed point theorem of Krasnoselskii given as follows.

Theorem 3.2. Let C be a closed bounded convex subset of a Banach space X. Suppose the (possibly
nonlinear) operators T and S map C into X satisfying

(1) for all u, v ∈ C, then Su + Tv ∈ C;

(2) the operator T is a contraction;

(3) the operator S is continuous and S(C) is contained in a compact set.

Then there exists u ∈ C such that u = Tu + Su.

We need the following new technical lemma.

Lemma 3.3. For each x ∈ X, suppose that assumptions (H.1), (H.2) hold, and let α, β be real numbers
such that 0 < α < β < 1 with 2β > α + 1. Then there are two constants r ′(α, β), d′(β) > 0 such that

‖A(t)U(t, s)P(s)x‖β ≤ r ′
(
α, β

)
e−(δ/4)(t−s)(t − s)−β‖x‖, t > s, (3.11)

∥∥∥A(t)ŨQ(t, s)Q(s)x
∥∥∥
β
≤ d′(β

)
e−δ(s−t)‖x‖, t ≤ s. (3.12)

Proof. Let x ∈ X. First of all, note that ‖A(t)U(t, s)‖B(X,Xβ) ≤ K(t − s)−(1−β) for all t, s such that
0 < t − s ≤ 1 and β ∈ [0, 1].

Letting t − s ≥ 1 and using (H.2) and the above-mentioned approximate, we obtain

‖A(t)U(t, s)x‖β = ‖A(t)U(t, t − 1)U(t − 1, s)x‖β
≤ ‖A(t)U(t, t − 1)‖B(X,Xβ)‖U(t − 1, s)x‖

≤ MKeδe−δ(t−s)‖x‖

= K1e
−δ(t−s)‖x‖

= K1e
−(3δ/4)(t−s)(t − s)β(t − s)−βe−(δ/4)(t−s)‖x‖.

(3.13)
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Now since e−(3δ/4)(t−s)(t − s)β → 0 as t → ∞, it follows that there exists c4(β) > 0 such
that

‖A(t)U(t, s)x‖β ≤ c4
(
β
)
(t − s)−βe−(δ/4)(t−s)‖x‖. (3.14)

Now, let 0 < t − s ≤ 1. Using (2.11) and the fact 2β > α + 1, we obtain

‖A(t)U(t, s)x‖β =
∥∥∥∥A(t)U

(
t,
t + s

2

)
U

(
t + s

2
, s

)
x

∥∥∥∥
β

≤
∥∥∥∥A(t)U

(
t,
t + s

2

)∥∥∥∥
B(X,Xβ)

∥∥∥∥U
(
t + s

2
, s

)
x

∥∥∥∥

≤ k1

∥∥∥∥A(t)U
(
t,
t + s

2

)∥∥∥∥
B(X,Xβ)

∥∥∥∥U
(
t + s

2
, s

)
x

∥∥∥∥
α

≤ k1K

(
t − s

2

)β−1
c(α)

(
t − s

2

)−α
e−(δ/4)(t−s)‖x‖

= c5
(
α, β

)
(t − s)β−1−αe−(δ/4)(t−s)‖x‖

≤ c5
(
α, β

)
(t − s)−βe−(δ/4)(t−s)‖x‖.

(3.15)

In summary, there exists r ′(β, α) > 0 such that

‖A(t)U(t, s)x‖β ≤ r ′
(
α, β

)
(t − s)−βe−(δ/4)(t−s)‖x‖, (3.16)

for all t, s ∈ R with t > s.
Let x ∈ X. Since the restriction of A(s) to R(Q(s)) is a bounded linear operator it

follows that

∥∥∥A(t)ŨQ(t, s)Q(s)x
∥∥∥
β
=
∥∥∥A(t)A(s)−1A(s)ŨQ(t, s)Q(s)x

∥∥∥
β

≤
∥∥∥A(t)A(s)−1

∥∥∥
B(X,Xβ)

∥∥∥A(s)ŨQ(t, s)Q(s)x
∥∥∥

≤ c1
∥∥∥A(t)A(s)−1

∥∥∥
B(X,Xβ)

∥∥∥A(s)ŨQ(t, s)Q(s)x
∥∥∥
β

≤ c1c0
∥∥∥A(s)ŨQ(t, s)Q(s)x

∥∥∥
β

≤ c̃
∥∥∥ŨQ(t, s)Q(s)x

∥∥∥
β

≤ c̃m
(
β
)
e−δ(s−t)‖x‖

= d′(β
)
e−δ(s−t)‖x‖

(3.17)

for t ≤ s by using (2.12).
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A straightforward consequence of Lemma 3.3 is the following.

Corollary 3.4. For each x ∈ X, suppose that assumptions (H.1), (H.2), and (H.5) hold, and let α, β be
real numbers such that 0 < α < β < 1 with 2β > α + 1. Then there are two constants r(α, β), d(β) > 0
such that

‖A(s)U(t, s)P(s)x‖β ≤ r
(
α, β

)
e−(δ/4)(t−s)(t − s)−β‖x‖, t > s, (3.18)

∥∥∥A(s)ŨQ(t, s)Q(s)x
∥∥∥
β
≤ d

(
β
)
e−δ(s−t)‖x‖, t ≤ s. (3.19)

Proof. We make use of (H.5) and Lemma 3.3. Indeed, for each x ∈ X,

‖A(s)U(t, s)P(s)x‖β =
∥∥∥A(s)A−1(t)A(t)U(t, s)P(s)x

∥∥∥
β

≤
∥∥∥A(s)A−1(t)

∥∥∥
B(X,Xβ)

‖A(t)U(t, s)P(s)x‖

≤ c0k
′‖A(t)U(t, s)P(s)x‖β

≤ c0k
′r ′
(
α, β

)
e−(δ/4)(t−s)(t − s)−β‖x‖

= r
(
α, β

)
e−(δ/4)(t−s)(t − s)−β‖x‖, t > s.

(3.20)

Equation (3.19) has already been proved (see the proof of (3.12)).

Lemma 3.5. Under assumptions (H.1), (H.2), (H.3), and (H.4), the mapping S : BC(R,Xα) �→
BC(R,Xα) is well defined and continuous.

Proof. We first show that S(BC(R,Xα)) ⊂ BC(R,Xα). For that, let S1 and S2 be the integral
operators defined, respectively, by

(S1u)(t) =
∫ t

−∞
U(t, s)P(s)F(s, u(s))ds,

(S2u)(t) =
∫∞

t

UQ(t, s)Q(s)F(s, u(s))ds.

(3.21)
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Now, using (2.11) it follows that for all v ∈ BC(R,Xα),

‖(S1v)(t)‖∞ =

∥∥∥∥∥

∫ t

−∞
U(t, s)P(s)F(s, v(s))ds

∥∥∥∥∥
α

≤
∫ t

−∞
c(α)(t − s)−αe−(δ/2)(t−s)‖F(s, v(s))‖ds

≤
∫ t

−∞
c(α)(t − s)−αe−(δ/2)(t−s)M(‖v‖α,∞

)
ds

= M(‖v‖α,∞
)
c(α)

(
2δ−1

)1−α
Γ(1 − α),

(3.22)

and hence

‖S1u‖α,∞ ≤ s(α)M(‖v‖α,∞
)
, (3.23)

where s(α) = c(α)(2δ−1)1−αΓ(1 − α).
It remains to prove that S1 is continuous. For that consider an arbitrary sequence

of functions un ∈ BC(R,Xα) which converges uniformly to some u ∈ BC(R,Xα), that is,
‖un − u‖α,∞ → 0 as n → ∞.

Now

∥∥∥∥∥

∫ t

−∞
U(t, s)P(s)[F(s, un(s)) − F(s, u(s))]ds

∥∥∥∥∥
α

≤ c(α)
∫ t

−∞
(t − s)−αe−(δ/2)(t−s)‖F(s, un(s)) − F(s, u(s))‖ds.

(3.24)

Now, using the continuity of F and the Lebesgue Dominated Convergence Theorem we
conclude that

∥∥∥∥∥

∫ t

−∞
U(t, s)P(s)[F(s, un(s)) − F(s, u(s))]ds

∥∥∥∥∥
α

−→ 0 as n −→ ∞, (3.25)

and hence ‖S1un − S1u‖α,∞ → 0 as n → ∞.
The proof for S2 is similar to that of S1 and hence omitted. For S2, one makes use of

(2.12) rather than (2.11).

Lemma 3.6. Under assumptions (H.1), (H.2), (H.3), and (H.4), the integral operator S defined above
maps PAA(Xα) into itself.

Proof. Let u ∈ PAA(Xα). Setting φ(t) = F(t, u(t)) and using Theorem 2.10 it follows that
φ ∈ PAA(X). Let φ = u1 + u2 ∈ PAA(X), where u1 ∈ AA(X) and u2 ∈ PAP0(X). Let us show
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that S1u1 ∈ AA(Xα). Indeed, since u1 ∈ AA(X), for every sequence of real numbers (τ ′n)n∈N
there exists a subsequence (τn)n∈N such that

v1(t) := lim
n→∞

u1(t + τn) (3.26)

is well defined for each t ∈ R and

lim
n→∞

v1(t − τn) = u1(t) (3.27)

for each t ∈ R.
Set M(t) =

∫ t
−∞ U(t, s)P(s)u1(s)ds and N(t) =

∫ t
−∞ U(t, s)P(s)v1(s)ds for all t ∈ R.

Now

M(t + τn) −N(t) =
∫ t+τn

−∞
U(t + τn, s)P(s)u1(s)ds −

∫ t

−∞
U(t, s)P(s)v1(s)ds

=
∫ t

−∞
U(t + τ, s + τn)P(s + τn)u1(s + τn)ds −

∫ t

−∞
U(t, s)P(s)v1(s)ds

=
∫ t

−∞
U(t + τn, s + τn)P(s + τn)(u1(s + τn) − v1(s))ds

+
∫ t

−∞
(U(t + τn, s + τn)P(s + τn) −U(t, s)P(s))v1(s)ds.

(3.28)

Using (2.11) and the Lebesgue Dominated Convergence Theorem, one can easily see
that

∥∥∥∥∥

∫ t

−∞
U(t + τn, s + τn)P(s + τn)(u1(s + τn) − v1(s))ds

∥∥∥∥∥
α

−→ 0 as n → ∞, t ∈ R. (3.29)

Similarly, using (H.3) and [40] it follows that

∥∥∥∥∥

∫ t

−∞
(U(t + τn, s + τn)P(s + τn) −U(t, s)P(s))v1(s)ds

∥∥∥∥∥
α

−→ 0 as n → ∞, t ∈ R. (3.30)

Therefore,

N(t) = lim
n→∞

M(t + τn), t ∈ R. (3.31)

Using similar ideas as the previous ones, one can easily see that

M(t) = lim
n→∞

N(t − τn), t ∈ R. (3.32)
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Again using (2.11) it follows that

lim
r→∞

1
2r

∫ r

−r
‖(S1u2)(t)‖αdt ≤ lim

r→∞
c(α)
2r

∫ r

−r

∫+∞

0
s−αe−(δ/2)s‖u2(t − s)‖dsdt

≤ lim
r→∞

c(α)
∫+∞

0
s−αe−(δ/2)s

1
2r

∫ r

−r
‖u2(t − s)‖dt ds.

(3.33)

Set

Γs(r) =
1
2r

∫ r

−r
‖u2(t − s)‖dt. (3.34)

Since PAP0(X) is translation invariant it follows that t �→ u2(t − s) belongs to PAP0(X) for
each s ∈ R, and hence

lim
r �→∞

1
2r

∫ r

−r
‖u2(t − s)‖dt = 0 (3.35)

for each s ∈ R.
One completes the proof by using the well-known Lebesgue dominated convergence

theorem and the fact Γs(r) �→ 0 as r → ∞ for each s ∈ R.
The proof for S2 is similar to that of S1 and hence omitted. For S2, one makes use of

(2.12) rather than (2.11).

Let γ ∈ (0, 1], and let BCγ(R,Xα) = {u ∈ BC(R,Xα) : ‖u‖α,γ < ∞}, where

‖u‖α,γ = sup ‖u(t)‖α + γ sup
t,s∈R, t /= s

‖u(t) − u(s)‖α
|t − s|γ . (3.36)

Clearly, the space BCγ(R,Xα) equipped with the norm ‖ · ‖α,γ is a Banach space, which is
the Banach space of all bounded continuous Hölder functions from R to Xα whose Hölder
exponent is γ .

Lemma 3.7. Under assumptions (H.1), (H.2), (H.3), (H.4), and (H.5), V = S1 − S2 maps bounded
sets of BC(R,Xα) into bounded sets of BCγ(R,Xα) for some 0 < γ < 1, where S1, S2 are the integral
operators introduced previously.
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Proof. Let u ∈ BC(R,Xα), and let g(t) = F(t, u(t)) for each t ∈ R. Then we have

‖S1u(t)‖α ≤ k(α)‖S1u(t)‖β

≤ k(α)
∫ t

−∞

∥∥U(t, s)P(s)g(s)
∥∥
βds

≤ k(α)c
(
β
) ∫ t

−∞
e−(δ/2)(t−s)(t − s)−β

∥∥g(s)
∥∥ds

≤ M(‖u‖α,∞
)
[
k(α)c

(
β
) ∫+∞

0
e−σ

(
2σ
δ

)−β 2dσ
δ

]

≤ M(‖u‖α,∞
)[
k(α)c

(
β
)(

2−1δ
)1−β

Γ
(
1 − β

)]
,

(3.37)

and hence

‖S1u‖α,∞ ≤
[
k(α)c

(
β
)(

2−1δ
)1−β

Γ
(
1 − β

)]M(‖u‖α,∞
)
. (3.38)

Similarly,

‖S2u(t)‖α ≤ k(α)‖S2u(t)‖β

≤ k(α)
∫∞

t

∥∥UQ(t, s)Q(s)g(s)
∥∥
βds

≤ k(α)m
(
β
) ∫∞

t

e−δ(s−t)
∥∥g(s)

∥∥ds

≤ M(‖u‖α,∞
)
k(α)m

(
β
)
δ−1,

(3.39)

and hence

‖Vu‖α,∞ ≤ p
(
α, β, δ

)M(‖u‖α,∞
)
. (3.40)
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Let t1 < t2. Clearly,

‖S1u(t2) − S1u(t1)‖α

≤
∥∥∥∥∥

∫ t2

t1

U(t2, s)P(s)g(s)ds +
∫ t1

−∞
[U(t2, s) −U(t1, s)]P(s)g(s)ds

∥∥∥∥∥
α

=

∥∥∥∥∥

∫ t2

t1

U(t2, s)P(s)g(s)ds +
∫ t1

−∞

(∫ t2

t1

∂U(τ, s)
∂τ

dτ

)
P(s)g(s)ds

∥∥∥∥∥
α

≤
∥∥∥∥∥

∫ t2

t1

U(t2, s)P(s)g(s)ds

∥∥∥∥∥
α

+

∥∥∥∥∥

∫ t1

−∞

(∫ t2

t1

A(τ)U(τ, s)P(s)g(s)dτ

)
ds

∥∥∥∥∥
α

= N1 +N2.

(3.41)

Clearly,

N1 ≤
∫ t2

t1

∥∥U(t2, s)P(s)g(s)
∥∥
αds

≤ c(α)
∫ t2

t1

(t2 − s)−αe−(δ/2)(t2−s)
∥∥g(s)

∥∥ds

≤ c(α)M(‖u‖α,∞
) ∫ t2

t1

(t2 − s)−αe−(δ/2)(t2−s)ds

≤ c(α)M(‖u‖α,∞
) ∫ t2

t1

(t2 − s)−αds

≤ (1 − α)−1c(α)M(‖u‖α,∞
)
(t2 − t1)1−α.

(3.42)

Similarly,

N2 ≤ k(α)
∫ t1

−∞

(∫ t2

t1

∥∥A(τ)U(τ, s)P(s)g(s)
∥∥
βdτ

)
ds

≤ k(α)r
(
α, β

) ∫ t1

−∞

(∫ t2

t1

(τ − s)−βe−(δ/4)(τ−s)
∥∥g(s)

∥∥dτ
)
ds

≤ k(α)r
(
α, β

)M(‖u‖α,∞
) ∫ t2

t1

(∫ t1

−∞
(τ − s)−βe−(δ/4)(τ−s)ds

)
dτ

≤ k(α)r
(
α, β

)M(‖u‖α,∞
) ∫ t2

t1

(τ − t1)−β
(∫∞

τ−t1
e−(δ/4)rdr

)
dτ

≤ 4δ−1k(α)r
(
α, β

)M(‖u‖α,∞
)
(t2 − t1)1−β.

(3.43)
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Now

‖S2u(t2) − S2u(t1)‖α ≤ m(α)
∫ t2

t1

e−δ(s−t1)
∥∥g(s)

∥∥ds

+m(α)
∫∞

t2

(∫ t2

t1

e−δ(s−τ)
∥∥g(s)

∥∥τ
)
ds

≤ N(α, δ)(t2 − t1)M
(‖u‖α,∞

)
,

(3.44)

where N(α, δ) is a positive constant.
Consequently, letting γ = 1 − β it follows that

‖Vu(t2) − Vu(t1)‖α ≤ s
(
α, β, δ

)M(‖u‖α,∞
)|t2 − t1|γ , (3.45)

where s(α, β, δ) is a positive constant.
Therefore, for each u ∈ BC(R,Xα) such that

‖u(t)‖α ≤ R (3.46)

for all t ∈ R, then Vu belongs to BCγ(R,Xα) with

‖Vu(t)‖α ≤ R′ (3.47)

for all t ∈ R, where R′ depends on R.

The proof of the next lemma follows along the same lines as that of Lemma 3.6 and
hence omitted.

Lemma 3.8. The integral operator V = S1 − S2 maps bounded sets of AA(Xα) into bounded sets of
BC1−β(R,Xα) ∩AA(Xα).

Similarly, the next lemma is a consequence of [2, Proposition 3.3].

Lemma 3.9. The set BC1−β(R,Xα) is compactly contained in BC(R,X), that is, the canonical
injection id : BC1−β(R,Xα) �→ BC(R,X) is compact, which yields

id : BC1−β(R,Xα)
⋂

AA(Xα) �−→ AA(Xα) (3.48)

is compact, too.

Theorem 3.10. Suppose that assumptions (H.1), (H.2), (H.3), (H.4), and (H.5) hold, then the
operator V defined by V = S1 − S2 is compact.
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Proof. The proof follows along the same lines as that of [2, Proposition 3.4]. Recalling that in
view of Lemma 3.7, we have

‖Vu‖α,∞ ≤ p
(
α, β, δ

)M(‖u‖α,∞
)
,

‖Vu(t2) − V (t1)‖α ≤ s
(
α, β, δ

)M(‖u‖α,∞
)|t2 − t1|,

(3.49)

for all u ∈ BC(R,Xα), t1, t2 ∈ R with t1 /= t2, where p(α, β, δ), s(α, β, δ) are positive constants.
Consequently, u ∈ BC(R,Xα) and ‖u‖α,∞ < R yield Vu ∈ BC1−β(R,Xα) and

‖Vu‖α < R1, (3.50)

where R1 = c(α, β, δ)M(R).
Therefore, there exists r > 0 such that for all R ≥ r, the following hold:

V
(
BAA(Xα)(0, R)

) ⊂ BBC1−β(R,Xα)(0, R)
⋂

BAA(Xα)(0, R). (3.51)

In view of the above, it follows that V : D �→ D is continuous and compact, where D is the
ball in AA(Xα) of radius R with R ≥ r.

Define

(W1u)(t) =
∫ t

−∞
A(s)U(t, s)P(s)G(s, u(s))ds,

(W2u)(t) =
∫s

t

A(s)UQ(t, s)Q(s)G(s, u(s))ds

(3.52)

for all t ∈ R.

Lemma 3.11. Under assumptions (H.1), (H.2), (H.3), (H.4), and (H.5), the integral operators W1

and W2 defined above map PAA(Xα) into itself.

Proof. Let u ∈ PAA(Xα). Again, using the composition of pseudo-almost automorphic
functions (Theorem 2.10) it follows that ψ(·) = G(·, u(·)) is in PAA(Xβ) whenever u ∈
PAA(Xα). In particular,

∥∥ψ
∥∥
β,∞ = sup

t∈R
‖G(t, u(t))‖β < ∞. (3.53)

Nowwrite ψ = φ+z, where φ ∈ AA(Xβ) and z ∈ PAP0(Xβ), that is,W1ψ = Ξ(φ)+Ξ(z)
where

Ξφ(t) :=
∫ t

−∞
A(s)U(t, s)P(s)φ(s)ds,

Ξz(t) :=
∫ t

−∞
A(s)U(t, s)P(s)z(s)ds.

(3.54)
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Clearly,Ξ(φ) ∈ AA(Xα). Indeed, since φ ∈ AA(Xβ), for every sequence of real numbers
(τ ′n)n∈N there exists a subsequence (τn)n∈N such that

ψ(t) := lim
n→∞

φ(t + τn) (3.55)

is well defined for each t ∈ R and

lim
n→∞

ψ(t − τn) = φ(t) (3.56)

for each t ∈ R.
Set J(t) =

∫ t
−∞ A(s)U(t, s)P(s)φ(s)ds and K(t) =

∫ t
−∞ A(s)U(t, s)P(s)ψ(s)ds for all t ∈

R.
Now

J(t + τn) −K(t) =
∫ t+τn

−∞
A(s)U(t + τn, s)P(s)φ(s)ds −

∫ t

−∞
A(s)U(t, s)P(s)ψ(s)ds

=
∫ t

−∞
A(s + τn)U(t + τ, s + τn)P(s + τn)φ(s + τn)ds

−
∫ t

−∞
A(s)U(t, s)P(s)ψ(s)ds

=
∫ t

−∞
A(s + τn)U(t + τn, s + τn)P(s + τn)

(
φ(s + τn) − ψ(s)

)
ds

+
∫ t

−∞
(A(s + τn)U(t + τn, s + τn)P(s + τn) −A(s)U(t, s)P(s))ψ(s)ds.

(3.57)

Using (3.18) and the Lebesgue Dominated Convergence Theorem, one can easily see
that

∥∥∥∥∥

∫ t

−∞
A(s + τn)U(t + τn, s + τn)P(s + τn)

(
φ(s + τn) − ψ(s)

)
ds

∥∥∥∥∥
α

−→ 0 as n −→ ∞, t ∈ R.

(3.58)

Similarly, using (H.3) it follows that

∥∥∥∥∥

∫ t

−∞
(A(s + τn)U(t + τn, s+ τn)P(s + τn)−A(s)U(t, s)P(s))ψ(s)ds

∥∥∥∥∥
α

−→0 as n−→∞, t ∈ R.

(3.59)

Therefore,

K(t) = lim
n→∞

J(t + τn), t ∈ R. (3.60)
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Using similar ideas as the previous ones, one can easily see that

J(t) = lim
n→∞

K(t − τn), t ∈ R. (3.61)

Now, let r > 0. Again from (3.18), we have

1
2r

∫ r

−r
‖(Ξz)(t)‖αdt ≤

k(α)
2r

∫ r

−r

∫ t

−∞
‖A(s)U(t, s)P(s)z(t − s)‖β ds dt

≤ k(α)r
(
α, β

)

2r

∫ r

−r

∫ t

−∞
e−(δ/4)(t−s)(t − s)−β‖z(t − s)‖dsdt

≤ l
(
α, β

) ·
∫+∞

0
e−(δ/4)ss−β

(
1
2r

∫ r

−r
‖z(t − s)‖βdt

)
ds.

(3.62)

Now

lim
r→∞

1
2r

∫ r

−r
‖z(t − s)‖βdt = 0, (3.63)

as t �→ z(t − s) ∈ PAP0(Xβ) for every s ∈ R. One completes the proof by using the Lebesgue’s
dominated convergence theorem.

The proof for W2u(·) is similar to that of W1u(·) except that one makes use of (3.19)
instead of (3.18).

Theorem 3.12. Under assumptions (H.1), (H.2), (H.3), (H.4), and (H.5) and if L is small enough,
then (1.2) has at least one pseudo-almost automorphic solution.

Proof. We have seen in the proof of Theorem 3.10 that S : D �→ D is continuous and compact,
where D is the ball in PAA(Xα) of radius R with R ≥ r.

Now, if we set aG := supt∈R‖G(t, 0)‖β it follows that

‖Tu‖α ≤ k(α)(kLR + aG)

[
1 + r

(
α, β

)( 4
δ

)1−β
Γ
(
1 − β

)
+
d
(
β
)

δ

]
(3.64)

for all u ∈ D.
Choose R′ such that

k(α)(kLR + aG)

[
1 + r

(
α, β

)( 4
δ

)1−β
Γ
(
1 − β

)
+
d
(
β
)

δ

]
≤ R′ (3.65)

and let D′ be the closed ball in PAA(Xα) of radius R′. It is then clear that

‖Tu + Su‖α ≤ R′ (3.66)

for all u ∈ D′ and hence (S + T)(D′) ⊂ D′.
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To complete the proof we have to show that T is a strict contraction. Indeed, for all
u, v ∈ Xα

‖Tu − Tv‖α,∞ ≤ Lk(α)

[
1 + r

(
α, β

)( 4
δ

)1−β
Γ
(
1 − β

)
+
d
(
β
)

δ

]
‖u − v‖α,∞ (3.67)

and hence T is a strict contraction whenever L is small enough.
Using the Krasnoselskii fixed point theorem (Theorem 3.2) it follows that there exists

at least one pseudo-almost automorphic mild solution to (1.2).
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