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By using the multiplier technique, we prove that the energy of a system of two coupled second
order evolution equations (one is an integro-differential equation) decays exponentially if the

convolution kernel k decays exponentially. An example is give to illustrate that the result obtained
can be applied to concrete partial differential equations.

1. Introduction

Of concern is the exponential stability of two coupled second-order evolution equations (one
is an integro-differential equation) in Hilbert space H

u'(F) + Au(t) + au(t) — f; k(t —s)Au(s)ds + pvV Av(t) = 0, (1.1)
v (t) + Av(t) + vV Au(t) = 0, (1.2)

with initial data
u(©0) =up, v(0)=vy, w(0)=w;, v(0) =0 (1.3)

Here A : D(A) ¢ H — H is a positive self-adjoint linear operator, «a > 0, f > 0, k(¢) is a
nonnegative function on [0, o). Moreover, the fractional power A'/? is defined as in the well
known operator theory (cf, e.g., [1, 2]).
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An interesting and difficult point for it is to stabilize the whole system via the damping
effect given by only one equation (1.1). We remark that there is very few work concerning the
situation when the damping mechanism is given by memory terms; see [3], where a coupled
Timoshenko beam system is investigated.

On the other hand, the stability of the single integro-differential equation has been
studied extensively; see, for instance, [4, 5].

In this paper, through suitably choosing multipliers for the energy together with
other techniques, we obtain the desired exponential decay result for the system (1.1)—(1.3).
Nonlinear coupled systems with general decay rates will be discussed in a forthcoming paper.

In Section 2, we present our exponential decay theorem and its proof. An application
is given in Section 3.

2. Exponential Decay Result

We start with stating our assumptions:

(1) A is a self-adjoint linear operator in H, satisfying
(Au,u) > allul’, ueD(A), (2.1)

where a > 0.

(2) a > 0, p > 0 are constants. k(t) : [0,00) — [0, o0) is locally absolutely continuous,
satisfying

[ee]

k(0)>0, 1 —f k(t)dt - £11|cx—[52| >0, 2.2)

0
and there exists a positive constant A, such that

K'(t) < -Ak(t), forae.t>0. (2.3)
We define the energy of a mild solution u of (1.1)—(1.3) as

t
E®) = B0 = L)+ o)+ 8 |
+ ; ft k(t = s)|| vV Aus) - \/Au(t)”zds (2.4)
0

+ o ||[Vao) + pu |+ (a - ) luteyiP

The following is our exponential decay theorem.
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Theorem 2.1. Let the assumptions be satisfied. Then,

(i) for any ug, vy € D(\/A) and wy,v1 € H, problem (1.1)—(1.3) admits a unique mild
solution on [0, o).
The solution is a classical one, if ug € D(A), vy € D(A) and u1,v; € D(VA),

(ii) there exists a constant C > 0 such that the enerqy

E(t) < E(0)e"™, vt>0, (2.5)

for any mild solution of (1.1)—(1.3).

Proof. We denote

u(t) up(t) uq (t)
v <v(t>>’ olt) = <vo(t)>' @)= <v1(t)>’

(2.6)
A+a pVA k(t)A 0
A = , B(t) = .
pvVA A 0 0
Then, (1.1)—-(1.3) becomes
t
w" () + Aw(t) - J. B(t-s)w(s)ds=0 teJ0,0),
0 (2.7)
w(0) =wo,  w'(0)=w,
in # := H x H. From the assumptions, one sees that—<# is the generator of a strongly

continuous cosine function on #, and B(:) is bounded from D(«#) into Wllo’z(O, oo; H).
Therefore, we justify the assertion (i) (cf., e.g. [6]).
Suppose now that u is a classical solution of (1.1)—(1.3). We observe

E(t) = —;k(t)”\/Au(t)”Z + ; f; Kt - s)”\/Au(s) - \/Au(t)”st .

<0,

by Assumption (2) and so

E(t) <E(s), 0<s<t<T (2.9)
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Let

po=1- fk(t)dt la=F] ﬂZ' (2.10)

and take 1 < 6 < 1+ apu/2f*. We have

1, 1, 2
E® > [l @l+ llo el + | vauo)

“(525) Ivaeo] + <(1 6)ﬁ>||VAu<t>|| e [0,00).

Furthermore, we need the following lemmas.

(2.11)

Lemma 2.2. Forany T > S > 0 and for any &1 > 0O, there exist positive numbers D1(g1), D (€1)
such that

fT [V Av) + puc) ||2dt
S
< D1E(S) + D> f ' f t k(t - s)”\/Au(s) - \/Au(t)”zds dt (2.12)
SJo
+ Gy ﬂ |« (®)||*dt + G» 511 ﬂ [/ ()||*dt + (Gse1 + Ga) f; || VAu(t) ||2dt,

for some positive constants G; (i = 1,2,3,4) which only depend on a, p, a, and k.

Proof. At first, let us take the inner product of both sides of (1.1) with v Av(t) and integrate
over [S, T]. Then, noticing (1.2), we obtain

g n g " g 2
L <u (), VAo (t) >dt - L <\/Au(t),v (t)>dt y L ”\/Au(t) || dt
T T t )
+a f . <u(t), VAv(t) >dt + L <f0 k(t - s)v Au(s)ds, v (t)>dt (2.13)

+ﬂLT<f; k(t - 5)V/Au(s)ds, \/Au(t)>dt +p f Z | Ao at = o.
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For the first item, integrating by parts, we have

f 5T<u"(t), \/Av(t)>dt = f Z <<u’(t), VAu(t) >)'dt - fz<u'(t), \/Av’(t)>dt. (2.14)

The second and the fifth items can be treated similarly. Therefore,

p fT || VA(t) ||2dt P IT <u(t), VAv(t) >dt
S S
_ LT ((w(t), v av(t) >)'dt + LT <<\/Au(t),v'(t)>>'dt
- IT <<ft k(t — s)vV/ Au(s)ds, v’(t)>>,dt
+p f < f k(s)ds> |\/Au(t)|| dt (2.15)
+ f <f K(t-s) (\/Au(s) - \/Au(t)>ds, v’(t)>dt
S 0
- p LT<K k(t - 5)(VAu(s) - VAu(t) )ds, \/Au(t)>dt

+ ﬂ k(t) <\/Au(t), o(t) >dt.

Then, taking the inner product of both sides of (1.1) with u(t) and integrating over [S, T], we
obtain

T \/ T )
pfs< Av(t),u(t)>dt+afs It 2de
T , T )
—- [ o uw) s [ uopPar
S S

N (2.16)
+ L <f0 k(t-s) <\/Au(s) - \/Au(t))ds, \/Au(t)>dt

_ f Z <1 - f; k(s)ds> v Au|
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Equation (2.15) x p/a + (2.16) yields that

’ 2
f [V Av() + pu)|| at
S
T T
:—f ((u'(t),u(t)>)’dt+f || ()] *dt

S s

B fc LT <<”,(t)'\/Av(f)>)’dt+ i JZ <<x/Au(t),v'(t)>>'dt

- ‘Z LT <<ﬂ k(t— )V Au(s)ds, v’(t)>>,dt

L1 s ) [y orr

+ Z LT<J.; K(t-s) (\/Au(s) - \/Au(t)>ds, v’(t)>dt

+ i f: k(t)<\/Au(t),v’(t)>dt

a

a— ﬁz T t
+ f . <f0 k(t - 5)(VAu(s) - VAu(t) )ds, \/Au(t)>dt

[ oo (a-7) [ oo

Next, we will estimate all the terms on the right side of (2.17). From (2.11), we have
the following estimate:

f Z ('), VAv(t) >)'dt

_ “<u’(t),\/Av(t)>]Z‘ < 2ME(S), (2.18)

where M is a positive constant. Those terms of the form fg ((-,-))'dt can be similarly treated.
Denote by ] the sum of the other terms on the right of (2.17).
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Using Young's inequality and noting (2.8), we get, for £ > 0,

f T<ft K'(t-s) (\/Au(s) - \/Au(t)>ds, v’(t)>dt
S 0

t 2
< 821 f: <L|k’(t - s)|||\/Au(s) - \/Au(t)”ds) dt + 2%1 JZ ”U'(f)”zdt.
<5 LT f; K (s)ds f;lk’(t— )|[VAu(s) - v Auo)|"ds de + 2% ﬂ 10|t

< g1k(0)E(S) + —1 ' '(t)||*dt
St ( ) ( ) 251—[5 ”U()“ :
(2.19)

The treatment of the other terms of J is similar, giving

p IT (k(VAu®, '@ )dt < f: [V Aue| at+ k;?;fz f: I/ ]|"a,

a-— ﬂz
L<f k(t - S)<\/Au(s) \/Au(t)>ds \/Au(t)>dt

P’ f fk(s)dsf k(t - s)”\/Au(s) \/Au(t)” dsdt+51f ”\/Au(t)” dt.

= 2a2£1
(2.20)
Thus, we obtain
J< 51k(0)ﬁE(S)
)’
2azgl f fk(s)ds f k(t = )| Aus) - \/Au(t)” dsdt |
(2.21

+

< + >|ﬁ2—a + & f ”\/Au(t)” dt

<k2(0)[52 2L>f 0@l d”f | )| dt+9f ”\/Av(t)” dt,

2e1a?

where 6 = max{(a — ?)/a,0}. Make use of the estimate

”\/AUHZ <@ +§1)||\/Av+ﬂu||2 + (1 + §11>[:||\/Au||2, (2.22)
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where ¢; is a positive constant, small enough to satisfy (1 + ¢1)0 < 1. We thus verify our
conclusion. I

Lemma 2.3. Forany T > S > 0 and for any &, > 0, there exist positive numbers D3(e2), Da(e2),
such that

! ﬂ |V Au| dt < DsE(S) + Dy f : f; k(t - 9)[|V Au(s) - vAu()|| dsdr

(1 2 IT [l ()| de + IT |0 (1) ||*dt
262(1 S 2 S '

Proof. We denote w = A~1/2y and take the inner product of both sides of (1.2) with w(t), and
integrate over [S, T]. It follows that

(2.23)

T T
S S

T T
—f (VAo(t), u(t) )dt = f (v (1), w(t))) dt - f (V' (), w'(t))dt + f lu)|Pde.  (2.24)
s S
Plugging this equation into (2.16), we find

f Z<1 - ﬂ k(s)ds> ”\/Au(t)”zdt

=_f (<u’(t),u(t)>)’dt+ﬁf (0 (1), w(t)))'dt
S S

+ (B -a) f: ||u(t)||2dt+f: [l &) ||t (2.25)
T
S

T
- ﬂf (v'(t),w'(t))dt.
S

ft k(t-s) <\/Au(s) - \/Au(t)>ds, \/Au(t)>dt

0

Observe

fT< f t k(t - s) (\/Au(s) - \/Au(t)>ds, \/Au(t)>dt
S 0

1

< 26, IT J.;k(s)dsf;k(t—s)”\/Au(s)—\/Au(t)||2dsdt+ 523 LT ”\/Au(t)”zdt,

S
(2.26)
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where 63 = p, and for &, > 0

! ' ' & ! / 2 ﬂz ! ' 2
ﬂL(v (£), w'()dt <, L |o'(5)]|"dt + TEZL [l (5] dt. (2.27)

The other items on the right of (2.25) can be dealt with as in the proof of Lemma 2.2. Hence,
we get the conclusion. |

Lemma 2.4. Forany T > S > 0, there exist positive numbers Ds, D¢ such that

T 2 T 2
f Il )| dt+f o' (1) dt
S S

< DsE(S) + Dy f Z f; k(t - s)”\/Au(s) - \/Au(t)”zds dt (2.28)

() [ o | [awr o

Proof. Taking the inner product of both sides of (1.2) with v(t) and integrating over [S,T],
we see

! 12 T , , T 5 T
L |o'(6)]|"dt = fs (¢ (1), v(t))) dt + L ”\/Av(t)” dt + ﬁL <\/Au(t),v(t)>dt. (2.29)

Combining this equation and (2.16) gives

T T
[ Io@irars [ fuwePar
S s
- JZ ((u' (1), u(t)))'dt + J: ('), v(t))) dt + J: <1 _ JZ k(s)ds> ”\/Au(t)”zdt
_ fT<ft k(t - S)(\/Au(S) - \/Au(t)>ds, \/Au(t)>dt
S 0

f ||\/Av(t)+ﬂu(t)|| dt+ f [u(t)|2dt.
(2.30)

This yields the estimate as desired. Il
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Lemma 2.5. Let So > 0 be fixed. Forany T > S > Sg and for any 3 > 0, there exist positive numbers
D7(e3), Ds(e3) such that

T T ot )
f |l ()||*dt < D7E(S)+D8f f k(t—s)”\/Au(s)—\/Au(t)” ds dt
° 570 (2.31)

&5 LT |V Auc) ||2dt + &3 LT |V Av) + puct) ||2dt.

Proof. Take the inner product of both sides of (1.1) with jé k(t-s)(u(s)—u(t))ds and integrate
over [S, T]. This leads to

T pt
f f k(s)ds||u ()] dt
SJ0

!

T ¢
= —f <<u’(t),f k(t-s)(u(s) - u(t))ds>> dt
5 0
+ JZ<u’(t), J; K'(t-s)(u(s) - u(t))ds>dt
T
5

_ f <1 - f k(s)ds> <\/Au(t), f t k(t - s) (\/Au(s) - \/Au(t)>ds>dt (2.32)
0 0
T t
- af <u(t),f k(t—s)(u(s) - u(t))ds>dt
S 0

T 2
+f
S

f k(t —s)(VAu(s) — VAu(t))ds|| dt
0
T t
+pf <\/Av(t),f k(t - s)(u(s) —u(t))ds>dt.
S 0

Just as in the proofs of the above lemmas, using Young'’s inequality and noting that
T ot ) S T )
f f k(s)ds | () |dt > f K(s)ds f )%, (2.33)
s Jo 0 s

we prove the conclusion. [l
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Proof of Theorem 2.1 (continued). From Assumption (2) and (2.8), we have
T ot »
f f k(t - s)”\/Au(s) - \/Au(t)” ds dt
S Jo
1 (Tt 2
- Af f k'(t—s)”\/Au(s) —\/Au(t)” dsdt
570 (2.34)
1 T
< _ !
<- L E'(t)dt

2
< .
< LE®)

Now, fix Sp > 0. Thanks to Lemmas 2.2 and 2.3, we know that forany T > S > Sp and
forn >0,

4 Ivavoaren [ Vv « puo o
< [(D3 +1Dy) + (Dy +nDy) i] E(S) +1(Gse1 + Ga) f: || VAu(t) ||2dt. (2.35)

+(52+ G 1>IT||v’(t)||2dt+ PG fT||u’(t)||2dt
2 L 251 S 26261 O S ’

Moreover, by the use of Lemmas 2.4 and 2.5, we have

4 Ianoaren [ |V «puo

(2.36)
T 2 T 2
< PE(S) +p1f |V au®| dt + p f |V av ) + puct) || at,
s s
where
3 & 1 s
Po = [D3 +7]D1 +D5< 2 +TlG2€1> +D7<1 + @ +TlG1>:|
£ 1 ﬂz 2
+ D4+qD2+D6<2+11G2£1>+D8 1+E+TZG1 v
(2.37)

_ 3 |a-PFl\ /e 1 iz
Pl—TZ(G351+G4)+<2+ - <2+1]G2£1>+53 1+E+qcl ,

£ 1 2
p2 = 22+1”IG261 +53<1+2§j+11G1>.
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Let

g =¢t, nN=6= &, =€ (2.38)
Taking ¢ small enough gives
U
p1 < Y p2 <1. (2.39)
Therefore, there is a constant N7 > 0 such that
T 2 T 2
f ”\/Au(t) || dt + f || VAv(t) + u(t) || dt < N1E(S) (2.40)
s s
by (2.36). Using Lemma 2.4 and (2.34), we deduce that for some N, > 0,

T 2 T 2
f )| dt+f R
S S

(2.41)
. <; L _aﬁ2|> LT ||\/Au(t)||2dt . ﬂ |V Ao +[5u(t)||2dt
< N2E(S).
Next, define
H(t) = [l O + [/ O + ||\/Au(t)||2 + |V +ﬂu(t)||2
(2.42)

t 2
+f k(t— s)”\/Au(s) ~VAu(t) || ds.
0
It is easy to see that there exist M;, M, > 0 such that M1E(t) < H(t) < ME(t). Therefore,

.[Z H(t)dt < <N1 + N>+ i)E(S), s

T 1 (T Ni+Ny+2/4
E(H)dt < H(t)dt < E(S).
[(Ewar< [ He e
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On the other hand, when 0 < S < Sy,

LT E(H)dt = fso E(#)dt + f ! E(t)dt

S So

N, +N2+2/./\,

<G-SES)+ L

E(So) (2.44)

N1+N2+2/)L
<
< (s R D),

that is,

IT E(t)dt < NE(S), V¥S > 0. (2.45)
S

By a standard approximation argument, we see that (2.45) is also true for mild solutions.
From this integral inequality, we complete the proof (cf., e.g., [7, Theorem 8.1]). ]

3. An Example

Example 3.1. Consider a coupled system of Petrovsky equations with a memory term

OPu(t, &) + A2u(t &) + au(t, &) — ft k(t—s)A2u(t,&)ds + pAv(t,E) =0, >0, {€Q,
0

oro(t, &) + A%v(t,é) + pAu(t,é) =0, t>0,¢€Q, 3.1)
u(t,g) = U(t,g) = Au(t,g) = AU(t,g) =0, t=>0, g € 09,
u(0,¢) =uo(g), v(0,8) =vo(g), 0m(0,8) =ui(g), 6v(0,6) =vi(e), ¢€,

where Q is a bounded open domain in RV, with sufficiently smooth boundary 9Q and a, 5, k
as in Assumption (2). Let H = L?(Q) with the usual inner product and norm. Here, we denote
by 0:u the time derivative of u and by Au the Laplacian of u with respect to space variable ¢.
Define A: D(A) Cc H — H by

A =A% with D(A) = HY(Q) N H3(Q). (3.2)

Then, Assumption (1) is satisfied. Therefore, we claim in view of Theorem 2.1 that the energy
of the system decays exponentially at infinity.
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