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We study the existence and uniqueness of mild solution of a class of nonlinear nonautonomous
fractional integrodifferential equations with infinite delay in a Banach space X. The existence of
mild solution is obtained by using the theory of the measure of noncompactness and Sadovskii’s
fixed point theorem. An application of the abstract results is also given.

1. Introduction

The Cauchy problem for various delay equations in Banach spaces has been receiving more
and more attention during the past decades (cf., e.g., [1–15]). This paper is concerned with
existence results for nonautonomous fractional integrodifferential equations with infinite
delay in a Banach space X

dqu(t)
dtq

= −A(t)u(t) + f

(
t,

∫ t

0
K(t, s)u(s)ds, ut

)
, t ∈ [0, T],

u(t) = φ(t), t ∈ (−∞, 0],

(1.1)

where T > 0, 0 < q < 1, {A(t)}t∈[0,T] is a family of linear operators in X,K ∈ C(D,R+) with
D = {(t, s) ∈ R2 : 0 ≤ s ≤ t ≤ T} and

sup
t∈[0,T]

∫ t

0
K(t, s)ds < ∞, (1.2)
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f : [0, T] × X × P → X, ut : (−∞, 0] → X defined by ut(θ) = u(t + θ) for θ ∈ (−∞, 0], φ
belongs to the phase space P, and φ(0) = 0. The fractional derivative is understood here in
the Riemann-Liouville sense.

In recent years, the fractional differential equations have been proved to be good
tools in the investigation of many phenomena in engineering, physics, economy, chemistry,
aerodynamics, electrodynamics of complex medium and they have been studied by
many researchers (cf., e.g., [13, 14, 16, 17] and references therein). Moreover, many
phenomena cannot be described through classical differential equations but the integral
and integrodifferential equations in abstract spaces in fields like electronic, fluid dynamics,
biological models, and chemical kinetics. So many significant works on this topic have been
appeared (cf., e.g., [10, 15, 18–25] and references therein).

In this paper, we study the existence of mild solution of (1.1) and obtain the
existence theorem based on the measures of noncompactness without the assumptions that
the nonlinearity f satisfies a Lipschitz type condition and the semigroup {exp(−tA(s))}
generated by −A(s) (s ∈ [0, T]) is compact (see Theorem 3.1). An example is given to show
an application of the abstract results.

2. Preliminaries

Throughout this paper, we set J = [0, T], a compact interval in R. We denote by X a Banach
space, L(X) the Banach space of all linear and bounded operators onX, and C(J,X) the space
of all X-valued continuous functions on J . We set

Gu(t) :=
∫ t

0
K(t, s)u(s)ds, G∗ := sup

t∈J

∫ t

0
K(t, s)ds < ∞. (2.1)

Next, we recall the definition of the Riemann-Liouville integral.

Definition 2.1 (see [26]). The fractional (arbitrary) order integral of the function g ∈ L1(R+,R)
of order ν > 0 is defined by

Iνg(t) =
1

Γ(ν)

∫ t

0
(t − s)ν−1g(s)ds, (2.2)

where Γ is the Gamma function. Moreover, Iν1Iν2 = Iν1+ν2 , for all ν1, ν2 > 0.

Remark 2.2. (1) Iν : L1[0, T] → L1[0, T] (see [26]),
(2) obviously, for g ∈ L1(J,R), it follows from Definition 2.1 that

∫ t

0

∫η

0

(
t − η

)q−1(
η − s

)γ−1
g(s)dsdη = B

(
q, γ

) ∫ t

0
(t − s)q+γ−1g(s)ds, (2.3)

where B(q, γ) is a beta function.

See the following definition about phase space according to Hale and Kato [27].
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Definition 2.3. A linear space P consisting of functions from R− into X, with seminorm ‖ · ‖P,
is called an admissible phase space if P has the following properties.

(1) If x : (−∞, T] → X is continuous on J and x0 ∈ P, then xt ∈ P and xt is continuous
in t ∈ J , and

‖x(t)‖ ≤ L‖xt‖P, (2.4)

where L ≥ 0 is a constant.

(2) There exist a continuous functionC1(t) > 0 and a locally bounded functionC2(t) ≥ 0
in t ≥ 0, such that

‖xt‖P ≤ C1(t) sup
s∈[0,t]

‖x(s)‖ + C2(t)‖x0‖P, (2.5)

for t ∈ [0, T] and x as in (1).

(3) The space P is complete.

Remark 2.4. Equation (2.4) in (1) is equivalent to ‖φ(0)‖ ≤ L‖φ‖P, for all φ ∈ P.

Next, we consider the properties of Kuratowski’s measure of noncompactness.

Definition 2.5. Let B be a bounded subset of a seminormed linear space Y . The Kuratowski’s
measure of noncompactness(for brevity, α-measure) of B is defined as

α(B) = inf
{
d > 0 : B has a finite cover by sets of diameter ≤ d

}
. (2.6)

From the definition we can get some properties of α-measure immediately, see [28].

Lemma 2.6 (see [28]). Let A and B be bounded subsets of X, then

(1) α(A) ≤ α(B), if A ⊆ B;

(2) α(A) = α(A), where A denotes the closure of A;

(3) α(A) = 0 if and only if A is precompact;

(4) α(λA) = |λ|α(A),λ ∈ R;

(5) α(A ∪ B) = max{α(A), α(B)};
(6) α(A + B) ≤ α(A) + α(B), where A + B = {x + y : x ∈ A,y ∈ B};
(7) α(A + x) = α(A), for any x ∈ X.

For H ⊂ C(J,X), we define

∫ t

0
H(s)ds =

{∫ t

0
u(s)ds : u ∈ H

}
, for t ∈ J, (2.7)

whereH(s) = {u(s) ∈ X : u ∈ H}.
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The following lemma will be needed.

Lemma 2.7. IfH ⊂ C(J,X) is a bounded, equicontinuous set, then

(i) α(H) = supt∈Jα(H(t)),

(ii) α(
∫ t
0 H(s)ds) ≤ ∫ t

0 α(H(s))ds, for t ∈ J .

For a proof refer to [28].

Lemma 2.8 (see [29]). If {un}∞n=1 ⊂ L1(J,X) and there exists anm ∈ L1(J,R+) such that ‖un(t)‖ ≤
m(t), a.e. t ∈ J , then α({un(t)}∞n=1) is integrable and

α

({∫ t

0
un(s)ds

}∞

n=1

)
≤ 2

∫ t

0
α({un(s)}∞n=1)ds. (2.8)

We need to use the following Sadovskii’s fixed point theorem here, see [30].

Definition 2.9. Let P be an operator in Banach space X. If P is continuous and takes bounded
sets into bounded sets, and α(P(B)) < α(B) for every bounded set B of X with α(B) > 0, then
P is said to be a condensing operator on X.

Lemma 2.10 (Sadovskii’s fixed point theorem [30]). Let P be a condensing operator on Banach
space X. If P(H) ⊆ H for a convex, closed, and bounded setH of X, then P has a fixed point inH.

In this paper, we denote that C is a positive constant, and assume that a family of
closed linear operators {A(t)}t∈J satisfying the following.

(A1) The domain D(A) of {A(t)}t∈J is dense in the Banach space X and independent
of t.

(A2) The operator [A(t) + λ]−1 exists in L(X) for any λwith Reλ ≤ 0 and

∥∥∥[A(t) + λ]−1
∥∥∥ ≤ C

|λ| + 1
, t ∈ J. (2.9)

(A3) There exist constants γ ∈ (0, 1] and C such that

∥∥∥[A(t1) −A(t2)]A−1(s)
∥∥∥ ≤ C|t1 − t2|γ , t1, t2, s ∈ J. (2.10)

Under condition (A2), each operator −A(s), s ∈ J , generates an analytic semigroup
exp(−tA(s)), t > 0, and there exists a constant C such that

∥∥An(s) exp(−tA(s))
∥∥ ≤ C

tn
, (2.11)

where n = 0, 1, t > 0, s ∈ J (see [31]).
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Let Ω be set defined by

Ω =
{
u : (−∞, T] −→ X such that u|(−∞,0] ∈ P and u|J ∈ C(J,X)

}
. (2.12)

According to [16], a mild solution of (1.1) can be defined as follows.

Definition 2.11. A function u ∈ Ω satisfying the equation

u(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

φ(t), t ∈ (−∞, 0],∫ t

0
ψ
(
t − η, η

)
f
(
η,Gu

(
η
)
, uη

)
dη

+
∫ t

0

∫η

0
ψ
(
t − η, η

)
ϕ
(
η, s

)
f(s,Gu(s), us)dsdη, t ∈ J

(2.13)

is called a mild solution of (1.1), where

ψ(t, s) = q

∫∞

0
θtq−1ξq(θ) exp(−tqθA(s))dθ, (2.14)

and ξq is a probability density function defined on (0,∞) such that its Laplace transform is
given by

∫∞

0
e−σxξq(σ)dσ =

∞∑
j=0

(−x)j
Γ
(
1 + qj

) , 0 < q ≤ 1, x > 0,

ϕ(t, τ) =
∞∑
k=1

ϕk(t, τ),

(2.15)

where

ϕ1(t, τ) = [A(t) −A(τ)]ψ(t − τ, τ),

ϕk+1(t, τ) =
∫ t

τ

ϕk(t, s)ϕ1(s, τ)ds, k = 1, 2, . . . .
(2.16)

To our purpose the following conclusions will be needed. For the proofs refer to [16].

Lemma 2.12 (see [16]). The operator-valued functions ψ(t−η, η) andA(t)ψ(t−η, η) are continuous
in uniform topology in the variables t, η, where 0 ≤ η ≤ t − ε, 0 ≤ t ≤ T , for any ε > 0. Clearly,

∥∥ψ(
t − η, η

)∥∥ ≤ C
(
t − η

)q−1
. (2.17)

Moreover, we have

∥∥ϕ(t, η)∥∥ ≤ C
(
t − η

)γ−1
. (2.18)
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3. Main Results

We need the hypotheses as follows:

(H1) f : J × X × P → X satisfies f(·, v,w) : J → X is measurable for all (v,w) ∈ X × P
and f(t, ·, ·) : X × P → X is continuous for a.e. t ∈ J , and there exist a positive
function μ(·) ∈ Lp(J,R+)(p > 1/q > 1) and a continuous nondecreasing function
W : [0,∞) → [0,∞), such that

∥∥f(t, v,w)
∥∥ ≤ μ(t)W(‖v‖ + ‖w‖P

)
, (t, v,w) ∈ J ×X × P, (3.1)

and set Tp,q := Tq−1/p,

(H2) for any bounded sets D1 ⊂ X, D2 ⊂ P, and 0 ≤ τ ≤ s ≤ t ≤ T ,

α
(
ψ(t − s, s)f(s,D1, D2)

) ≤ β1(t, s)α(D1) + β2(t, s) sup
−∞<θ≤0

α(D2(θ)),

α
(
ψ(t − s, s)ϕ(s, τ)f(τ,D1, D2)

) ≤ β3(t, s, τ)α(D1) + β4(t, s, τ) sup
−∞<θ≤0

α(D2(θ)),
(3.2)

where supt∈J
∫ t
0 βi(t, s)ds := βi < ∞ (i = 1, 2),supt∈J

∫ t
0

∫s
0 βi(t, s, τ)dτ ds := βi < ∞ (i =

3, 4) and D2(θ) = {w(θ) : w ∈ D2},
(H3) there exists M, with 0 < M < 1 such that

C
(
1 + CB

(
q, γ

))
Tp,q,γMp,q

(
G∗ + C∗

1

)∥∥μ∥∥Lp(J,R+)lim inf
τ →∞

W(τ)
τ

< M, (3.3)

where Mp,q := ((p − 1)/(pq − 1))(p−1)/p, C∗
1 = sup0≤η≤TC1(η) and Tp,q,γ = max{Tp,q,

Tp,q+γ}.

Theorem 3.1. Suppose that (H1)–(H3) are satisfied, and if 4[G∗(β1 + 2β3) + (β2 + 2β4)] < 1, then
for (1.1) there exists a mild solution on (−∞, T].

Proof. Consider the operator Φ : Ω → Ω defined by

(Φu)(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

φ(t), t ∈ (−∞, 0],∫ t

0
ψ
(
t − η, η

)
f
(
η,Gu

(
η
)
, uη

)
dη

+
∫ t

0

∫η

0
ψ
(
t − η, η

)
ϕ
(
η, s

)
f(s,Gu(s), us)dsdη, t ∈ J.

(3.4)

It is easy to see that Φ is well-defined.
Let x(·) : (−∞, T] → X be the function defined by

x(t) =

⎧⎨
⎩
φ(t), t ∈ (−∞, 0],

0, t ∈ J.
(3.5)
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Let u(t) = x(t) + y(t), t ∈ (−∞, T].
It is easy to see that y satisfies y0 = 0 and

y(t) =
∫ t

0
ψ
(
t − η, η

)
f
(
η,G

(
x
(
η
)
+ y

(
η
))
, xη + yη

)
dη

+
∫ t

0

∫η

0
ψ
(
t − η, η

)
ϕ
(
η, s

)
f
(
s,G

(
x(s) + y(s)

)
, xs + ys

)
dsdη, t ∈ J

(3.6)

if and only if u satisfies

u(t) =
∫ t

0
ψ
(
t − η, η

)
f
(
η,Gu

(
η
)
, uη

)
dη

+
∫ t

0

∫η

0
ψ
(
t − η, η

)
ϕ
(
η, s

)
f(s,Gu(s), us)dsdη, t ∈ J

(3.7)

and u(t) = φ(t), t ∈ (−∞, 0].
Let Y0 = {y ∈ Ω : y0 = 0}. For any y ∈ Y0,

∥∥y∥∥Y0
= sup

t∈J

∥∥y(t)∥∥ +
∥∥y0

∥∥
P = sup

t∈J

∥∥y(t)∥∥. (3.8)

Thus (Y0, ‖ · ‖Y0
) is a Banach space.

We define the operator Φ̃ : Y0 → Y0 by (Φ̃y)(t) = 0, t ∈ (−∞, 0] and

(
Φ̃y

)
(t) =

∫ t

0
ψ
(
t − η, η

)
f
(
η,G

(
x
(
η
)
+ y

(
η
))
, xη + yη

)
dη

+
∫ t

0

∫η

0
ψ
(
t − η, η

)
ϕ
(
η, s

)
f
(
s,G

(
x(s) + y(s)

)
, xs + ys

)
dsdη, t ∈ J.

(3.9)

Obviously, the operator Φ has a fixed point if and only if Φ̃ has a fixed point. So it
turns out to prove that Φ̃ has a fixed point.

Let {yk}k∈N be a sequence such that yk → y in Y0 as k → ∞. Since f satisfies (H1),
for almost every t ∈ J , we get

f
(
t, G

(
x(t) + yk(t)

)
, xt + yk

t

)
−→ f

(
t, G

(
x(t) + y(t)

)
, xt + yt

)
, as k −→ ∞. (3.10)
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For t ∈ (−∞, T], we can prove that Φ̃ is continuous. In fact,

∥∥∥(Φ̃yk
)
(t) −

(
Φ̃y

)
(t)

∥∥∥
≤

∫ t

0

∥∥∥ψ(
t − η, η

)[
f
(
η,G

(
x
(
η
)
+ yk(η)), xη + yk

η

)

−f(η,G(
x
(
η
)
+ y

(
η
))
, xη + yη

)]∥∥∥dη
+
∫ t

0

∫η

0

∥∥∥ψ(
t − η, η

)
ϕ
(
η, s

)[
f
(
s,G

(
x(s) + yk(s)

)
, xs + yk

s

)

−f(s,G(
x(s) + y(s)

)
, xs + ys

)]∥∥∥dsdη.

(3.11)

Let C∗
2 = sup0≤η≤TC2(η), and noting (2.4), (2.5), we have

∥∥xt + yt

∥∥
P ≤ ‖xt‖P +

∥∥yt

∥∥
P

≤ C1(t)sup
0≤τ≤t

‖x(τ)‖ + C2(t)‖x0‖P + C1(t)sup
0≤τ≤t

∥∥y(τ)∥∥ + C2(t)
∥∥y0

∥∥
P

= C2(t)
∥∥φ∥∥P + C1(t)sup

0≤τ≤t

∥∥y(τ)∥∥
≤ C∗

2

∥∥φ∥∥P + C∗
1 sup
0≤τ≤t

∥∥y(τ)∥∥.

(3.12)

Moreover,

∥∥G(
x(t) + y(t)

)∥∥ ≤
∫ t

0
K(t, τ)

∥∥x(τ) + y(τ)
∥∥dτ

=
∫ t

0
K(t, τ) · ∥∥y(τ)∥∥dτ.

(3.13)

Noting that yk → y in Y0, we can see that there exists ε > 0 such that ‖yk − y‖ ≤ ε, for
k sufficiently large. Therefore, we have

∥∥∥f(t, G(
x(t) + yk(t)

)
, xt + yk

t

)
− f

(
t, G

(
x(t) + y(t)

)
, xt + yt

)∥∥∥
≤ μ(t)

[
W

(∥∥∥G(
x(t) + yk(t)

)∥∥∥ +
∥∥∥xt + yk

t

∥∥∥
P

)
+W

(∥∥G(
x(t) + y(t)

)∥∥ +
∥∥xt + yt

∥∥
P
)]

≤ μ(t)
[
ω1

k(t) +ω2
k(t)

]
,

(3.14)
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where

ω1
k(t) = W

(
G∗ε +G∗∥∥y∥∥Y0

+ C∗
2

∥∥φ∥∥P + C∗
1ε + C∗

1

∥∥y∥∥Y0

)
,

ω2
k(t) = W

(
G∗∥∥y∥∥Y0

+ C∗
2

∥∥φ∥∥P + C∗
1

∥∥y∥∥Y0

)
.

(3.15)

In view of (2.17) and the Lebesgue Dominated Convergence Theorem ensure that

∫ t

0

∥∥∥ψ(
t − η, η

)[
f
(
η,G

(
x
(
η
)
+ yk(η)), xη + yk

η

)
− f

(
η,G

(
x
(
η
)
+ y

(
η
))
, xη + yη

)]∥∥∥dη
≤ C

∫ t

0

(
t − η

)q−1∥∥∥f(η,G(
x
(
η
)
+ yk(η)), xη + yk

η

)

− f
(
η,G

(
x
(
η
)
+ y

(
η
))
, xη + yη

)∥∥dη
−→ 0, as k −→ ∞.

(3.16)

Similarly,by (2.17) and (2.18), we have

∫ t

0

∫η

0

∥∥∥ψ(
t − η, η

)
ϕ
(
η, s

)[
f
(
s,G

(
x(s) + yk(s)

)
, xs + yk

s

)

−f(s,G(
x(s) + y(s)

)
, xs + ys

)]∥∥∥dsdη
≤ C2

∫ t

0

∫η

0

(
t − η

)q−1(
η − s

)γ−1∥∥∥f(s,G(
x(s) + yk(s)

)
, xs + yk

s

)

− f
(
s,G

(
x(s) + y(s)

)
, xs + ys

)∥∥dsdη
−→ 0, as k −→ ∞.

(3.17)

Therefore, we deduce that

lim
k→∞

∥∥∥Φ̃yk − Φ̃y
∥∥∥
Y0

= 0. (3.18)

This means that Φ̃ is continuous.
We show that Φ̃ maps bounded sets of Y0 into bounded sets in Y0. For any r > 0, we

set Br = {y ∈ Y0 : ‖y‖Y0
≤ r}. Now, for y ∈ Br , by (3.12), (3.13), and (H1), we can see

∥∥f(t, G(
x(t) + y(t)

)
, xt + yt

)∥∥ ≤ μ(t)W(M1), (3.19)

where M1 := G∗r + C∗
2‖φ‖P + C∗

1r.
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Then for any y ∈ Br , by (2.17), (2.18), (3.19), and Remark 2.2, we have

∥∥∥(Φ̃y
)
(t)

∥∥∥ ≤
∫ t

0

∥∥ψ(
t − η, η

)
f
(
η,G

(
x
(
η
)
+ y

(
η
))
, xη + yη

)∥∥dη
+
∫ t

0

∫η

0

∥∥ψ(
t − η, η

)
ϕ
(
η, s

)
f
(
s,G

(
x(s) + y(s)

)
, xs + ys

)∥∥dsdη
≤ C

∫ t

0

(
t − η

)q−1
μ
(
η
)W(M1)dη + C2

∫ t

0

∫η

0

(
t − η

)q−1(
η − s

)γ−1
μ(s)W(M1)dsdη

= M2

[
C

∫ t

0

(
t − η

)q−1
μ
(
η
)
dη + C2B

(
q, γ

) ∫ t

0

(
t − η

)q+γ−1
μ
(
η
)
dη

]
,

(3.20)

where M2 = W(M1).
Noting that the Hölder inequality, we have

∫ t

0

(
t − η

)q−1
μ
(
η
)
dη = t(pq−1)/pMp,q

∥∥μ∥∥Lp(J,R+) ≤ Tp,qMp,q

∥∥μ∥∥Lp(J,R+),

∫ t

0

(
t − η

)γ+q−1
μ
(
η
)
dη ≤ Tp,q+γMp,q+γ

∥∥μ∥∥Lp(J,R+).

(3.21)

Thus

∥∥∥(Φ̃y
)
(t)

∥∥∥ ≤ M2Mp,qTp,q,γ
[
C + C2B

(
q, γ

)]∥∥μ∥∥Lp(J,R+) := r̃. (3.22)

This means Φ̃(Br) ⊂ Br̃ .
Next, we show that there exists k ∈ N such that Φ̃(Bk) ⊂ Bk. Suppose contrary that for

every k ∈ N there exist yk ∈ Bk and tk ∈ J such that ‖(Φ̃yk)(tk)‖ > k. However, on the other
hand, similar to the deduction of (3.20) and noting

∥∥∥f(t, G(
x(t) + yk(t)

)
, xt + yk

t

)∥∥∥ ≤ μ(t)W
(
G∗k + C∗

2

∥∥φ∥∥P + C∗
1k

)
, (3.23)

we have

k <
∥∥∥(Φ̃yk

)
(tk)

∥∥∥ ≤ M̃2

[
C

∫ tk

0

(
tk − η

)q−1
μ
(
η
)
dη + C2B

(
q, γ

) ∫ tk

0

(
tk − η

)q+γ−1
μ
(
η
)
dη

]

≤ M̃2Mp,qTp,q,γ
[
C + C2B

(
q, γ

)]∥∥μ∥∥Lp(J,R+),

(3.24)

where M̃2 = W(G∗k + C∗
2‖φ‖P + C∗

1k).
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Dividing both sides of (3.24) by k, and taking k → ∞, we have

C
(
1 + CB

(
q, γ

))
Tp,q,γMp,q

(
G∗ + C∗

1

)∥∥μ∥∥Lp(J,R+)lim inf
τ →∞

W(τ)
τ

≥ 1. (3.25)

This contradicts (3.3). Hence for some positive number k, Φ̃(Bk) ⊂ Bk.
Let 0 < t2 < t1 < T and y ∈ Bk, then

∥∥∥(Φ̃y
)
(t1) −

(
Φ̃y

)
(t2)

∥∥∥ ≤ I1 + I2 + I3 + I4, (3.26)

where

I1 =
∫ t2

0

∥∥[ψ(
t1 − η, η

) − ψ
(
t2 − η, η

)]
f
(
η,G

(
x
(
η
)
+ y

(
η
))
, xη + yη

)∥∥dη,
I2 =

∫ t1

t2

∥∥ψ(
t1 − η, η

)
f
(
η,G

(
x
(
η
)
+ y

(
η
))
, xη + yη

)∥∥dη,
I3 =

∫ t2

0

∫η

0

∥∥[ψ(
t1 − η, η

) − ψ
(
t2 − η, η

)]
ϕ
(
η, s

)
f
(
s,G

(
x(s) + y(s)

)
, xs + ys

)∥∥dsdη,
I4 =

∫ t1

t2

∫η

0

∥∥ψ(
t1 − η, η

)
ϕ
(
η, s

)
f
(
s,G

(
x(s) + y(s)

)
, xs + ys

)∥∥dsdη.

(3.27)

It follows from Lemma 2.12, (H1) and (3.23) that I1, I3 → 0, as t2 → t1.
For I2, from (2.17), (3.23), and (H1), we have

I2 =
∫ t1

t2

∥∥ψ(
t1 − η, η

)
f
(
η,G

(
x
(
η
)
+ y

(
η
))
, xη + yη

)∥∥dη
≤ CM̃2

∫ t1

t2

(
t1 − η

)q−1
μ
(
η
)
dη −→ 0, as t2 −→ t1.

(3.28)

Similarly, by (2.17), (2.18), (H1), and Remark 2.2, we have

I4 =
∫ t1

t2

∫η

0

∥∥ψ(
t1 − η, η

)
ϕ
(
η, s

)
f
(
s,G

(
x(s) + y(s)

)
, xs + ys

)∥∥dsdη
≤ C2M̃2

∫ t1

t2

(
t1 − η

)q−1 ∫η

0

(
η − s

)γ−1
μ(s)dsdη −→ 0, as t2 −→ t1.

(3.29)

So, the set {(Φ̃y)(·) : y ∈ Bk} is equicontinuous.
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For every bounded set H ⊂ Bk and any ε > 0, we can take a sequence {hn}∞n=1 ⊂ H
such that α(H) ≤ 2α({hn}) + ε (see [32]), thus from Lemmas 2.6–2.8, and 2.12 and (H2), we
have

α
(
Φ̃H

)
≤ 2α

({
Φ̃hn

})
+ ε = 2 sup

t∈J
α
({

Φ̃hn(t)
})

+ ε

= 2 sup
t∈J

α

({∫ t

0
ψ
(
t − η, η

)
f
(
η,G

(
x
(
η
)
+ hn

(
η
))
, xη + hnη

)
dη

}

+

{∫ t

0

∫η

0
ψ
(
t − η, η

)
ϕ
(
η, s

)
f(s,G(x(s) + hn(s)), xs + hns)dsdη

})
+ ε

≤ 4 sup
t∈J

(∫ t

0
α
({

ψ
(
t − η, η

)
f
(
η,G

(
x
(
η
)
+ hn

(
η
))
, xη + hnη

)})
dη

)

+ 8 sup
t∈J

(∫ t

0

∫η

0
α
({

ψ
(
t − η, η

)
ϕ
(
η, s

)
f(s,G(x(s) + hn(s)), xs + hns)

})
dsdη

)
+ ε

≤ 4 sup
t∈J

(∫ t

0

[
β1

(
t, η

)
G∗α({hn}) + β2

(
t, η

)
sup

−∞<θ≤0
α
({

hn

(
θ + η

)})]
dη

)

+ 8 sup
t∈J

(∫ t

0

∫η

0

[
β3

(
t, η, s

)
G∗α({hn}) + β4

(
t, η, s

)
sup

−∞<θ≤0
α({hn(θ + s)})

]
dsdη

)
+ ε

≤ 4 sup
t∈J

(∫ t

0

[
β1

(
t, η

)
G∗α({hn}) + β2

(
t, η

)
sup
0≤τ≤η

α({hn(τ)})
]
dη

)

+ 8 sup
t∈J

(∫ t

0

∫η

0

[
β3

(
t, η, s

)
G∗α({hn}) + β4

(
t, η, s

)
sup
0≤τ≤s

α({hn(τ)})
]
dsdη

)
+ ε

≤ 4
[
G∗(β1 + 2β3

)
+
(
β2 + 2β4

)]
α({hn}) + ε ≤ 4

[
G∗(β1 + 2β3

)
+
(
β2 + 2β4

)]
α(H) + ε,

(3.30)

since ε is arbitrary, we can obtain

α
(
Φ̃H

)
≤ 4

[
G∗(β1 + 2β3

)
+
(
β2 + 2β4

)]
α(H) < α(H). (3.31)

In view of the Sadovskii’s fixed point theorem, we conclude that Φ̃ has at least one
fixed point ỹ in Bk. Let u(t) = x(t) + ỹ(t), t ∈ (−∞, T], then u(t) is a fixed point of the operator
Φwhich is a mild solution of (1.1).



Advances in Difference Equations 13

Now we assume that

(H1’) there exists a positive function l(·) ∈ L1(J,R+), such that

∥∥f(t, v1, w1) − f(t, v2, w2)
∥∥

≤ l(t)
(‖v1 − v2‖ + ‖w1 −w2‖P

)
, (v1, v2) ∈ X2, (w1, w2) ∈ P2,

(3.32)

(H2’) there exists a constant� , with 0 < � < 1, such that the functionΛ : J → R+ defined
by

Λ(t) = C
(
G∗ + C∗

1

)
Γ
(
q
)[
Iql(t) + CΓ

(
γ
)
Iγ+ql(t)

] ≤ �, t ∈ J. (3.33)

Theorem 3.2. Assume that (H1’) and (H2’) are satisfied, then (1.1) has a unique mild solution.

Proof. Let Φ̃ be defined as in Theorem 3.1. For any y, y∗ ∈ Y0, we have

∥∥f(t, G(
x(t) + y(t)

)
, xt + yt

) − f
(
t, G

(
x(t) + y∗(t)

)
, xt + y∗

t

)∥∥
≤ l(t)

(∥∥G(
y(t) − y∗(t)

)∥∥ +
∥∥yt − y∗

t

∥∥
P
)

≤ l(t)

(
G∗∥∥y − y∗∥∥

Y0
+ C1(t)sup

0≤τ≤t

∥∥y(τ) − y∗(τ)
∥∥)

≤ (
G∗ + C∗

1

)
l(t)

∥∥y − y∗∥∥
Y0
.

(3.34)

Thus, from (2.17), (2.18), Definition 2.1 and Remark 2.2, we have

∥∥∥(Φ̃y
)
(t) −

(
Φ̃y∗

)
(t)

∥∥∥
≤

∫ t

0

∥∥ψ(
t − η, η

)∥∥∥∥f(η,G(
x
(
η
)
+ y

(
η
))
, xη + yη

)

− f
(
η,G

(
x
(
η
)
+ y∗(η)), xη + y∗

η

)∥∥∥dη
+
∫ t

0

∫η

0

∥∥ψ(
t − η, η

)
ϕ
(
η, s

)∥∥∥∥f(s,G(
x(s) + y(s)

)
, xs + ys

)
− f

(
s,G

(
x(s) + y∗(s)

)
, xs + y∗

s

)∥∥dsdη
≤ C

(
G∗ + C∗

1

)∥∥y − y∗∥∥
Y0
·
[∫ t

0

(
t − η

)q−1
l
(
η
)
dη + C

∫ t

0

∫η

0

(
t − η

)q−1(
η − s

)γ−1
l(s)dsdη

]

= C
(
G∗ + C∗

1

) · [Γ(q)Iql(t) + CΓ
(
q
)
Γ
(
γ
)
Iγ+ql(t)

] · ∥∥y − y∗∥∥
Y0

= Λ(t)
∥∥y − y∗∥∥

Y0
.

(3.35)
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So, we get

∥∥∥(Φ̃y)(t) −
(
Φ̃y∗

)
(t)

∥∥∥
Y0

<
∥∥y − y∗∥∥

Y0
, (3.36)

and the result follows from the contraction mapping principle.

Example 3.3. We consider the following model:

∂q

∂tq
v(t, ξ) = a(t, ξ)

∂2v

∂ξ2
(t, ξ) +

tn

n2
sin

(∣∣∣∣∣
∫ t

0
(t − s)v(s, ξ)ds

∣∣∣∣∣
)

·
∫ t

0
e−|

∫s
0 (s−τ)v(τ,ξ)dτ |ds +

tn

n2

∫0

−∞
ζ(θ) sin

∣∣∣t2v(t + θ, ξ)
∣∣∣dθ,

v(t, 0) = v(t, 1) = 0,

v(θ, ξ) = v0(θ, ξ), −∞ < θ ≤ 0,

(3.37)

where 0 ≤ t ≤ 1, ξ ∈ [0, 1], n ∈ N, a(t, ξ) is a continuous function and is uniformly Hölder
continuous in t, that is, there exist C > 0 and γ ∈ (0, 1) such that

‖a(t1, ξ) − a(t2, ξ)‖ ≤ C|t1 − t2|γ , ξ ∈ [0, 1], 0 ≤ t1 ≤ t2 ≤ 1, (3.38)

ζ : (−∞, 0] → R, v0 : (−∞, 0] × [0, 1] → R are continuous functions, and
∫0
−∞ |ζ(θ)|dθ < ∞.

Set X = L2([0, 1],R) and define A(t) by

D(A(t)) = H2(0, 1) ∩H1
0(0, 1),

A(t)u = −a(t, ξ)u′′.
(3.39)

Then −A(s) generates an analytic semigroup exp(−tA(s)) satisfying assumptions (A1)–(A3)
(see [33]).

Let the phase space P be BUC(R−, X), the space of bounded uniformly continuous
functions endowed with the following norm:

∥∥ϕ∥∥P = sup
−∞<θ≤0

∣∣ϕ(θ)∣∣, ∀ϕ ∈ P, (3.40)

then we can see that C1(t) = 1 in (2.5).
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For t ∈ [0, 1], ξ ∈ [0, 1] and ϕ ∈ BUC(R−, X), we set

u(t)(ξ) = v(t, ξ),

φ(θ)(ξ) = v0(θ, ξ), θ ∈ (−∞, 0],

f
(
t, Gu(t), ϕ

)
(ξ) =

tn

n2
sin(|(Gu(t))(ξ)|) ·

∫ t

0
e−|(Gu(s))(ξ)|ds +

tn

n2

∫0

−∞
ζ(θ) sin

∣∣∣t2ϕ(θ)(ξ)∣∣∣dθ,
(3.41)

where

(Gu(t))(ξ) =
∫ t

0
(t − s)u(s)(ξ)ds, (3.42)

now G∗ = supt∈[0,1]
∫ t
0(t − s)ds = 1/2 < ∞.

Then the above equation (3.37) can be written in the abstract form as (1.1).
Moreover,

∥∥f(t, Gu(t), ϕ
)
(ξ)

∥∥ ≤ tn+1

n2 ‖Gu(t)‖ + tn+2

n2

∥∥ϕ∥∥P

∫0

−∞
|ζ(θ)|dθ

≤ 1
n2

max

{
tn+1, tn+2

∫0

−∞
|ζ(θ)|dθ

}(
‖Gu(t)‖ + ∥∥ϕ∥∥P

)

= μ(t)W
(
‖Gu(t)‖ + ∥∥ϕ∥∥P

)
,

(3.43)

where μ(t) := max{tn+1, tn+2 ∫0−∞ |ζ(θ)|dθ},W(z) = z/n2 satisfy (H1).
For any u1, u2 ∈ X, ϕ, ϕ̃ ∈ P,

∥∥ψ(t − s, s)f
(
s,Gu1(s), ϕ

)
(ξ) − ψ(t − s, s)f

(
s,Gu2(s), ϕ̃

)
(ξ)

∥∥
≤ C

n2 (t − s)q−1
[
sn+1‖Gu1(s) −Gu2(s)‖ + sn

∫ s

0
‖Gu1(τ) −Gu2(τ)‖dτ

]

+
C

n2 (t − s)q−1sn+2
∫0

−∞
|ζ(θ)|∥∥ϕ(θ)(ξ) − ϕ̃(θ)(ξ)

∥∥dθ.
(3.44)

Therefore, for any bounded sets D1 ⊂ X, D2 ⊂ P, we have

α
(
ψ(t − s, s)f(s,D1, D2)

) ≤ 2C
n2 (t − s)q−1sn+1 · α(D1)

+
C

n2 (t − s)q−1sn+2
∫0

−∞
|ζ(θ)|α(D2(θ))dθ.

(3.45)
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Moreover,

2C
n2

sup
t∈[0,1]

∫ t

0
(t − s)q−1sn+1ds =

2C
n2

sup
t∈[0,1]

tn+q+1B
(
q, n + 2

)
=

2C
n2

B
(
q, n + 2

)
:= β1,

C

n2
sup
t∈[0,1]

∫ t

0
(t − s)q−1sn+2

∫0

−∞
|ζ(θ)|dθds =

C

n2
B
(
q, n + 3

) ∫0

−∞
|ζ(θ)|dθ := β2.

(3.46)

Similarly, we obtain

α
(
ψ(t − s, s)ϕ(s, τ)f(τ,D1, D2)

)

≤ (t − s)q−1(s − τ)γ−1τn+1
[
2C2

n2
α(D1) +

C2

n2
τ

∫0

−∞
|ζ(θ)|dθ sup

θ≤0
α(D2(θ))

]
,

2C2

n2
sup
t∈[0,1]

∫ t

0

∫s

0
(t − s)q−1(s − τ)γ−1τn+1dτ ds

=
2C2

n2
sup
t∈[0,1]

tq+γ+n+1B
(
q, γ

)
B
(
q + γ, n + 2

)
=

2C2

n2
B
(
q, γ

)
B
(
q + γ, n + 2

)
:= β3,

C2

n2
sup
t∈[0,1]

∫ t

0

∫ s

0
(t − s)q−1(s − τ)γ−1τn+2dτ ds

∫0

−∞
|ζ(θ)|dθ

=
C2

n2
B
(
q, γ

)
B
(
q + γ, n + 3

) ∫0

−∞
|ζ(θ)|dθ := β4.

(3.47)

Suppose further that

(1) there exists M ∈ (0, 1) such that (3/2n2)C(1 + CB(q, γ))((p − 1)/(pq −
1))(p−1)/p‖μ‖Lp([0,1],R+) < M,

(2) 2(β1 + 2β3) + 4(β2 + 2β4) < 1,

then (3.37) has a mild solution by Theorem 3.1.
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