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We study the existence and uniqueness theorem for the nonlinear fractional mixed Volter-
ra-Fredholm integrodifferential equation with nonlocal initial condition dαx(t)/dtα = f(t, x(t),
∫ t
0 k(t, s, x(s))ds,

∫1
0 h(t, s, x(s))ds), x(0) =

∫1
0 g(s)x(s)ds, where t ∈ [0, 1], 0 < α < 1, and f is a

given function. We point out that such a kind of initial conditions or nonlocal restrictions could
play an interesting role in the applications of the mentioned model. The results obtainded are
applied to an example.

1. Introduction

Recently it have been proved that the differential models involving nonlocal derivatives
of fractional order arise in many engineering and scientific disciplines as the mathematical
modeling of systems and processes in many fields, for instance, physics, chemistry,
aerodynamics, electrodynamics of complex medium, polymer rheology, and so forth (see [1–
6]). In fact, such models can be considered as an efficient alternative to the classical nonlinear
differential models to simulate many complex processes (see [7]). For instance, fractional
differential equations are an excellent tool to describe hereditary properties of viscoelastic
materials and, in general, to simulate the dynamics of many processes on anomalous media.
Theory of fractional differential equations has been extensively studied by several authors
as Delbosco and Rodino [8], Kilbas et al. [6], Lakshmikantham et al. [9–11], and also see
[2, 12–16].
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Recently Mophou and N’Guérékata [17], studied the Cauchy problem with nonlocal
conditions

Dqx(t) = Ax(t) + tnf(t, x(t), Bx(t)), t ∈ [0, T], n ∈ Z+,

x(0) + g(x) = x0,
(1.1)

in general Banach space X with 0 < q < 1, and A is the infinitesimal generator of a C0-
semigroup of bounded linear operators. By means of the Krasnoselskii’s Theorem, existence
of solutions was also obtained.

Subsequently several authors have investigated the problem for different types
of nonlinear differential equations and integrodifferential equations including functional
differential equations in Banach spaces.

Very recently N’Guérékata [2, 18] discussed the existence of solutions of fractional
abstract differential equations with nonlocal initial condition. The nonlocal Cauchy problem
is discussed by authors in [15] using the fixed-point concepts. Tidke [19] studied
the nonfractional mixed Volterra-Fredholm integrodifferential equations with nonlocal
conditions using Leray-Schauder Theorem.

Motivated by the above mentioned works in this manuscript we discuss the existence
and the uniqueness of the solution for the following fractional integrodifferential equation
with nonlocal integral initial condition in Banach Space:

dαx(t)
dtα

= f

(

t, x(t),
∫ t

0
k(t, s, x(s))ds,

∫1

0
h(t, s, x(s))ds

)

,

x(0) =
∫1

0
g(s)x(s)ds,

(1.2)

where t ∈ J = [0, 1], 0 < α < 1, g(t) ∈ (0, 1], g ∈ L1([0, 1],R+), x ∈ Y = C(J, E) is a continuous
function on J with values in the Banach space E and ‖x‖Y = maxt∈J‖x(t)‖E, and f : J × E ×
E × E → E, k : D × E → E, and h : D0 × E → E are continuous E-valued functions. Here
D = {(t, s) ∈ R

2 : 0 ≤ s ≤ t ≤ 1}, and D0 = J × J . The operator dα/dtα denotes the Caputo
fractional derivative of order α.

For the sake of the shortness let

Kx(t) =
∫ t

0
k(t, s, x(s))ds, Hx(t) =

∫1

0
h(t, s, x(s))ds. (A)

The paper is organized as follows. In Section 2, some definitions, lemmas and preliminary
results are introduced to be used in the sequel. Section 3 will involve the assumptions, main
results and proofs of existence problem of (1.2), together with a nonlocal initial condition.
Finally an example is presented.

2. Preliminaries

Let E be a real Banach space and θ the zero element of E. Let L1([0, 1], E) be the Banach space
of measurable functions x : [0, 1] → E which are Lebesgue integrable, equipped with the
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norm ‖x‖L1 =
∫1
0 ‖x(s)‖ds. We will use the following notation R+ = (0,∞), and R+ = [0,∞). A

function x ∈ C([0, 1], E) is called a solution of (1.2) if it satisfies (1.2).

Definition 2.1. A real function f(t) is said to be in the space Cα, α ∈ R if there exists a real
number p > α, such that f(t) = tpg(t), where g ∈ C[0,∞), while f(t) is said to be in the space
Cm

α if and only if f (m) ∈ Cα,m ∈ N.

Definition 2.2. The fractional (arbitrary) order Riemann-Liouville integral (on the right and
on the left) of the function f ∈ L1([a, b], R+) of order α, a, b ∈ R+ is defined by

Iαaf(t) =
1

Γ(α)

∫ t

a+

(t − s)α−1

Γ(α)
f(s)ds, Iαb−f(t) =

1
Γ(α)

∫b

t

(s − t)α−1

Γ(α)
f(s)ds, (2.1)

where Γ is the Gamma function of Euler.

When a = 0, we write Iαf(t) = Iα0+f(t) = f ∗ φα(t), where φα(t) = tα−1/Γ(α) for t > 0,
φα(t) = 0 for t ≤ 0, and ∗ represents the Convolution of Laplace. Then, it is well known that
φα(t) → δ(t) as α → 0, where δ is the Delta function.

Definition 2.3. The Riemann-Liouville fractional integral operator of order α > 0, of a function
f ∈ Cμ, μ ≥ −1 is defined as

Iαf(t) = φα ∗ f(t), α > 0, t > 0,

I0f(x) = f(x).
(2.2)

Definition 2.4. The Caputo’s derivative of fractional order α > 0 for a suitable function f(t) is
defined by

(cDαf
)
(t) =

1
Γ(n − α)

∫ t

0

f (n)(s)

(t − s)α−n+1
ds, n − 1 < α < n, n = [α] + 1, (2.3)

where [α] denotes the integer part of real number α.

It is obvious that the Caputo’s derivative of a constant is equal to 0.

Lemma 2.5. Let α > 0 and n = [α] + 1. Then

Iα
(cDαf

)
(t) = f(t) −

n−1∑

k=0

f (k)(0)
k!

tk. (2.4)

Lemma 2.6. IfQ(τ, α) = Γ(α)Iα1−g(τ) =
∫1
τ g(s)(s−τ)α−1ds for τ ∈ [0, 1], and if g ∈ L1([0, 1], R+)

satisfies 0 ≤ g(s) ≤ 1 for 0 ≤ s ≤ 1 and α > 0, then

Q(τ, α)
Γ(α)

< e,

∫ t
0 (t − s)α−1ds

Γ(α)
< e. (2.5)
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Proof. A direct computation shows

Q(τ, α)
Γ(α)

=

∫1
τ g(s)(s − τ)α−1ds
∫∞
0 sα−1e−sds

=

∫1
τ (s − τ)α−1ds
∫∞
0 sα−1e−sds

=

∫1−τ
0 sα−1ds

∫∞
0 sα−1e−sds

≤ e
∫1−τ
0 sα−1e−sds
∫∞
0 sα−1e−sds

< e,

∫ t
0 (t − s)α−1ds

Γ(α)
=

∫ t
0 s

α−1ds
∫∞
0 sα−1e−sds

≤ e
∫ t
0 s

α−1e−sds
∫∞
0 sα−1e−sds

< e.

(2.6)

Theorem 2.7 (Krasnoselkii). Let X be a Banach space, let S be a bounded closed convex subset of X
and let A, B be maps of S into X such that Ax + By ∈ S for every pair x, y ∈ S. If A is completely
continuous and B is a contraction then the equation Ax + Bx = x has a solution on S.

3. Main Results

We assume the following.

(A1) If f ∈ C([0, 1] × E × E × E, E) and a nonnegative, bounded pf ∈ L1([0, 1], R+), there
exist M > 0, pf(t) ≤ M for t ∈ [0, 1] such that

‖f(t, x,Kx,Hx)‖ ≤ pf(t)‖x‖ for x ∈ E. (3.1)

(A2) There exist positive constants L1, L2, and L such that

∥∥f
(
t, x1, y1, z1

) − f
(
t, x2, y2, z2

)∥∥ ≤ L1
(‖x1 − x2‖ +

∥∥y1 − y2
∥∥ + ‖z1 − z2‖

)
(3.2)

for all x1, y1, z1, x2, y2, z2 ∈ Y , L2 = maxt∈J‖f(t, 0, 0, 0)‖, and L = max{L1, L2}.
(A3) There exist positive constants N1,N2, and N such that

‖k(t, s, x1) − k(t, s, x2)‖ ≤ N1‖x1 − x2‖ (3.3)

for all x1, x2 ∈ Y , N2 = max(t,s)∈D‖k(t, s, 0)‖, and N = max{N1,N2}.
(A4) There exist positive constants C1, C2, and C such that

‖h(t, s, x1) − h(t, s, x2)‖ < C1‖x1 − x2‖ (3.4)

for all x1, x2 ∈ Y , C2 = max(t,s)∈D0‖h(t, s, 0)‖, and C = max{C1, C2}.
(A5) p = (L/Γ(α + 1))(1 + C +N/(α + 1)) is such that 0 ≤ p < 1.

Firstly, we obtain the following lemmas to prove the main results on the existence of solutions
to (1.2).



Advances in Difference Equations 5

Lemma 3.1. If (A1) holds with μ =
∫1
0 g(s)ds, then the problem (1.2) is equivalent to the following

equation:

x(t) =
1

(
1 − μ

)
Γ(α)

∫1

0
Q(τ, α)f(τ, x(τ), Kx(τ),Hx(τ))dτ + φα(t) ∗ f(t, x(t), Kx(t),Hx(t)).

(3.5)

Proof. By Lemma 2.5 and (1.2), we have

x(t) = x(0) +
1

Γ(α)

∫ t

0
(t − s)α−1f(s, x(s), Kx(s),Hx(s))ds. (3.6)

Therefore,

x(0) =
∫1

0
g(s)x(s)ds

=
∫1

0
g(s)dsx(0) +

1
Γ(α)

∫1

0
g(s)

∫s

0
(s − τ)α−1f(τ, x(τ), Kx(τ),Hx(τ))dτ ds.

(3.7)

So,

x(0) =
1

(
1 − μ

)
Γ(α)

∫1

0
f(τ, x(τ), Kx(τ),Hx(τ))

[∫1

τ

(s − τ)α−1g(s)ds

]

dτ

=
1

(
1 − μ

)
Γ(α)

∫1

0
Q(τ, α)f(τ, x(τ), Kx(τ),Hx(τ))dτ,

(3.8)

and then

x(t) =
1

(
1 − μ

)
Γ(α)

∫1

0
Q(τ, α)f(τ, x(τ), Kx(τ),Hx(τ))dτ + φα(t) ∗ f(t, x(t), Kx(t),Hx(t)).

(3.9)

Conversely, if x is a solution of (3.5), then for every t ∈ [0, 1], according to Definition 2.4 we
have

c
D

αx(t) = c
D

α

[
1

(
1 − μ

)
Γ(α)

∫1

0
Q(τ, α)f(τ, x(τ), Kx(τ),Hx(τ))dτ

+φα(t) ∗ f(t, x(t), Kx(t),Hx(t))
]

= θ + c
D

α(Iαf(t, x(t), Kx(t),Hx(t))
)

= f(t, x(t), Kx(t),Hx(t)).

(3.10)

It is obvious that x(0) =
∫1
0 g(s)x(s)ds. This completes the proof.
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Lemma 3.2. If (A3) and (A4) are satisfied, K, H are defined in (A), then the conditions

‖Kx(t)‖ ≤ t(N1‖x‖ +N2),

‖Kx1(t) −Kx2(t)‖ ≤ N1t‖x1 − x2‖,
‖Hx(t)‖ ≤ (C1‖x‖ + C2),

‖Hx1(t) −Hx2(t)‖ ≤ C1‖x1 − x2‖,

(3.11)

are satisfied for any t ∈ J , and x, x1, x2 ∈ Y .

Proof. By (A3), we have

‖Kx(t)‖ ≤
∫ t

0
‖k(t, s, x(s))‖ds

=
∫ t

0
‖k(t, s, x(s)) − k(t, s, 0) + k(t, s, 0)‖ds

≤
∫ t

0
‖k(t, s, x(s)) − k(t, s, 0)‖ds +

∫ t

0
‖k(t, s, 0)‖ds

≤ N1t‖x‖ +N2t ≤ (N1‖x‖ +N2).

(3.12)

On the other hand,

‖Kx1(t) −Kx2(t)‖ ≤
∫ t

0
‖k(t, s, x1(s)) − k(t, s, x2(s))‖ds

≤ N1

∫ t

0
‖x1(s) − x2(s)‖ds

≤ N1t‖x1 − x2‖.

(3.13)

Similarly, for the other conditions, we use assumption (A4), to get

‖Hx(t)‖ ≤
∫1

0
‖h(t, s, x(s))‖ds ≤ (C1‖x‖ + C2),

‖Kx1(t) −Kx2(t)‖ ≤ C1‖x1 − x2‖.
(3.14)

Theorem 3.3. If (A1)–(A5) are satisfied, then the fractional integrodifferential equation (1.2) has a
unique solution continuous in J .

Proof. We use the Banach contraction principle to prove the existence and uniqueness of the
solution to (1.2). Let Br = {x ∈ Y : ‖x‖ ≤ r} ⊆ Y , where r ≥ (eM/(1 − μ) + (L/Γ(α + 1))(1 +
C +N/(α + 1))) and define the operator Ψ on the Banach space Y by

Ψ(x(t)) =
1

(
1 − μ

)
Γ(α)

∫1

0
Q(τ, α)f(τ, x(τ), Kx(τ),Hx(τ))dτ

+
1

Γ(α)

∫ t

0
(t − s)α−1f(s, x(s), Kx(s),Hx(s))ds.

(3.15)
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Firstly, we show that the operatorΨmaps Br into itself. By using (A1) and triangle inequality,
we have

‖Ψ(x(t))‖ ≤ eM

1 − μ
‖x‖ + 1

Γ(α)

∥
∥∥
∥
∥

∫ t

0
(t − s)α−1f(s, x(s), Kx(s),Hx(s))ds

∥
∥∥
∥
∥

≤ eM

1 − μ
‖x‖ + 1

Γ(α)

∫ t

0
(t − s)α−1

∥
∥f(s, x(s), Kx(s),Hx(s))

∥
∥ds

≤ eM

1 − μ
‖x‖

+
1

Γ(α)

∫ t

0
(t − s)α−1‖f(s, x(s), Kx(s),Hx(s)) − f(s, 0, 0, 0) + f(s, 0, 0, 0)‖ds

≤ eM

1 − μ
‖x‖ + 1

Γ(α)

∫ t

0
(t − s)α−1‖f(s, x(s), Kx(s),Hx(s)) − f(s, 0, 0, 0)‖ds

+
1

Γ(α)

∫ t

0
(t − s)α−1‖f(s, 0, 0, 0)‖ds.

(3.16)

Now, if (A2) is satisfied, then

‖Ψ(x(t))‖ ≤ eM

1 − μ
‖x‖ + L1

Γ(α)

∫ t

0
(t − s)α−1(‖x(s)‖ + ‖Kx(s)‖ + ‖Hx(s)‖)ds

+
L2

Γ(α)

∫ t

0
(t − s)α−1ds

≤ eM

1 − μ
‖x‖ + L1

Γ(α)

∫ t

0
(t − s)α−1‖x(s)‖ds + L1

Γ(α)

∫ t

0
(t − s)α−1‖Kx(s)‖ds

+
L1

Γ(α)

∫ t

0
(t − s)α−1‖Hx(s)‖ds + L2

Γ(α)

∫ t

0
(t − s)α−1ds.

(3.17)

Using Lemma 3.2 and (A3), we have

‖Ψ(x(t))‖ ≤ eM

1 − μ
‖x‖ + L1

Γ(α + 1)
tα‖x‖ + L1

Γ(α)
(N1‖x‖ +N2)

∫ t

0
(t − s)α−1(s)ds

+
L1

Γ(α + 1)
(C1‖x‖ + C2)tα +

L2

Γ(α + 1)
tα

≤ eM

1 − μ
‖x‖ + L1

Γ(α + 1)
tα‖x‖ + L1

Γ(α + 2)
tα+1(N1‖x‖ +N2)

+
L1

Γ(α + 1)
(C1‖x‖ + C2)tα +

L2

Γ(α + 1)
tα

=
eM

1 − μ
‖x‖ + L1N2

Γ(α + 2)
tα+1 +

L1C2

Γ(α + 1)
tα +

L2

Γ(α + 1)
tα

+
L1

Γ(α + 1)
tα
(
1 +

N1

α + 1
t + C1

)
‖x‖,

(3.18)
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if x ∈ Br , we have

‖Ψ(x(t))‖ ≤ eM

1 − μ
‖x‖ + L

Γ(α + 1)

(
1 +

N

α + 1
+ C

)

+
Lr

Γ(α + 1)

(
1 +

N

α + 1
+ C

)

≤ r.

(3.19)

Thus ΨBr ⊂ Br . Next, we prove that Ψ is a contraction mapping. For this, let x1, x2 ∈ Y .
Applying (A2), we have

‖Ψx1(t) −Ψx2(t)‖

=

∥
∥
∥
∥
∥

Q(τ, α)
(
1 − μ

)
Γ(α)

∫1

0

[
f(s, x1(τ), Kx1(τ),Hx1(τ)) − f(s, x2(τ), Kx2(τ),Hx2(τ))

]
dτ

∥
∥
∥
∥
∥

+

∥∥∥∥∥
1

Γ(α)

∫ t

0
(t − s)α−1f(s, x1(s), Kx1(s),Hx1(s))ds

− 1
Γ(α)

∫ t

0
(t − s)α−1f(s, x2(s), Kx2(s),Hx2(s))ds

∥∥∥∥∥

≤ e
(
1 − μ

)
∫1

0
[L1‖x1(τ) − x2(τ)‖ + ‖Kx1(τ) −Kx2(τ)‖ + ‖Hx1(τ) −Hx2(τ)‖]dτ

+
L1

Γ(α)

(∫ t

0
(t − s)α−1‖x1(s) − x2(s)‖ds

+
∫ t

0
(t − s)α−1‖Kx1(s) −Kx2(s)‖ds +

∫ t

0
(t − s)α−1‖Hx1(s) −Hx2(s)‖ds

)

(3.20)

then using (A3), (A4) and Lemma 3.2, one gets

‖Ψx1(t) −Ψx2(t)‖

≤ L1e(
1 − μ

)‖x1 − x2‖
(∫1

0
dτ +N1

∫1

0
τdτ + C1

∫1

0
dτ

)

+
L1

Γ(α)
‖x1 − x2‖

(∫ t

0
(t − s)α−1ds +N1

∫ t

0
(t − s)α−1(s)ds + C1

∫ t

0
(t − s)α−1ds

)

≤ L1e(
1 − μ

)
(
1 +

N1

2
+ C1

)
‖x1 − x2‖ + L1

Γ(α)

(
tα

α
+
N1Γ(α)tα+1

Γ(α + 2)
+
C1t

α

α

)

‖x1 − x2‖

=

[
L1e(
1 − μ

)
(
1 +

N1

2
+ C1

)
+

L1

Γ(α + 1)

(
1 + C1 +

N1

α + 1
(t)

)
tα
]

‖x1 − x2‖

≤
[

Le
(
1 − μ

)
(
1 +

N

2
+ C1

)
+

L

Γ(α + 1)

(
1 + C +

N

α + 1

)]

‖x1 − x2‖

≤
[

Le
(
1 − μ

)
(
1 +

N

2
+ C

)
+ p

]

‖x1 − x2‖

≤ ΩC,N,α,μ,p‖x1 − x2‖,

(3.21)
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where ΩC,N,α,μ,p = [(Le/(1 − μ))(1 + (N/2) + C) + p] < 1 depends on the parameter of the
problem. Therefore Ψ has a unique fixed-point x = Ψ(x) ∈ Br , which is a solution of (3.5),
and hence is a solution of (1.2).

Theorem 3.4. Assume (A1)–(A4) holds. If eM < 1 − μ, then (1.2) has at least one solution on I.

Proof. Choose r ≥ eM/(1 − μ) + ‖pf‖L1/Γ(α + 1) and consider Br : {x ∈ C : ‖x‖ ≤ r}. Now
define on Br the operators A,B by

(Ax)(t) := φα(t) ∗ f(t, x(t), Kx(t),Hx(t)),

(Bx)(t) :=
1

(
1 − μ

)
Γ(α)

∫1

0
Q(τ, α)f(τ, x(τ), Kx(τ),Hx(τ))dτ.

(3.22)

Let us observe that if x, y ∈ Br then Ax + By ∈ Br . Indeed it is easy to check the inequality

‖Ax + By‖ ≤ eM
(
1 − μ

) +

∥∥pf
∥∥
L1

Γ(α + 1)
≤ r. (3.23)

We can easily show that that B is a contraction mapping. Let u, v ∈ Br . Then

‖(Bu)(t) − (Bv)(t)‖

:=
1

(
1 − μ

)
Γ(α)

∫1

0
Q(τ, α)

∥∥f(τ, u(τ), Ku(τ),Hu(τ)) − f(τ, v(τ), Kv(τ),Hv(τ))
∥∥dτ

≤ e
(
1 − μ

)
∫1

0
[L1‖u(τ) − v(τ)‖ + ‖Ku(τ) −Kv(τ)‖ + ‖Hu(τ) −Hv(τ)‖]dτ

≤ L1e(
1 − μ

)
(
1 +

N1

2
+ C1

)
‖u − v‖

≤ ΛN1,C1,L1‖u − v‖,
(3.24)

where ΛN1,C1,L1 = (L1e/(1 − μ))(1 + (N1/2) + C1) < 1 depends only on the parameter of the
problem and hence B is contraction. Since x is continuous, then (Ax)(t) is continuous in view
of (A1). Let us now note thatA is uniformly bounded on Br . This follows from the inequality

‖(Ax)(t)‖ ≤
∥∥pf

∥∥
L1

Γ(α + 1)
. (3.25)

Now let us prove that (Ax)(t) is equicontinuous.
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Let t1, t2 ∈ J and x ∈ Br . Using the fact that f is bounded on the compact set J×Br (thus
sup(t,s)∈J×Br

‖f(t, x(s), Kx(s),Hx(s))‖ := c0 < ∞), we will get

‖Ax(t1) −Ax(t2)‖ =
1

Γ
(
q
)

∥
∥
∥
∥
∥

∫ t1

0
(t1 − s)q−1

∫ s

0
f(s, x(s), Kx(s),Hx(s))ds

−
∫ t2

0
(t2 − s)q−1

∫ s

0
f(s, x(s), Kx(s),Hx(s))ds

∥
∥
∥
∥
∥

=
1

Γ
(
q
)

∥
∥
∥
∥
∥

∫ t1

t2

(t1 − s)q−1
∫ s

0
f(s, x(s), Kx(s),Hx(s))ds

−
∫ t2

0

(
(t2 − s)q−1 − (t1 − s)q−1

)∫s

0
f(s, x(s), Kx(s),Hx(s))ds

∥∥∥∥∥

≤ 1
Γ
(
q
)

(∥∥∥∥∥

∫ t1

t2

(t1 − s)q−1
∫ s

0
f(s, x(s), Kx(s),Hx(s))ds

∥∥∥∥∥

)

+
1

Γ
(
q
)

(∥∥∥∥∥

∫ t2

0
(t2 − s)q−1 − (t1 − s)q−1

∫s

0
f(s, x(s), Kx(s),Hx(s))ds

∥∥∥∥∥

)

≤ c0

Γ
(
q + 1

)
∣∣∣2(t1 − t2)q + t

q

2 − t
q

1

∣∣∣

≤ 2c0
Γ
(
q + 1

) |t1 − t2|q,
(3.26)

which does not depend on x. So A(Br) is relatively compact. By the Arzela-Ascoli Theorem,
A is compact. We now conclude the result of the theorem based on the Krasnoselkii’s theorem
above.

4. Example

Consider the following fractional integrodifferential equation:

cDαx(t) =
e−tx(t)

(9 + et)(1 + x(t))
+

1
10

∫ t

0
e−(1/2)x(s)ds +

1
10

∫ t

0
e−(1/49)x(s)ds, t ∈ J = [0, 1],

x(0) =
∫1

0

1
2
x(s)ds,

(4.1)
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where 0 < α ≤ 1. Take E = R+. Set Kx(t) =
∫ t
0 e

−(1/2)x(s)ds, Hx(t) =
∫ t
0 e

−(1/49)x(s)ds,
f(t, x,Kx,Hx) = e−tx/(9 + et)(1 + x) +Kx +Hx, g(s) = 1/2, pf(t) = e−tx(t)/(9 + et). Then it
is clear that

f ∈ C([0, 1] × E × E × E, E), pf(t) ≤ 1
10

= M,

pf ∈ L([0, 1], R+), ‖f(t, x,Kx,Hx)‖ ≤ pf(x).
(4.2)

So, (A1) is satisfied. Let x, y ∈ E and t ∈ J . Then we have

∥
∥Kx −Ky

∥
∥ =

∣
∣
∣
∣
∣

∫ t

0
e−(1/2)x(s)ds −

∫ t

0
e−(1/2)y(s)ds

∣
∣
∣
∣
∣
≤ 1

2
∣
∣x − y

∣
∣,

∥∥Hx −Hy
∥∥ =

∣∣∣∣∣

∫ t

0
e−(1/49)x(s)ds −

∫ t

0
e−(1/49)y(s)ds

∣∣∣∣∣
≤ 1

49
∣∣x − y

∣∣,

∥∥f(t, x,Kx,Hx) − f
(
t, y, y,Hy

)∥∥

=

∣∣∣∣∣
e−tx

(9 + et)(1 + x)
− e−ty

(9 + et)
(
1 + y

) +
1
10

((
Kx −Ky

)
+
(
Hx −Hy

))
∣∣∣∣∣

≤ e−t
∣∣x − y

∣∣

(9 + et)(1 + x)
(
1 + y

) +
1
10

(‖Kx −Ky‖ + ‖Hx −Hy‖)

≤ e−t

9 + et
∣∣x − y

∣∣ +
1
10

(‖Kx −Ky‖ + ‖Hx −Hy‖)

≤ 1
10

(∣∣x − y
∣∣ + ‖Kx −Ky‖ + ‖Hx −Hy‖).

(4.3)

Hence the conditions (A1)–(A4) hold with M = 1/10, L1 = 1/10, N1 = 1/2, C1 = 1/49.
Choose r = 1 and μ = 1/2. Indeed

L1e(
1 − μ

)
(
1 +

N1

2
+ C1

)
=

149e
490

< 1,

eM

1 − μ
=

e

5
< 1.

(4.4)

Further (A5) is satisfied by a suitable choice of α. Then by Lemma 3.2 the problem (1.2) has
a unique solution on [0,1].
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